Publ. Math. Debrecen 77/1-2 (2010), 233–244

Quasi-central elements and p-nilpotence of finite groups

By HUAQUAN WEI (Nanning), YANMING WANG (Guangzhou) and GUOHUA QIAN (Changshu)

Abstract. Let G be a finite group and let P be a Sylow p-subgroup of G. An element x of G is called quasi-central in G if $\langle x \rangle \langle y \rangle = \langle y \rangle \langle x \rangle$ for each $y \in G$. In this paper, it is proved that G is p-nilpotent if and only if $N_G(P)$ is p-nilpotent and, for all $x \in G \setminus N_G(P)$, one of the following conditions holds: (a) every element of $P \cap P^x \cap G^{\mathcal{N}_p}$ of order p or 4 is quasi-central in P; (b) every element of $P \cap P^x \cap G^{\mathcal{N}_p}$ of order p is quasi-central in P and, if p = 2, $P \cap P^x \cap G^{\mathcal{N}_p}$ is quaternion-free; (c) every element of $P \cap P^x \cap G^{\mathcal{N}_p}$ of order p is quasi-central in P and, if p = 2, $[\Omega_2(P \cap P^x \cap G^{\mathcal{N}_p}), P] \leq Z(P \cap G^{\mathcal{N}_p});$ (d) every element of $P \cap G^{\mathcal{N}_p}$ of order p is quasi-central in P and, if p = 2, $[\Omega_2(P \cap P^x \cap G^{\mathcal{N}_p}), P] \leq \Omega_1(P \cap G^{\mathcal{N}_p});$ (e) $|\Omega_1(P \cap P^x \cap G^{\mathcal{N}_p})| \leq p^{p-1}$ and, if p = 2, $P \cap P^x \cap G^{\mathcal{N}_p}$ is quaternion-free; (f) $|\Omega(P \cap P^x \cap G^{\mathcal{N}_p})| \leq p^{p-1}$. That will extend and improve some known related results.

1. Introduction

All groups considered will be finite. If P is a p-group, we denote $\Omega(P) = \Omega_1(P)$ if p > 2 and $\Omega(P) = \langle \Omega_1(P), \Omega_2(P) \rangle$ if p = 2, where $\Omega_i(P) = \langle x \in P \mid \circ(x) = p^i \rangle$. For a formation \mathcal{F} and a group G, there exists a smallest normal subgroup of G, called the \mathcal{F} -residual of G and denoted by $G^{\mathcal{F}}$, such that $G/G^{\mathcal{F}} \in \mathcal{F}$ (refer [1]). Throughout this paper, \mathcal{N} and \mathcal{N}_p will denote the classes of nilpotent groups and p-nilpotent groups, respectively. A 2-group is called quaternion-free if it has no section isomorphic to the quaternion group of order 8.

Mathematics Subject Classification: 20D10, 20D20.

Key words and phrases: finite group, p-nilpotent, quasi-central.

Projects supported by NSF of China (10961007, 10871210), NSF of Guangxi (0991101) and Guangxi Education Department.

A group is said to be *p*-nilpotent if it has a normal *p*-complement. In general, a group with a *p*-nilpotent normalizer of the Sylow *p*-subgroup need not be a *p*nilpotent group, for example, S_4 is a counter-example for p = 2. However, if one adds some embedding properties on the Sylow *p*-subgroup, one may obtain the desired result. For instance, Wielandt proved that a group *G* is *p*-nilpotent if it has a regular Sylow *p*-subgroup whose *G*-normalizer is *p*-nilpotent [2]. BALLESTER-BOLINCHES and ESTEBAN-ROMERO showed that a group *G* is *p*-nilpotent if it has a modular Sylow *p*-subgroup whose *G*-normalizer is *p*-nilpotent [3]. Moreover, GUO and SHUM obtained a similar result by use of the permutability of some minimal subgroups of Sylow *p*-subgroups [4].

Let G be a group. Recall that an element x of G is called quasi-central in G if $\langle x \rangle \langle y \rangle = \langle y \rangle \langle x \rangle$ for each $y \in G$. It is clear that centrality implies quasi-centrality. But the converse is not true. For example, let G be the quaternion group of order 8. Then any element of G is quasi-central and the center of G has order 2.

In this paper, we will push further the studies and obtain the following main theorem:

Theorem 1.1. Let P be a Sylow p-subgroup of a group G. Then G is pnilpotent if and only if $N_G(P)$ is p-nilpotent and, for all $x \in G \setminus N_G(P)$, one of the following conditions holds:

- (a) Every element of $P \cap P^x \cap G^{\mathcal{N}_p}$ of order p or 4 is quasi-central in P;
- (b) Every element of $P \cap P^x \cap G^{\mathcal{N}_p}$ of order p is quasi-central in P and, if p = 2, $P \cap P^x \cap G^{\mathcal{N}_p}$ is quaternion-free;
- (c) Every element of $P \cap P^x \cap G^{\mathcal{N}_p}$ of order p is quasi-central in P and, if p = 2, $[\Omega_2(P \cap P^x \cap G^{\mathcal{N}_p}), P] \leq Z(P \cap G^{\mathcal{N}_p});$
- (d) Every element of $P \cap G^{\mathcal{N}_p}$ of order p is quasi-central in P and, when p = 2, $[\Omega_2(P \cap P^x \cap G^{\mathcal{N}_p}), P] \leq \Omega_1(P \cap G^{\mathcal{N}_p});$
- (e) $|\Omega_1(P \cap P^x \cap G^{\mathcal{N}_p})| \le p^{p-1}$ and, if $p = 2, P \cap P^x \cap G^{\mathcal{N}_p}$ is quaternion-free; (f) $|\Omega(P \cap P^x \cap G^{\mathcal{N}_p})| \le p^{p-1}$.

