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Quasi-central elements and p-nilpotence of finite groups

By HUAQUAN WEI (Nanning), YANMING WANG (Guangzhou)
and GUOHUA QIAN (Changshu)

Abstract. Let G be a finite group and let P be a Sylow p-subgroup of G. An

element x of G is called quasi-central in G if 〈x〉〈y〉 = 〈y〉〈x〉 for each y ∈ G. In this

paper, it is proved that G is p-nilpotent if and only if NG(P ) is p-nilpotent and, for all

x ∈ G\NG(P ), one of the following conditions holds: (a) every element of P ∩P x ∩GNp

of order p or 4 is quasi-central in P ; (b) every element of P ∩ P x ∩ GNp of order p is

quasi-central in P and, if p = 2, P ∩ P x ∩GNp is quaternion-free; (c) every element of

P ∩ P x ∩ GNp of order p is quasi-central in P and, if p = 2, [Ω2(P ∩ P x ∩ GNp), P ] ≤
Z(P ∩GNp); (d) every element of P ∩GNp of order p is quasi-central in P and, if p = 2,

[Ω2(P ∩ P x ∩ GNp), P ] ≤ Ω1(P ∩ GNp); (e) |Ω1(P ∩ P x ∩ GNp)| ≤ pp−1 and, if p = 2,

P ∩ P x ∩GNp is quaternion-free; (f) |Ω(P ∩ P x ∩GNp)| ≤ pp−1. That will extend and

improve some known related results.

1. Introduction

All groups considered will be finite. If P is a p-group, we denote Ω(P ) =
Ω1(P ) if p > 2 and Ω(P ) = 〈Ω1(P ), Ω2(P )〉 if p = 2, where Ωi(P ) = 〈x ∈ P |
◦(x) = pi〉. For a formation F and a group G, there exists a smallest normal
subgroup of G, called the F-residual of G and denoted by GF , such that G/GF ∈
F (refer [1]). Throughout this paper, N andNp will denote the classes of nilpotent
groups and p-nilpotent groups, respectively. A 2-group is called quaternion-free
if it has no section isomorphic to the quaternion group of order 8.
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A group is said to be p-nilpotent if it has a normal p-complement. In general,
a group with a p-nilpotent normalizer of the Sylow p-subgroup need not be a p-
nilpotent group, for example, S4 is a counter-example for p = 2. However, if one
adds some embedding properties on the Sylow p-subgroup, one may obtain the
desired result. For instance, Wielandt proved that a group G is p-nilpotent if it has
a regular Sylow p-subgroup whose G-normalizer is p-nilpotent [2]. Ballester-

Bolinches and Esteban-Romero showed that a group G is p-nilpotent if it has
a modular Sylow p-subgroup whose G-normalizer is p-nilpotent [3]. Moreover,
Guo and Shum obtained a similar result by use of the permutability of some
minimal subgroups of Sylow p-subgroups [4].

Let G be a group. Recall that an element x of G is called quasi-central in G if
〈x〉〈y〉 = 〈y〉〈x〉 for each y ∈ G. It is clear that centrality implies quasi-centrality.
But the converse is not true. For example, let G be the quaternion group of
order 8. Then any element of G is quasi-central and the center of G has order 2.

In this paper, we will push further the studies and obtain the following main
theorem:

Theorem 1.1. Let P be a Sylow p-subgroup of a group G. Then G is p-

nilpotent if and only if NG(P ) is p-nilpotent and, for all x ∈ G\NG(P ), one of

the following conditions holds:

(a) Every element of P ∩ P x ∩GNp of order p or 4 is quasi-central in P ;

(b) Every element of P ∩P x ∩GNp of order p is quasi-central in P and, if p = 2,

P ∩ P x ∩GNp is quaternion-free;

(c) Every element of P ∩P x ∩GNp of order p is quasi-central in P and, if p = 2,

[Ω2(P ∩ P x ∩GNp), P ] ≤ Z(P ∩GNp);

(d) Every element of P ∩GNp of order p is quasi-central in P and, when p = 2,

[Ω2(P ∩ P x ∩GNp), P ] ≤ Ω1(P ∩GNp);

(e) |Ω1(P ∩ P x ∩GNp)| ≤ pp−1 and, if p = 2, P ∩ P x ∩GNp is quaternion-free;

(f) |Ω(P ∩ P x ∩GNp)| ≤ pp−1.

As an application of Theorem 1.1, we give the following Theorem 1.2:

Theorem 1.2. Let P be a Sylow p-subgroup of a group G, where p is a

prime divisor of |G| with (|G|, p − 1) = 1. Then G is p-nilpotent if and only if

one of the following conditions holds:

(a) Every element of P ∩GNp of order p or 4 is quasi-central in NG(P );

(b) Every element of P ∩GNp of order p is quasi-central in NG(P ) and, if p = 2,

P ∩GNp is quaternion-free.
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The conditions presented above are necessary and sufficient and hence are
sharp. Furthermore, since P ∩GNp ≤ P ∩GN ≤ P ∩Op(G) ≤ P ∩G′, our results
can be adapted to yield the following theorems of Li, Ballester-Bolinches, Guo,
Shum and Asaad:

Theorem 1.3 ([5, Theorem 1]). Let P be a Sylow p-subgroup of a group G.

