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Quasi-central elements and p-nilpotence of finite groups

By HUAQUAN WEI (Nanning), YANMING WANG (Guangzhou)
and GUOHUA QIAN (Changshu)

Abstract. Let G be a finite group and let P be a Sylow p-subgroup of G. An
element z of G is called quasi-central in G if (z)(y) = (y)(z) for each y € G. In this
paper, it is proved that G is p-nilpotent if and only if Ng(P) is p-nilpotent and, for all
x € G\Ng(P), one of the following conditions holds: (a) every element of PN P*NGV>
of order p or 4 is quasi-central in P; (b) every element of P N P* N GV of order pis
quasi-central in P and, if p = 2, PN P N GM? is quaternion-free; (c) every element of
PN PN GNP of order p is quasi-central in P and, if p = 2, Q20PN PN GNP)7 P <
Z(PNGN?); (d) every element of PNGN? of order p is quasi-central in P and, if p = 2,
[Q(PNP*NGY?), Pl < Q1 (PNGY); (e) |U(PNP*NGN?)| < pP~ ! and, if p = 2,
PN P*N GV is quaternion-free; (f) |Q(P N P* N GN?)| < pP~ L. That will extend and
improve some known related results.

1. Introduction

All groups considered will be finite. If P is a p-group, we denote Q(P) =
Q(P) if p > 2 and Q(P) = (Q1(P),Q(P)) if p = 2, where Q;(P) = (x € P |
o(z) = p'). For a formation F and a group G, there exists a smallest normal
subgroup of G, called the F-residual of G’ and denoted by G7, such that G/G7 €
F (vefer [1]). Throughout this paper, N and NV, will denote the classes of nilpotent
groups and p-nilpotent groups, respectively. A 2-group is called quaternion-free
if it has no section isomorphic to the quaternion group of order 8.
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A group is said to be p-nilpotent if it has a normal p-complement. In general,
a group with a p-nilpotent normalizer of the Sylow p-subgroup need not be a p-
nilpotent group, for example, Sy is a counter-example for p = 2. However, if one
adds some embedding properties on the Sylow p-subgroup, one may obtain the
desired result. For instance, Wielandt proved that a group G is p-nilpotent if it has
a regular Sylow p-subgroup whose G-normalizer is p-nilpotent [2]. BALLESTER-
BoLiNCHES and ESTEBAN-ROMERO showed that a group G is p-nilpotent if it has
a modular Sylow p-subgroup whose G-normalizer is p-nilpotent [3]. Moreover,
GUO and SHUM obtained a similar result by use of the permutability of some
minimal subgroups of Sylow p-subgroups [4].

Let G be a group. Recall that an element x of G is called quasi-central in G if
(x)(y) = (y){(x) for each y € G. Tt is clear that centrality implies quasi-centrality.
But the converse is not true. For example, let G be the quaternion group of
order 8. Then any element of G is quasi-central and the center of G has order 2.

In this paper, we will push further the studies and obtain the following main
theorem:

Theorem 1.1. Let P be a Sylow p-subgroup of a group G. Then G is p-
nilpotent if and only if Ng(P) is p-nilpotent and, for all x € G\Ng(P), one of
the following conditions holds:

(a) Every element of PN P* N GN> of order p or 4 is quasi-central in P;

(b) Every element of PN P*N GN» of order p is quasi-central in P and, if p = 2,
PN P*NGNr is quaternion-free;

(¢) Every element of PN P*NGNv of order p is quasi-central in P and, if p = 2,
[Qe(P N P*NGN?), P] < Z(PNGNr);

(d) Every element of P N GNv of order p is quasi-central in P and, when p = 2,
[Qe(P N P*NGNP), P] < Qi (PN GNY);