As an application of Theorem 1.1, we give the following Theorem 1.2:

Theorem 1.2. Let P be a Sylow p-subgroup of a group G, where p is a prime divisor of |G| with (|G|, p - 1) = 1. Then G is p-nilpotent if and only if one of the following conditions holds:

- (a) Every element of $P \cap G^{\mathcal{N}_p}$ of order p or 4 is quasi-central in $N_G(P)$;
- (b) Every element of $P \cap G^{\mathcal{N}_p}$ of order p is quasi-central in $N_G(P)$ and, if p = 2, $P \cap G^{\mathcal{N}_p}$ is quaternion-free.

The conditions presented above are necessary and sufficient and hence are sharp. Furthermore, since $P \cap G^{\mathcal{N}_p} \leq P \cap G^{\mathcal{N}} \leq P \cap O^p(G) \leq P \cap G'$, our results can be adapted to yield the following theorems of Li, Ballester-Bolinches, Guo, Shum and Asaad:

Theorem 1.3 ([5, Theorem 1]). Let P be a Sylow p-subgroup of a group G. If one of the following conditions holds, then G is p-nilpotent:

- (a) If p is odd and every minimal subgroup of P lies in the center of $N_G(P)$;
- (b) If p = 2 and every cyclic subgroup of P of order 2 or 4 is permutable in N_G(P).

Theorem 1.4 ([6, Theorem 1]). Let P be a Sylow p-subgroup of a group G, where p is the smallest prime divisor of |G|. If every element of P of order p or 4 (if p = 2) is quasi-central in $N_G(P)$, then G is p-nilpotent

Theorem 1.5 ([7, Theorem 1]). Let P be a Sylow p-subgroup of a group G. If $\Omega(P \cap G') \leq Z(N_G(P))$, then G is p-nilpotent.

Theorem 1.6 ([7, Theorem 2]). Let P be a Sylow 2-subgroup of a group G. Suppose that $\Omega_1(P \cap G') \leq Z(P)$. If P is quaternion-free and $N_G(P)$ is 2-nilpotent, then G is p-nilpotent.

Theorem 1.7 ([8, Main Theorem]). Let P be a Sylow p-subgroup of a group G, where p is a prime divisor of |G| with (|G|, p-1) = 1. If every minimal subgroup of $P \cap G^{\mathcal{N}}$ is permutable in $N_G(P)$ and, when p = 2, either every cyclic subgroup of $P \cap G^{\mathcal{N}}$ with order 4 is permutable in $N_G(P)$ or P is quaternion-free, then G is p-nilpotent.

Theorem 1.8 ([4, Main Theorem]). Let P be a Sylow p-subgroup of a group G. Assume that every minimal subgroup of $P \cap O^p(G)$ is permutable in P and $N_G(P)$ is p-nilpotent. Assume that, in addition, when p = 2 then either P is quaternion-free or $[\Omega_2(P \cap O^p(G)), P] \leq \Omega_1(P \cap O^p(G))$. Then G is p-nilpotent.

Theorem 1.9 ([9, Theorem 1]). Let P be a Sylow p-subgroup of a group G. If p = 2, suppose that P is quaternion-free. Then the following statements are equivalent:

- (a) G is p-nilpotent;
- (b) $N_G(P)$ is p-nilpotent and $\Omega_1(P \cap P^x \cap G^{\mathcal{N}}) \leq Z(P)$ for all $x \in G \setminus N_G(P)$;
- (c) $N_G(P)$ is p-nilpotent and $|\Omega_1(P \cap P^x \cap G^N)| \le p^{p-1}$ for all $x \in G \setminus N_G(P)$;
- (d) $\Omega_1(P \cap G^{\mathcal{N}}) \leq Z(N_G(P)).$

We remark that the quaternion-free hypothesis can not be removed. For example, if we take G = GL(2,3) then we see that the elements

$$a = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}, \quad b = \begin{pmatrix} 2 & 0 \\ 2 & 1 \end{pmatrix}, \quad c = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$

generate GL(2,3), and the following relations hold:

$$a^8 = b^2 = c^3 = 1$$
, $b^{-1}ab = a^3$, $c^{-1}a^2c = ab$, $c^{-1}abc = aba^2$, $b^{-1}cb = c^2$.

Also we see that $P = \langle a, b \rangle$ is a Sylow 2-subgroup of GL(2,3) and a semidihedral group of order 16. Furthermore, $G' = O^p(G) = SL(2,3)$ and therefore

$$P \cap G^{\mathcal{N}_2} = P \cap G^{\mathcal{N}} = P \cap O^p(G) = P \cap G' = \langle a^2, ab \rangle$$

is a quaternion group of order 8. It is easily seen that $\Omega_1(P \cap G^{\mathcal{N}_2}) \leq Z(P) = \langle a^4 \rangle$ and $N_G(P) = P$, but G itself is not 2-nilpotent (refer [10]).

2. Preliminaries

We begin by giving some lemmas, which will be needed in our proofs.