(e) [ (PN P*NGNe)| <pP~! and, if p=2, PN P* N GN» is quaternion-free;
(f) QPN P*NGN?)| < pPt.
As an application of Theorem 1.1, we give the following Theorem 1.2:
Theorem 1.2. Let P be a Sylow p-subgroup of a group G, where p is a
prime divisor of |G| with (|G|,p — 1) = 1. Then G is p-nilpotent if and only if
one of the following conditions holds:
(a) Every element of PN GN» of order p or 4 is quasi-central in Ng(P);

(b) Every element of PN GN» of order p is quasi-central in N¢(P) and, if p =2,
PN GNe is quaternion-free.
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The conditions presented above are necessary and sufficient and hence are
sharp. Furthermore, since PNGN» < PNGN < PNOP(G) < PNG’, our results
can be adapted to yield the following theorems of Li, Ballester-Bolinches, Guo,
Shum and Asaad:

Theorem 1.3 ([5, Theorem 1]). Let P be a Sylow p-subgroup of a group G.
If one of the following conditions holds, then G is p-nilpotent:

(a) Ifp is odd and every minimal subgroup of P lies in the center of Ng(P);

(b) If p =2 and every cyclic subgroup of P of order 2 or 4 is permutable
in NG (P) .

Theorem 1.4 ([6, Theorem 1]). Let P be a Sylow p-subgroup of a group G,
where p is the smallest prime divisor of |G|. If every element of P of order p or 4
(if p = 2) is quasi-central in Ng(P), then G is p-nilpotent

Theorem 1.5 ([7, Theorem 1]). Let P be a Sylow p-subgroup of a group G.
If Q(PNG") < Z(Ng(P)), then G is p-nilpotent.

Theorem 1.6 ([7, Theorem 2]). Let P be a Sylow 2-subgroup of a group G.
Suppose that Q1(P N G') < Z(P). If P is quaternion-free and Ng(P) is 2-
nilpotent, then G is p-nilpotent.

Theorem 1.7 ([8, Main Theorem|). Let P be a Sylow p-subgroup of a
group G, where p is a prime divisor of |G| with (|G|,p — 1) = 1. If every minimal
subgroup of PNGV is permutable in N¢(P) and, when p = 2, either every cyclic
subgroup of PNGN with order 4 is permutable in N¢ (P) or P is quaternion-free,
then G is p-nilpotent.

Theorem 1.8 ([4, Main Theorem]). Let P be a Sylow p-subgroup of a
group G. Assume that every minimal subgroup of PN O?(G) is permutable in P
and N¢(P) is p-nilpotent. Assume that, in addition, when p = 2 then either P is
quaternion-free or [Qo(P N OP(G)), P] < Q1(P NOP(G)). Then G is p-nilpotent.

Theorem 1.9 ([9, Theorem 1]). Let P be a Sylow p-subgroup of a group G.
If p = 2, suppose that P is quaternion-free. Then the following statements are
equivalent:

(a) G is p-nilpotent;

(b) (P) is p-nilpotent and Qi (P N P* N GN) < Z(P) for all x € G\Ng(P);
(c) (P) is p-nilpotent and |Q; (P N P*NGN)| < pP~! for all z € G\Ng(P);
(d) YU (PNGY) < Z(Na(P)).

Ng
Ng
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We remark that the quaternion-free hypothesis can not be removed. For
example, if we take G = GL(2, 3) then we see that the elements

() ) ()

generate GL(2,3), and the following relations hold:
Ad==c=1, blab=d® ctaPc=ab, c labe=aba?®, b leb= 2

Also we see that P = (a,b) is a Sylow 2-subgroup of GL(2,3) and a semidihedral
group of order 16. Furthermore, G’ = OP(G) = SL(2,3) and therefore

PNGN: =PNGN =PNOP(G)=PNG = (a?, ab)

is a quaternion group of order 8. It is easily seen that Q, (PNGN?) < Z(P) = (a*)
and Ng(P) = P, but G itself is not 2-nilpotent (refer [10]).

2. Preliminaries

We begin by giving some lemmas, which will be needed in our proofs.

Lemma 2.1. Let ¢ be an element of a group G of order p, where p is a prime
divisor of |G|. If ¢ is quasi-central in G, then c is centralized by every element
of G of order p or 4 (if p=2).

PROOF. Let x be an element of G of order p or 4 (if p = 2). By the hypothesis,
H = (z){c) is a group. It is clear that c is centralized by z if z is of order p.
Now assume that p = 2 and z is of order 4. If [¢,z] # 1 and |H| = 8, then
¢ 'zc = 7! and H is isomorphic to the dihedral group of order 8. It is clear
that (xc){c) # (c)(xc). This is contrary to the quasi-centrality of c¢. Hence we

must have [¢, 2] = 1. We are done. O

Lemma 2.2. Let the p’-group H act on the p-group P. If H acts trivially
on 4 (P) and P is quaternion-free if p = 2, then H acts trivially on P.

PRrROOF. The case p odd is a direct consequence of Theorem 5.3.10 of [11]
and the case p even is Lemma 2.15 of [12]. O

Lemma 2.3 ([13, Lemma 2.8(1)]). Let M be a maximal subgroup of a group
G and let P be a normal p-subgroup of G such that G = PM, where p is a prime.
Then PN M is a normal subgroup of G.
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Lemma 2.4 ([14, Lemma 2]). Let F be a saturated formation. Assume
that G is a non-F-group and there exists a maximal subgroup M of G such that
M € F and G = F(G)M, where F(G) is the Fitting subgroup of G. Then

(1) GF/(GT)" is a chief factor of G;
2) G7 is a p-group for some prime p;
)
)

—_

G has exponent p if p > 2 and exponent at most 4 if p = 2;
G7 is either an elementary abelian group or (G7)' = Z(G”) = ®(G7) is an
elementary abelian group.

Lemma 2.5. Let G be a group and let p be a prime number dividing |G|
with (|G|,p — 1) = 1. Then
(1) If N is normal in G of order p, then N lies in Z(G);
(2) If G has cyclic Sylow p-subgroups, then G is p-nilpotent;
(3) If M is a subgroup of G of index p, then M is normal in G.

PROOF. (1) Since G/Cg(N) is isomorphic to a subgroup of Aut(N) and
|Aut(N)| =p — 1, |G/Cq(N)| must divide (|G|,p — 1) = 1. It follows that G =
Ce(N) and N < Z(G).

(2) Let P € Syl,(G) and |P| = p". Since P is cyclic, we have | Aut(P)| =
p"~Y(p —1). Again, Ng(P)/Cg(P) is isomorphic to a subgroup of Aut(P), so
|INg(P)/Cq(P)| must divide (|G|,p — 1) = 1. Thus Ng(P) = Cg(P), and (2)
follows by the well-known Burnside theorem.

(3) Obviously we can assume that M # 1. Moveover the result is well-known
if p = 2. So we can also assume that p is odd. This implies that |G| is odd and
therefore G is solvable, by the Odd Order Theorem. If Mg = 1, then M is a
core-free maximal subgroup of G and |G : M| = p. Now G is a solvable primitive
group and there exists a self-centralizing minimal normal subgroup N of order p,
such that G = M N. This implies that M is isomorphic to a nontrival subgroup
of Aut(C}) = Cp—1 and then |M| divides p — 1. This is not possible. Therefore
Mg # 1. By induction, M /Mg is normal in G/M¢g and then M = Mg is normal
in G. O

We remark that the hypothesis (|G|,p — 1) = 1 always holds when p is the
smallest prime divisor of |G|, hence Lemma 2.5(3) extends a result of Frobenius
(vefer [15, Theorem 20]).
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3. Proofs of theorems

PROOF OF THEOREM 1.1. If G is p-nilpotent, then GN» = 1. Therefore
necessity holds.

Conversely, we shall prove that each of the conditions (a)—(f) is sufficient to
guarantee that G is p-nilpotent. Let G be a minimal counterexample. Then we
have the following claims:

(1) M is p-nilpotent whenever P < M < G.