Lemma 2.1. Let c be an element of a group G of order p, where p is a prime divisor of |G|. If c is quasi-central in G, then c is centralized by every element of G of order p or 4 (if p = 2).

PROOF. Let x be an element of G of order p or 4 (if p = 2). By the hypothesis, $H = \langle x \rangle \langle c \rangle$ is a group. It is clear that c is centralized by x if x is of order p. Now assume that p = 2 and x is of order 4. If $[c, x] \neq 1$ and |H| = 8, then $c^{-1}xc = x^{-1}$ and H is isomorphic to the dihedral group of order 8. It is clear that $\langle xc \rangle \langle c \rangle \neq \langle c \rangle \langle xc \rangle$. This is contrary to the quasi-centrality of c. Hence we must have [c, x] = 1. We are done.

Lemma 2.2. Let the p'-group H act on the p-group P. If H acts trivially on $\Omega_1(P)$ and P is quaternion-free if p = 2, then H acts trivially on P.

PROOF. The case p odd is a direct consequence of Theorem 5.3.10 of [11] and the case p even is Lemma 2.15 of [12].

Lemma 2.3 ([13, Lemma 2.8(1)]). Let M be a maximal subgroup of a group G and let P be a normal p-subgroup of G such that G = PM, where p is a prime. Then $P \cap M$ is a normal subgroup of G.

Lemma 2.4 ([14, Lemma 2]). Let \mathcal{F} be a saturated formation. Assume that G is a non- \mathcal{F} -group and there exists a maximal subgroup M of G such that $M \in \mathcal{F}$ and G = F(G)M, where F(G) is the Fitting subgroup of G. Then

- (1) $G^{\mathcal{F}}/(G^{\mathcal{F}})'$ is a chief factor of G;
- (2) $G^{\mathcal{F}}$ is a *p*-group for some prime *p*;
- (3) $G^{\mathcal{F}}$ has exponent p if p > 2 and exponent at most 4 if p = 2;
- (4) $G^{\mathcal{F}}$ is either an elementary abelian group or $(G^{\mathcal{F}})' = Z(G^{\mathcal{F}}) = \Phi(G^{\mathcal{F}})$ is an elementary abelian group.

Lemma 2.5. Let G be a group and let p be a prime number dividing |G| with (|G|, p - 1) = 1. Then

- (1) If N is normal in G of order p, then N lies in Z(G);
- (2) If G has cyclic Sylow p-subgroups, then G is p-nilpotent;
- (3) If M is a subgroup of G of index p, then M is normal in G.

PROOF. (1) Since $G/C_G(N)$ is isomorphic to a subgroup of $\operatorname{Aut}(N)$ and $|\operatorname{Aut}(N)| = p - 1$, $|G/C_G(N)|$ must divide (|G|, p - 1) = 1. It follows that $G = C_G(N)$ and $N \leq Z(G)$.

(2) Let $P \in \text{Syl}_p(G)$ and $|P| = p^n$. Since P is cyclic, we have $|\operatorname{Aut}(P)| = p^{n-1}(p-1)$. Again, $N_G(P)/C_G(P)$ is isomorphic to a subgroup of $\operatorname{Aut}(P)$, so $|N_G(P)/C_G(P)|$ must divide (|G|, p-1) = 1. Thus $N_G(P) = C_G(P)$, and (2) follows by the well-known Burnside theorem.

(3) Obviously we can assume that $M \neq 1$. Moveover the result is well-known if p = 2. So we can also assume that p is odd. This implies that |G| is odd and therefore G is solvable, by the Odd Order Theorem. If $M_G = 1$, then M is a core-free maximal subgroup of G and |G:M| = p. Now G is a solvable primitive group and there exists a self-centralizing minimal normal subgroup N of order p, such that G = MN. This implies that M is isomorphic to a nontrival subgroup of $\operatorname{Aut}(C_p) \cong C_{p-1}$ and then |M| divides p - 1. This is not possible. Therefore $M_G \neq 1$. By induction, M/M_G is normal in G/M_G and then $M = M_G$ is normal in G.

We remark that the hypothesis (|G|, p - 1) = 1 always holds when p is the smallest prime divisor of |G|, hence Lemma 2.5(3) extends a result of Frobenius (refer [15, Theorem 20]).

3. Proofs of theorems

PROOF OF THEOREM 1.1. If G is p-nilpotent, then $G^{\mathcal{N}_p} = 1$. Therefore necessity holds.

Conversely, we shall prove that each of the conditions (a)–(f) is sufficient to guarantee that G is *p*-nilpotent. Let G be a minimal counterexample. Then we have the following claims:

(1) M is *p*-nilpotent whenever $P \leq M < G$.

Since $N_M(P) \leq N_G(P)$, $N_M(P)$ is *p*-nilpotent. Let *x* be an element of $M \setminus N_M(P)$. First assume that *G* satisfies (a), (b) or (c). Since $P \cap M^{\mathcal{N}_p} \leq P \cap G^{\mathcal{N}_p}$, every element of $P \cap P^x \cap M^{\mathcal{N}_p}$ of order *p* is quasi-central in *P*. Now it is easy to see that *M* satisfies (a) or (b). If *G* satisfies (c), then

$$\left[\Omega_{2}\left(P\cap P^{x}\cap M^{\mathcal{N}_{p}}\right),P\right]\leq Z\left(P\cap G^{\mathcal{N}_{p}}\right)\cap\left(P\cap M^{\mathcal{N}_{p}}\right)\leq Z\left(P\cap M^{\mathcal{N}_{p}}\right),$$

hence M satisfies (c) too. If G satisfies (d), every element of $P \cap M^{\mathcal{N}_p}$ of order p is quasi-central in P. Moreover, since $\Omega_1(P \cap G^{\mathcal{N}_p})$ is an elementary abelian p-group by Lemma 2.1, we have

$$\left[\Omega_2(P \cap P^x \cap M^{\mathcal{N}_p}), P\right] \le \Omega_1(P \cap G^{\mathcal{N}_p}) \cap \left(P \cap M^{\mathcal{N}_p}\right) = \Omega_1(P \cap M^{\mathcal{N}_p}).$$