Since Nps(P) < Ng(P), Np(P) is p-nilpotent. Let z be an element of
M\Ny(P). First assume that G satisfies (a), (b) or (c). Since PN MNr <
PN GNr | every element of PN P* N MNr of order p is quasi-central in P. Now
it is easy to see that M satisfies (a) or (b). If G satisfies (c), then

[Q(P NPT AMN), Pl < Z(PNGN?) 0 (PN MNY) < Z(Pn M),

hence M satisfies (c) too. If G satisfies (d), every element of P N M*N» of order
p is quasi-central in P. Moreover, since Q1 (P N GN) is an elementary abelian
p-group by Lemma 2.1, we have

[ (PN P"AMN), Pl < (PNGN?) 0 (PN MYY) = Qu (P M.

Thus M satisfies (d). If G satisfies (e) or (f) then so does M as is easy to see. In
other words, M satisfies the hypotheses of the theorem. The choice of G implies
that M is p-nilpotent.

(2) 0p(G) = 1. -

If not, consider G = G/N, where N = O,/ (G). Clearly Ng(P) = Ng(P)N/N
is p-nilpotent, where P = PN/N. For every ztN € G\Ng(P), since GV =
GN»N/N and PN P*N = PN P*" for some n € N, we have

PPN G = (PnP™nGMN)N/N = (P11 P™ 0 GNe) N/N.

Because N € G\Ng(P), we get zn € G\Ng(P). Now it is clear that every
clement of PN P NG of order p is quasi-central in P if G satisfies (a), (b)
or (c). Moreover, if (c) is satisfied, then we have

(PPN nG""), P = [0:(Pn P A GNY), PIN/N < Z(P N GN)N/N,

that is,
[PnP " nG""), Pl <z(Pna™).
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If (d) is satisfied, every element of P N éNp of order p is quasi-central in P.
Besides,

(PP nG""), P = [0(P N P™NGN), PIN/N < 0, (PN GN?)N/N,

namely

(PP G\, Pl <o (PnE™).
Now we see easily that G satisfies all the hypotheses of the theorem. The mini-
mality of G implies that G is p-nilpotent and so is G, a contradiction.

(3) G/0O,(Q) is p-nilpotent and Cq(O,(G)) < O,(G).

Suppose that G/O,(G) is not p-nilpotent. Then, by Frobenius’ theorem
(vefer [16, Theorem 10.3.2]), there exists a subgroup of P properly containing
O,(G) such that its G-normalizer is not p-nilpotent. Since Ng(P) is p-nilpotent,
we may choice a subgroup P; of P such that O,(G) < Pi < P and Ng(P)
is not p-nilpotent but Ng(Ps) is p-nilpotent whenever P; < P, < P. Denote
H = Ng(P1). Tt is obvious that P; < Py < P for some Sylow p-subgroup P,
of H. The choice of P; implies that Ng(Fp) is p-nilpotent, hence Ny (FP) is also
p-nilpotent. Let x be an element of H\Ng(FPy). Since Py = P N H, we have
x € G\Ng(P). Again, Py HN» < PN GNr, so every element of Py N Pyn HN»
of order p is quasi-central in Py if G satisfies (a), (b) or (c) and every element of
Py N HNv of order p is quasi-central in P, if G satisfies (d). Furthermore, if G
satisfies (c), then

[Q2(Pyn Py 0 HN?), R < Z(PNGNe) n (Pyn HN?) < Z(Pyn HM).
If G satisfies (d), as Q1 (P N GN?) is an elementary abelian p-group, we have
[Qa2(Pon Py 0 HN), By] < Qi (PNGN?) 0 (Pyn HN) = Qq (Py 0 HYY).

Now it is easily seen that H satisfies the hypotheses of the theorem. The mini-
mality of G allows us to conclude that H is p-nilpotent, which is contrary to the
choice of P;. Hence G/O,(G) is p-nilpotent and G is p-solvable with O,/ (G) = 1.
Consequently, we obtain Cq(O,(G)) < O,(G) (refer [11, Theorem 6.3.2]).

(4) G = PQ, where Q is an elementary abelian Sylow g-subgroup of G for
a prime ¢ # p. Moreover, P is maximal in G and QO,(G)/O,(G) is minimal
normal in G/O,(G).

For any prime divisor ¢ of |G| with ¢ # p, since G is p-solvable, there ex-
ists a Sylow g¢-subgroup @ of G such that Gy = PQ is a subgroup of G ([11,
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Theorem 6.3.5]). If Go < @G, then, by (1), Go is p-nilpotent. This leads to
Q < Ca(0,(G)) < 0p(G), a contradiction. Thus G = PQ and so G is solv-
able. Now let T'/O,(G) be a minimal normal subgroup of G/O,(G) contained in
Opp (G)/Op(G). Then T = O,(G)(TNQ). TNQ < Q, then PT < G and
therefore PT is p-nilpotent by (1). It follows that

1<TNQ<Ca(0p(G)) < 0p(G),
which is impossible. Hence T = O, (G) and QO,(G)/O,(G) is an elementary
abelian g-group complementing P/O,(G). This yields that P is maximal in G.

(5) [P+ 0,(G)] = p.

Clearly, O,(G) < P. Let Py be a maximal subgroup of P containing O,(G)
and let Gy = PyO,pp (G). Then P, is a Sylow p-subgroup of Gy. The maximality
of P in G implies that either Ng(Py) = G or Ng(Fy) = P. If the latter holds, then
Ng,(Py) = Py. On the other hand, GNr < O,(G) by (3), hence PN P* N GNr =
GMNr for every z € G. Now it is easy to check that Gy satisfies the hypotheses
of the theorem. Therefore Gy is p-nilpotent and Q < Cg(O,(G)) < Op(G), a
contradiction. Thus Ng(Py) = G and Py = O,(G).

(6) G = GNr L, where L = (a)[Q] is a non-abelian split extension of Q by
a cyclic p-subgroup (a), a? € Z(L) and the action of a (by conjugation) on @Q is
irreducible.

Write T = GN?Q. Then T<G as G/GNP is p-nilpotent. Let Py be a maximal
subgroup of P containing GV». Then, by the maximality of P, either Ng(Py) =P
or Ng(Py) = G. If Ng(Py) = P, then Ny (Py) = Py, where M = PyT = PyQ.
By (3), GNr < 0,(G), so PN P*NGN> = GMNr for any © € G. Evidently,
Pyn PY N MNe < GNe for all y € M\Np(Py), hence M satisfies the hypotheses
of the theorem. By the minimality of G, M is p-nilpotent. It follows that T' =
GNr@Q = GNr x Q and so Q < G, a contradiction. Thereby Ng(Py) = G and
Py < 0,(G). This yields from (5) that O,(G) = Py and hence P/GN» is a cyclic
group. Now applying the Frattini argument we have G = GNPNg(Q). Therefore
we may assume that G = GNv L, where L = (a)[Q] is a non-abelian split extension
of a normal Sylow g-subgroup @ by a cyclic p-group (a). Now that |P : O,(G)| =p
and O,(G) N Ng(Q) < Ng(Q), we have a? € Z(L). Also since P is maximal in
G, GNrQ/GNr is minimal normal in G/GN> and consequently a acts irreducibly
on Q.

(7) GN» has exponent p if p > 2 and exponent at most 4 if p = 2.