Thus M satisfies (d). If G satisfies (e) or (f) then so does M as is easy to see. In other words, M satisfies the hypotheses of the theorem. The choice of G implies that M is p-nilpotent.

(2) $O_{p'}(G) = 1.$

If not, consider $\overline{G} = G/N$, where $N = O_{p'}(G)$. Clearly $N_{\overline{G}}(\overline{P}) = N_G(P)N/N$ is *p*-nilpotent, where $\overline{P} = PN/N$. For every $xN \in \overline{G} \setminus N_{\overline{G}}(\overline{P})$, since $\overline{G}^{N_p} = G^{N_p}N/N$ and $P \cap P^xN = P \cap P^{xn}$ for some $n \in N$, we have

$$\overline{P} \cap \overline{P}^{xN} \cap \overline{G}^{\mathcal{N}_p} = \left(P \cap P^{xn} \cap G^{\mathcal{N}_p}N\right)N/N = \left(P \cap P^{xn} \cap G^{\mathcal{N}_p}\right)N/N.$$

Because $xN \in \overline{G} \setminus N_{\overline{G}}(\overline{P})$, we get $xn \in G \setminus N_G(P)$. Now it is clear that every element of $\overline{P} \cap \overline{P}^{xN} \cap \overline{G}^{N_p}$ of order p is quasi-central in \overline{P} if G satisfies (a), (b) or (c). Moreover, if (c) is satisfied, then we have

$$\left[\Omega_2\left(\overline{P}\cap\overline{P}^{xN}\cap\overline{G}^{\mathcal{N}_p}\right),\overline{P}\right] = \left[\Omega_2\left(P\cap P^{xn}\cap G^{\mathcal{N}_p}\right),P\right]N/N \le Z\left(P\cap G^{\mathcal{N}_p}\right)N/N,$$

that is,

$$\left[\Omega_2\left(\overline{P}\cap\overline{P}^{xN}\cap\overline{G}^{\mathcal{N}_p}\right),\overline{P}\right] \leq Z\left(\overline{P}\cap\overline{G}^{\mathcal{N}_p}\right).$$

If (d) is satisfied, every element of $\overline{P} \cap \overline{G}^{\mathcal{N}_p}$ of order p is quasi-central in \overline{P} . Besides,

$$\left[\Omega_2\left(\overline{P}\cap\overline{P}^{xN}\cap\overline{G}^{\mathcal{N}_p}\right),\overline{P}\right] = \left[\Omega_2\left(P\cap P^{xn}\cap G^{\mathcal{N}_p}\right),P\right]N/N \le \Omega_1\left(P\cap G^{\mathcal{N}_p}\right)N/N,$$

namely

$$\left[\Omega_2(\overline{P}\cap\overline{P}^{xN}\cap\overline{G}^{\mathcal{N}_p}),\overline{P}\right] \leq \Omega_1(\overline{P}\cap\overline{G}^{\mathcal{N}_p}).$$

Now we see easily that \overline{G} satisfies all the hypotheses of the theorem. The minimality of G implies that \overline{G} is p-nilpotent and so is G, a contradiction.

(3) $G/O_p(G)$ is *p*-nilpotent and $C_G(O_p(G)) \leq O_p(G)$.

Suppose that $G/O_p(G)$ is not *p*-nilpotent. Then, by Frobenius' theorem (refer [16, Theorem 10.3.2]), there exists a subgroup of *P* properly containing $O_p(G)$ such that its *G*-normalizer is not *p*-nilpotent. Since $N_G(P)$ is *p*-nilpotent, we may choice a subgroup P_1 of *P* such that $O_p(G) < P_1 < P$ and $N_G(P_1)$ is not *p*-nilpotent but $N_G(P_2)$ is *p*-nilpotent whenever $P_1 < P_2 \leq P$. Denote $H = N_G(P_1)$. It is obvious that $P_1 < P_0 \leq P$ for some Sylow *p*-subgroup P_0 of *H*. The choice of P_1 implies that $N_G(P_0)$ is *p*-nilpotent, hence $N_H(P_0)$ is also *p*-nilpotent. Let *x* be an element of $H \setminus N_H(P_0)$. Since $P_0 = P \cap H$, we have $x \in G \setminus N_G(P)$. Again, $P_0 \cap H^{\mathcal{N}_p} \leq P \cap G^{\mathcal{N}_p}$, so every element of $P_0 \cap P_0^x \cap H^{\mathcal{N}_p}$ of order *p* is quasi-central in P_0 if *G* satisfies (a), (b) or (c) and every element of $P_0 \cap H^{\mathcal{N}_p}$ of order *p* is quasi-central in P_0 if *G* satisfies (d). Furthermore, if *G* satisfies (c), then

$$\left[\Omega_2\left(P_0\cap P_0^x\cap H^{\mathcal{N}_p}\right),P_0\right]\leq Z\left(P\cap G^{\mathcal{N}_p}\right)\cap \left(P_0\cap H^{\mathcal{N}_p}\right)\leq Z\left(P_0\cap H^{\mathcal{N}_p}\right).$$