By Lemma 2.4 it will suffice to show that there exists a p-nilpotent maximal
subgroup M of G such that G = GN» M. In fact, let M be a maximal subgroup
of G containing L. Then M = L(M N G¥?) and G = GNr M. By Lemma 2.3,
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M NGN» G, hence M = ({a)(M N GN?))Q. Write Py = (a)(M N GN?) and let
My be a maximal subgroup of M containing Py. Then My = Py(Mp N Q) and
GN» My < G. By applying (1) we see that GN» My is p-nilpotent, therefore

Mo N Q < Ca(0p(Q)) < 0p(G).
It follows that MyN@ = 1 and so Py is maximal in M. In this case, if Py<tM, then
(ay = PyN L < L, which is contrary to (6). Hence Ny (Py) = Py and M satisfies
the hypotheses of the theorem. The choice of G implies that M is p-nilpotent, as
desired.
Without losing generality, we assume in the following that P = GNr (a).

(8) The exponent of GM» is not p.

If not, GN» has exponent p. First assume that G satisfies one of the conditions
(a), (b), (¢) and (d). Denote GN* N (a) = (¢). Then ¢ = 1 and (GN?/(c)) N
((a)/{c)) = 1. Noticing that GN* N (a) < (a), we have ¢ € (a?) < Z(L). By
Lemma 2.1, GM» is an elementary abelian p-group, hence ¢ € Z (G). Now we
consider G/(c). Let y(c) be an element of GN*/(c), where y € GN». By the
hypotheses, (y){a) = (a)(y), hence

It follows that

(D)™ € (@ /(e)) N () e/ (e)) ((a)/{e)) = (y){e)/ ().

This indicates that a(c) induces a power automorphism of p-power order in the
elementary abelian p-group GM» /(c). Therefore [GV? /(c), a{c)] = 1 and GM> /(c)
is centralized by P/(c). If we write Cq /(o) (GN7/(c)) = K/{c), then P < K < G.
By the maximality of P, either P = K or K = G. If P = K then Ng(P) =G is
p-nilpotent, contradicting to the choice of G. Hence K = G and [GNP, Q] < {c).
This means that @ stabilizes the chain of subgroups 1 < (¢) < GNv». Tt follows
from [11, Theorem 5.3.2] that [GV», Q] = 1 and Q is normal in G, a contradiction.
Now assume that G satisfies (e) or (f). Let N be a minimal normal subgroup
of G contained in O, (G). Then Ng,n(P/N) = Ng(P)/N is p-nilpotent as Ng(P)
is. Moreover, since (G/N)N» = GNe N/N and GV» has exponent p, we obtain

((G/N)N) = 1((G/N)YY)| = [GMN/N| < |GMr| < pr 7t

This proves that G/N satisfies (e) or (f). Hence G/N is p-nilpotent by the choice
of G. Since the class of p-nilpotent groups is a saturated formation, we may
assume that N is the unique minimal normal subgroup of G contained in O,(G)
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and ®(G) = 1 as ®(G) < F(G) = O,(G). Furthermore, O,(G) is the direct
product of minimal normal subgroups of G by [2, III, Satz 4.5], thus O,(G) =
N = GNv. Using (5), we obtain |P| < pP. Tt follows from [2, III, Satz 10.2(b)]
that P is regular and, by Wielandt’s theorem [2, IV, Satz 8.1], G is p-nilpotent,
also a contradiction.

(9) The final contradiction.

From (7) and (8) we see that p = 2 and the exponent of GN2 is 4. By
applying Lemma 2.4, (GN2) = Z(GN2) = ®(GM?) is an elementary abelian 2-
group, it follows that ®(GM2) < Q;(GN2). First assume that G satisfies one
of (a), (b), (c) and (d). Since Q;(GM?) is an elementary abelian 2-group, we
have Q;(GV?) < GM2. However, GN? /®(G™2) is a chief factor of G by Lemma
2.4, so Z(GN2) = &(GN2) = Q;(GN?). Now assume that G satisfies (a). If
®(GN2) N (a) # 1 then there exists an element ¢ in ®(GN2) N (a) such that
o(c) = 2. As ®(GM2) N (a) < (a), we have ¢ € (a®) < Z(L). So c € Z(G).
If ®(GN2) N (a) = 1 then a induces a power automorphism of 2-power order
in the elementary abelian 2-group ®(GV?), hence [®(GV?),a] = 1. In view of
Lemma 2.1, ®(GM?) is also centralized by GV, thereby we get ®(GN?) < Z(P).
Furthermore, by the Frattini argument,

G = No(@(GY?)) = Co(8(GM?))Ne (P).