If G satisfies (d), as $\Omega_1(P \cap G^{\mathcal{N}_p})$ is an elementary abelian p-group, we have

$$\left[\Omega_2(P_0 \cap P_0^x \cap H^{\mathcal{N}_p}), P_0\right] \le \Omega_1(P \cap G^{\mathcal{N}_p}) \cap \left(P_0 \cap H^{\mathcal{N}_p}\right) = \Omega_1(P_0 \cap H^{\mathcal{N}_p}).$$

Now it is easily seen that H satisfies the hypotheses of the theorem. The minimality of G allows us to conclude that H is p-nilpotent, which is contrary to the choice of P_1 . Hence $G/O_p(G)$ is p-nilpotent and G is p-solvable with $O_{p'}(G) = 1$. Consequently, we obtain $C_G(O_p(G)) \leq O_p(G)$ (refer [11, Theorem 6.3.2]).

(4) G = PQ, where Q is an elementary abelian Sylow q-subgroup of G for a prime $q \neq p$. Moreover, P is maximal in G and $QO_p(G)/O_p(G)$ is minimal normal in $G/O_p(G)$.

For any prime divisor q of |G| with $q \neq p$, since G is p-solvable, there exists a Sylow q-subgroup Q of G such that $G_0 = PQ$ is a subgroup of G ([11,

Theorem 6.3.5]). If $G_0 < G$, then, by (1), G_0 is *p*-nilpotent. This leads to $Q \leq C_G(O_p(G)) \leq O_p(G)$, a contradiction. Thus G = PQ and so G is solvable. Now let $T/O_p(G)$ be a minimal normal subgroup of $G/O_p(G)$ contained in $O_{pp'}(G)/O_p(G)$. Then $T = O_p(G)(T \cap Q)$. If $T \cap Q < Q$, then PT < G and therefore PT is *p*-nilpotent by (1). It follows that

$$1 < T \cap Q \le C_G(O_p(G)) \le O_p(G),$$

which is impossible. Hence $T = O_{pp'}(G)$ and $QO_p(G)/O_p(G)$ is an elementary abelian q-group complementing $P/O_p(G)$. This yields that P is maximal in G.

(5) $|P:O_p(G)| = p.$

Clearly, $O_p(G) < P$. Let P_0 be a maximal subgroup of P containing $O_p(G)$ and let $G_0 = P_0 O_{pp'}(G)$. Then P_0 is a Sylow *p*-subgroup of G_0 . The maximality of P in G implies that either $N_G(P_0) = G$ or $N_G(P_0) = P$. If the latter holds, then $N_{G_0}(P_0) = P_0$. On the other hand, $G^{\mathcal{N}_p} \leq O_p(G)$ by (3), hence $P \cap P^x \cap G^{\mathcal{N}_p} =$ $G^{\mathcal{N}_p}$ for every $x \in G$. Now it is easy to check that G_0 satisfies the hypotheses of the theorem. Therefore G_0 is *p*-nilpotent and $Q \leq C_G(O_p(G)) \leq O_p(G)$, a contradiction. Thus $N_G(P_0) = G$ and $P_0 = O_p(G)$.

(6) $G = G^{\mathcal{N}_p}L$, where $L = \langle a \rangle[Q]$ is a non-abelian split extension of Q by a cyclic *p*-subgroup $\langle a \rangle$, $a^p \in Z(L)$ and the action of *a* (by conjugation) on *Q* is irreducible.

Write $T = G^{\mathcal{N}_p}Q$. Then $T \lhd G$ as $G/G^{\mathcal{N}_p}$ is *p*-nilpotent. Let P_0 be a maximal subgroup of P containing $G^{\mathcal{N}_p}$. Then, by the maximality of P, either $N_G(P_0) = P$ or $N_G(P_0) = G$. If $N_G(P_0) = P$, then $N_M(P_0) = P_0$, where $M = P_0T = P_0Q$. By (3), $G^{\mathcal{N}_p} \leq O_p(G)$, so $P \cap P^x \cap G^{\mathcal{N}_p} = G^{\mathcal{N}_p}$ for any $x \in G$. Evidently, $P_0 \cap P_0^y \cap M^{\mathcal{N}_p} \leq G^{\mathcal{N}_p}$ for all $y \in M \setminus N_M(P_0)$, hence M satisfies the hypotheses of the theorem. By the minimality of G, M is *p*-nilpotent. It follows that $T = G^{\mathcal{N}_p}Q = G^{\mathcal{N}_p} \times Q$ and so $Q \lhd G$, a contradiction. Thereby $N_G(P_0) = G$ and $P_0 \leq O_p(G)$. This yields from (5) that $O_p(G) = P_0$ and hence $P/G^{\mathcal{N}_p}$ is a cyclic group. Now applying the Frattini argument we have $G = G^{\mathcal{N}_p}N_G(Q)$. Therefore we may assume that $G = G^{\mathcal{N}_p}L$, where $L = \langle a \rangle [Q]$ is a non-abelian split extension of a normal Sylow q-subgroup Q by a cyclic p-group $\langle a \rangle$. Now that $|P : O_p(G)| = p$ and $O_p(G) \cap N_G(Q) \lhd N_G(Q)$, we have $a^p \in Z(L)$. Also since P is maximal in G, $G^{\mathcal{N}_p}Q/G^{\mathcal{N}_p}$ is minimal normal in $G/G^{\mathcal{N}_p}$ and consequently a acts irreducibly on Q.

(7) $G^{\mathcal{N}_p}$ has exponent p if p > 2 and exponent at most 4 if p = 2.

By Lemma 2.4 it will suffice to show that there exists a *p*-nilpotent maximal subgroup M of G such that $G = G^{\mathcal{N}_p}M$. In fact, let M be a maximal subgroup of G containing L. Then $M = L(M \cap G^{\mathcal{N}_p})$ and $G = G^{\mathcal{N}_p}M$. By Lemma 2.3,

 $M \cap G^{\mathcal{N}_p} \triangleleft G$, hence $M = (\langle a \rangle (M \cap G^{\mathcal{N}_p}))Q$. Write $P_0 = \langle a \rangle (M \cap G^{\mathcal{N}_p})$ and let M_0 be a maximal subgroup of M containing P_0 . Then $M_0 = P_0(M_0 \cap Q)$ and $G^{\mathcal{N}_p}M_0 < G$. By applying (1) we see that $G^{\mathcal{N}_p}M_0$ is *p*-nilpotent, therefore

$$M_0 \cap Q \le C_G(O_p(G)) \le O_p(G).$$

It follows that $M_0 \cap Q = 1$ and so P_0 is maximal in M. In this case, if $P_0 \triangleleft M$, then $\langle a \rangle = P_0 \cap L \triangleleft L$, which is contrary to (6). Hence $N_M(P_0) = P_0$ and M satisfies the hypotheses of the theorem. The choice of G implies that M is p-nilpotent, as desired.

Without losing generality, we assume in the following that $P = G^{\mathcal{N}_p} \langle a \rangle$.

(8) The exponent of $G^{\mathcal{N}_p}$ is not p.

If not, $G^{\mathcal{N}_p}$ has exponent p. First assume that G satisfies one of the conditions (a), (b), (c) and (d). Denote $G^{\mathcal{N}_p} \cap \langle a \rangle = \langle c \rangle$. Then $c^p = 1$ and $(G^{\mathcal{N}_p}/\langle c \rangle) \cap (\langle a \rangle/\langle c \rangle) = 1$. Noticing that $G^{\mathcal{N}_p} \cap \langle a \rangle < \langle a \rangle$, we have $c \in \langle a^p \rangle \leq Z(L)$. By Lemma 2.1, $G^{\mathcal{N}_p}$ is an elementary abelian p-group, hence $c \in Z(G)$. Now we consider $G/\langle c \rangle$. Let $y \langle c \rangle$ be an element of $G^{\mathcal{N}_p}/\langle c \rangle$, where $y \in G^{\mathcal{N}_p}$. By the hypotheses, $\langle y \rangle \langle a \rangle = \langle a \rangle \langle y \rangle$, hence

$$(\langle y \rangle \langle c \rangle / \langle c \rangle)(\langle a \rangle / \langle c \rangle) = (\langle a \rangle / \langle c \rangle)(\langle y \rangle \langle c \rangle / \langle c \rangle).$$

It follows that

$$(y\langle c\rangle)^{a\langle c\rangle} \in (G^{\mathcal{N}_p}/\langle c\rangle) \cap (\langle y\rangle\langle c\rangle/\langle c\rangle)(\langle a\rangle/\langle c\rangle) = \langle y\rangle\langle c\rangle/\langle c\rangle.$$

This indicates that $a\langle c \rangle$ induces a power automorphism of *p*-power order in the elementary abelian *p*-group $G^{\mathcal{N}_p}/\langle c \rangle$. Therefore $[G^{\mathcal{N}_p}/\langle c \rangle, a\langle c \rangle] = 1$ and $G^{\mathcal{N}_p}/\langle c \rangle$ is centralized by $P/\langle c \rangle$. If we write $C_{G/\langle c \rangle}(G^{\mathcal{N}_p}/\langle c \rangle) = K/\langle c \rangle$, then $P \leq K \triangleleft G$. By the maximality of *P*, either P = K or K = G. If P = K then $N_G(P) = G$ is *p*-nilpotent, contradicting to the choice of *G*. Hence K = G and $[G^{\mathcal{N}_p}, Q] \leq \langle c \rangle$. This means that *Q* stabilizes the chain of subgroups $1 \leq \langle c \rangle \leq G^{\mathcal{N}_p}$. It follows from [11, Theorem 5.3.2] that $[G^{\mathcal{N}_p}, Q] = 1$ and *Q* is normal in *G*, a contradiction.