Noticing that Ng(P) = P and P < Cg(®(GM?)), we obtain Cg(®(GMN?)) = G,
i.e., ®(GN?) < Z(G). Thus we can also take an element ¢ in ®(GV?) such that
o(c) = 2and ¢ € Z(@G). Denote N = (c) and consider G = G/N. For any y € Gz,
since y is quasi-central in P, yN is quasi-central in P = P/N. This shows that
G satisfies (a). The minimality of G implies that G is 2-nilpotent and so is G, a
contradiction. Now assume that G satisfies (b), (¢) or (d). Let M be a maximal
subgroup of G containing L. Then M is 2-nilpotent by the proof of (7), hence
®(GN2)Q is 2-nilpotent and [®(GV?), Q] = 1. In this case, if G satisfies (b), then
@ acts trivially on G2 by Lemma 2.2, thus ) is normal in G, a contradiction.
Assume that G satisfies (c) or (d). Denote K = Cq(GN? /®(GV?)). Then, by the
hypotheses, P < K < G. The maximality of P yields that P = K or K = G. If
the former holds, then G = Ng(P) is 2-nilpotent, a contradiction. If the latter
holds, then [GV2,Q] < ®(GN?). Therefore Q stabilizes the chain of subgroups
1 < ®(GM2) < GNa. Tt follows from [11, Theorem 5.3.2] that [GM2,Q] = 1 and Q
is normal in G, which is impossible.

Finally we assume that G satisfies (e). In this case, Q;(GM?) is a cyclic
subgroup of order 2, of course, Q acts trivially on Q1(G?). Consequently, Q acts
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trivially on GMN2 by Lemma 2.2 and @ is normal in G, a contradiction. Similarly,
we can get a final contradiction if G satisfies (f). This completes our proof. [

PROOF OF THEOREM 1.2. By Theorem 1.1, we only need to prove Ng(P)
is p-nilpotent under the sufficient conditions.

If Ng(P) is not p-nilpotent, then Ng(P) has a minimal non-p-nilpotent sub-
group H. By results of It6 ([2, IV, 5.4]) and Schmidt ([2, ITI, 5.2]), H has a normal
Sylow p-subgroup H, and a cyclic Sylow g-subgroup H, such that H = [Hp|H,.
Moreover, H), is of exponent p if p > 2 and of exponent at most 4 if p = 2.
On the other hand, the minimality of H implies that HN» = H,. Let = be an
element of H, of order p. Then, by the hypotheses, (z)H, is a subgroup of H. If
(x)H, = H, then H, = (z) is cyclic and H is p-nilpotent by Lemma 2.5, a con-
tradiction. Hence (z)H, < H and (z)H, = (x) x H,;. Thus Q;(H,) is centralized
by H,. Also, by Lemma 2.1, Q,(H,) is centralized by H,, so Q;(H,) < Z(H).
If H, is of exponent p or H,, is quaternion-free, then H, acts trivially on H), by
Lemma 2.2, that is, H, is normal in H, a contradiction. Thus p = 2 and H is
of exponent 4. Applying Lemma 2.4, Z(H,) is an elementary abelian 2-group,
hence 4 (Hs) = Z(Hz). Assume that (a) is satisfied. Let y be an element of
Hj of order 4. Since (y) is quasi-central in Ng(P), we obtain (y)H, = Hy(y).
If (y)H, = H then (y) = H, is cyclic and H is 2-nilpotent, a contradiction. So
(yyH, < H and (y)H, is nilpotent and, consequently, (y)H, = (y) x H,. Further-
more, Hy = Qo(Hs) centralizes H, and H, is normal in H, a contradiction. The
proof is complete. O
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