Now assume that G satisfies (e) or (f). Let N be a minimal normal subgroup of G contained in $O_p(G)$. Then $N_{G/N}(P/N) = N_G(P)/N$ is p-nilpotent as $N_G(P)$ is. Moreover, since $(G/N)^{\mathcal{N}_p} = G^{\mathcal{N}_p}N/N$ and $G^{\mathcal{N}_p}$ has exponent p, we obtain

$$|\Omega_1((G/N)^{\mathcal{N}_p})| = |\Omega((G/N)^{\mathcal{N}_p})| = |G^{\mathcal{N}_p}N/N| \le |G^{\mathcal{N}_p}| \le p^{p-1}.$$

This proves that G/N satisfies (e) or (f). Hence G/N is *p*-nilpotent by the choice of G. Since the class of *p*-nilpotent groups is a saturated formation, we may assume that N is the unique minimal normal subgroup of G contained in $O_p(G)$

and $\Phi(G) = 1$ as $\Phi(G) \leq F(G) = O_p(G)$. Furthermore, $O_p(G)$ is the direct product of minimal normal subgroups of G by [2, III, Satz 4.5], thus $O_p(G) = N = G^{\mathcal{N}_p}$. Using (5), we obtain $|P| \leq p^p$. It follows from [2, III, Satz 10.2(b)] that P is regular and, by Wielandt's theorem [2, IV, Satz 8.1], G is p-nilpotent, also a contradiction.

(9) The final contradiction.

From (7) and (8) we see that p = 2 and the exponent of $G^{\mathcal{N}_2}$ is 4. By applying Lemma 2.4, $(G^{\mathcal{N}_2})' = Z(G^{\mathcal{N}_2}) = \Phi(G^{\mathcal{N}_2})$ is an elementary abelian 2group, it follows that $\Phi(G^{\mathcal{N}_2}) \leq \Omega_1(G^{\mathcal{N}_2})$. First assume that G satisfies one of (a), (b), (c) and (d). Since $\Omega_1(G^{\mathcal{N}_2})$ is an elementary abelian 2-group, we have $\Omega_1(G^{\mathcal{N}_2}) < G^{\mathcal{N}_2}$. However, $G^{\mathcal{N}_2}/\Phi(G^{\mathcal{N}_2})$ is a chief factor of G by Lemma 2.4, so $Z(G^{\mathcal{N}_2}) = \Phi(G^{\mathcal{N}_2}) = \Omega_1(G^{\mathcal{N}_2})$. Now assume that G satisfies (a). If $\Phi(G^{\mathcal{N}_2}) \cap \langle a \rangle \neq 1$ then there exists an element c in $\Phi(G^{\mathcal{N}_2}) \cap \langle a \rangle$ such that $\circ(c) = 2$. As $\Phi(G^{\mathcal{N}_2}) \cap \langle a \rangle < \langle a \rangle$, we have $c \in \langle a^2 \rangle \leq Z(L)$. So $c \in Z(G)$. If $\Phi(G^{\mathcal{N}_2}) \cap \langle a \rangle = 1$ then a induces a power automorphism of 2-power order in the elementary abelian 2-group $\Phi(G^{\mathcal{N}_2})$, hence $[\Phi(G^{\mathcal{N}_2}), a] = 1$. In view of Lemma 2.1, $\Phi(G^{\mathcal{N}_2})$ is also centralized by $G^{\mathcal{N}_2}$, thereby we get $\Phi(G^{\mathcal{N}_2}) \leq Z(P)$. Furthermore, by the Frattini argument,

$$G = N_G(\Phi(G^{\mathcal{N}_2})) = C_G(\Phi(G^{\mathcal{N}_2}))N_G(P).$$

Noticing that $N_G(P) = P$ and $P \leq C_G(\Phi(G^{\mathcal{N}_2}))$, we obtain $C_G(\Phi(G^{\mathcal{N}_2})) = G$, i.e., $\Phi(G^{\mathcal{N}_2}) \leq Z(G)$. Thus we can also take an element c in $\Phi(G^{\mathcal{N}_2})$ such that $\circ(c) = 2$ and $c \in Z(G)$. Denote $N = \langle c \rangle$ and consider $\overline{G} = G/N$. For any $y \in G^{\mathcal{N}_2}$, since y is quasi-central in P, yN is quasi-central in $\overline{P} = P/N$. This shows that \overline{G} satisfies (a). The minimality of G implies that \overline{G} is 2-nilpotent and so is G, a contradiction. Now assume that G satisfies (b), (c) or (d). Let M be a maximal subgroup of G containing L. Then M is 2-nilpotent by the proof of (7), hence $\Phi(G^{\mathcal{N}_2})Q$ is 2-nilpotent and $[\Phi(G^{\mathcal{N}_2}),Q] = 1$. In this case, if G satisfies (b), then Q acts trivially on $G^{\mathcal{N}_2}$ by Lemma 2.2, thus Q is normal in G, a contradiction. Assume that G satisfies (c) or (d). Denote $K = C_G(G^{\mathcal{N}_2}/\Phi(G^{\mathcal{N}_2}))$. Then, by the hypotheses, $P \leq K \triangleleft G$. The maximality of P yields that P = K or K = G. If the former holds, then $G = N_G(P)$ is 2-nilpotent, a contradiction. If the latter holds, then $[G^{\mathcal{N}_2}, Q] \leq \Phi(G^{\mathcal{N}_2})$. Therefore Q stabilizes the chain of subgroups $1 \leq \Phi(G^{\mathcal{N}_2}) \leq G^{\mathcal{N}_2}$. It follows from [11, Theorem 5.3.2] that $[G^{\mathcal{N}_2}, Q] = 1$ and Qis normal in G, which is impossible.

Finally we assume that G satisfies (e). In this case, $\Omega_1(G^{\mathcal{N}_2})$ is a cyclic subgroup of order 2, of course, Q acts trivially on $\Omega_1(G^{\mathcal{N}_2})$. Consequently, Q acts

trivially on $G^{\mathcal{N}_2}$ by Lemma 2.2 and Q is normal in G, a contradiction. Similarly, we can get a final contradiction if G satisfies (f). This completes our proof. \Box

PROOF OF THEOREM 1.2. By Theorem 1.1, we only need to prove $N_G(P)$ is *p*-nilpotent under the sufficient conditions.

If $N_G(P)$ is not p-nilpotent, then $N_G(P)$ has a minimal non-p-nilpotent subgroup H. By results of Itô ([2, IV, 5.4]) and Schmidt ([2, III, 5.2]), H has a normal Sylow p-subgroup H_p and a cyclic Sylow q-subgroup H_q such that $H = [H_p]H_q$. Moreover, H_p is of exponent p if p > 2 and of exponent at most 4 if p = 2. On the other hand, the minimality of H implies that $H^{\mathcal{N}_p} = H_p$. Let x be an element of H_p of order p. Then, by the hypotheses, $\langle x \rangle H_q$ is a subgroup of H. If $\langle x \rangle H_q = H$, then $H_p = \langle x \rangle$ is cyclic and H is p-nilpotent by Lemma 2.5, a contradiction. Hence $\langle x \rangle H_q < H$ and $\langle x \rangle H_q = \langle x \rangle \times H_q$. Thus $\Omega_1(H_p)$ is centralized by H_q . Also, by Lemma 2.1, $\Omega_1(H_p)$ is centralized by H_p , so $\Omega_1(H_p) \leq Z(H)$. If H_p is of exponent p or H_p is quaternion-free, then H_q acts trivially on H_p by Lemma 2.2, that is, H_q is normal in H, a contradiction. Thus p = 2 and H_2 is of exponent 4. Applying Lemma 2.4, $Z(H_2)$ is an elementary abelian 2-group, hence $\Omega_1(H_2) = Z(H_2)$. Assume that (a) is satisfied. Let y be an element of H_2 of order 4. Since $\langle y \rangle$ is quasi-central in $N_G(P)$, we obtain $\langle y \rangle H_q = H_q \langle y \rangle$. If $\langle y \rangle H_q = H$ then $\langle y \rangle = H_2$ is cyclic and H is 2-nilpotent, a contradiction. So $\langle y \rangle H_q < H$ and $\langle y \rangle H_q$ is nilpotent and, consequently, $\langle y \rangle H_q = \langle y \rangle \times H_q$. Furthermore, $H_2 = \Omega_2(H_2)$ centralizes H_q and H_q is normal in H, a contradiction. The proof is complete. \square

ACKNOWLEDGEMENT. The authors would like to thank the referee for the helpful suggestions.

References

- H. DOERK and T. HAWKES, Finite Solvable Groups, Walter de Gruyter & Co., Berlin New York, 1992.
- [2] B. HUPPERT, Endliche Gruppen I, Springer-Verlag, New York, 1967.
- [3] A. BALLESTER-BOLINCHES and R. ESTEBAN-ROMERO, Sylow permutable subnormal subgroups of finite groups, J. Algebra 251 (2002), 727–738.
- [4] X. GUO and K. P. SHUM, p-nilpotence of finite groups and minimal subgroups, J. Algebra 270 (2003), 459-470.
- [5] S. Li, On minimal subgroups of finite groups, Comm. Algebra 22 (6) (1994), 1913–1918.
- [6] S. LI, On minimal subgroups of finite groups (III), Comm. Algebra 26(6) (1998), 2453-2461.
- [7] A. BALLESTER-BOLINCHES and X. GUO, Some results on p-nilpotence and solubility of finite groups, J. Algebra. 228 (2000), 491–496.

H. Wei, Y. Wang and G. Qian : Quasi-central elements...

- [8] X. GUO and K. P. SHUM, Permutability of minimal subgroups and p-nilpotency of finite groups, Israel J. Math. 136 (2003), 145–155.
- [9] M. ASAAD, On *p*-nilpotence of finite groups, J. Algebra 277 (2004), 157–164.
- [10] W. SHI, A note on *p*-nilpotence of finite groups, J. Algebra 241 (2001), 435–436.
- [11] D. GORENSTEIN, Finite Groups, Chelsea, New York, 1980.
- [12] L. DORNHOFF, M-groups and 2-groups, Math. Z. 100 (1967), 226-256.
- [13] Y. WANG, H. WEI and Y. LI, A generalization of Kramer's theorem and its Applications, Bull. Austral. Math. Soc. 65 (2002), 467–475.
- [14] M. ASAAD, A. BALLESTER-BOLINCHES and M. C. PEDRAZA-AGUILERA, A note on minimal subgroups of finite groups, *Comm. Algebra* 24 (1996), 2771–2776.
- [15] O. ORE, Contributions to the theory of groups of finite order, Duke Math. J. 5 (1939), 431–460.
- [16] D. J. S. ROBINSON, A Course in the Theory of Groups, Springer-Verlag, New York, 1980.

HUAQUAN WEI SCHOOL OF MATHEMATICS SCIENCE GUANGXI TEACHERS EDUCATION UNIVERSITY NANNING, 530001 CHINA

E-mail: weihuaquan@163.com

YANMING WANG LINGNAN COLLEGE ZHONGSHAN UNIVERSITY GUANGZHOU, 510275 CHINA

GUOHUA QIAN DEPARTMENT OF MATHEMATICS CHANGSHU INSTITUTE OF TECHNOLOGY CHANGSHU, 215500 CHINA

(Received August 11, 2009; revised November 10, 2009)