If one of the following conditions holds, then G is p-nilpotent:

(a) If p is odd and every minimal subgroup of P lies in the center of NG(P );

(b) If p = 2 and every cyclic subgroup of P of order 2 or 4 is permutable

in NG(P ).

Theorem 1.4 ([6, Theorem 1]). Let P be a Sylow p-subgroup of a group G,

where p is the smallest prime divisor of |G|. If every element of P of order p or 4
(if p = 2) is quasi-central in NG(P ), then G is p-nilpotent

Theorem 1.5 ([7, Theorem 1]). Let P be a Sylow p-subgroup of a group G.

If Ω(P ∩G′) ≤ Z(NG(P )), then G is p-nilpotent.

Theorem 1.6 ([7, Theorem 2]). Let P be a Sylow 2-subgroup of a group G.

Suppose that Ω1(P ∩ G′) ≤ Z(P ). If P is quaternion-free and NG(P ) is 2-

nilpotent, then G is p-nilpotent.

Theorem 1.7 ([8, Main Theorem]). Let P be a Sylow p-subgroup of a

group G, where p is a prime divisor of |G| with (|G|, p− 1) = 1. If every minimal

subgroup of P ∩GN is permutable in NG(P ) and, when p = 2, either every cyclic

subgroup of P ∩GN with order 4 is permutable in NG(P ) or P is quaternion-free,

then G is p-nilpotent.

Theorem 1.8 ([4, Main Theorem]). Let P be a Sylow p-subgroup of a

group G. Assume that every minimal subgroup of P ∩Op(G) is permutable in P

and NG(P ) is p-nilpotent. Assume that, in addition, when p = 2 then either P is

quaternion-free or [Ω2(P ∩Op(G)), P ] ≤ Ω1(P ∩Op(G)). Then G is p-nilpotent.

Theorem 1.9 ([9, Theorem 1]). Let P be a Sylow p-subgroup of a group G.

If p = 2, suppose that P is quaternion-free. Then the following statements are

equivalent:

(a) G is p-nilpotent;

(b) NG(P ) is p-nilpotent and Ω1(P ∩ P x ∩GN ) ≤ Z(P ) for all x ∈ G\NG(P );

(c) NG(P ) is p-nilpotent and |Ω1(P ∩ P x ∩GN )| ≤ pp−1 for all x ∈ G\NG(P );

(d) Ω1(P ∩GN ) ≤ Z(NG(P )).
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We remark that the quaternion-free hypothesis can not be removed. For
example, if we take G = GL(2, 3) then we see that the elements

a =

(
0 1
1 1

)
, b =

(
2 0
2 1

)
, c =

(
1 0
1 1

)

generate GL(2, 3), and the following relations hold:

a8 = b2 = c3 = 1, b−1ab = a3, c−1a2c = ab, c−1abc = aba2, b−1cb = c2.

Also we see that P = 〈a, b〉 is a Sylow 2-subgroup of GL(2, 3) and a semidihedral
group of order 16. Furthermore, G′ = Op(G) = SL(2, 3) and therefore

P ∩GN2 = P ∩GN = P ∩Op(G) = P ∩G′ = 〈a2, ab〉

is a quaternion group of order 8. It is easily seen that Ω1(P ∩GN2) ≤ Z(P ) = 〈a4〉
and NG(P ) = P , but G itself is not 2-nilpotent (refer [10]).

2. Preliminaries

We begin by giving some lemmas, which will be needed in our proofs.

Lemma 2.1. Let c be an element of a group G of order p, where p is a prime

divisor of |G|. If c is quasi-central in G, then c is centralized by every element

of G of order p or 4 (if p = 2).

Proof. Let x be an element of G of order p or 4 (if p = 2). By the hypothesis,
H = 〈x〉〈c〉 is a group. It is clear that c is centralized by x if x is of order p.
Now assume that p = 2 and x is of order 4. If [c, x] 6= 1 and |H| = 8, then
c−1xc = x−1 and H is isomorphic to the dihedral group of order 8. It is clear
that 〈xc〉〈c〉 6= 〈c〉〈xc〉. This is contrary to the quasi-centrality of c. Hence we
must have [c, x] = 1. We are done. ¤

Lemma 2.2. Let the p′-group H act on the p-group P . If H acts trivially

on Ω1(P ) and P is quaternion-free if p = 2, then H acts trivially on P .

Proof. The case p odd is a direct consequence of Theorem 5.3.10 of [11]
and the case p even is Lemma 2.15 of [12]. ¤

Lemma 2.3 ([13, Lemma 2.8(1)]). Let M be a maximal subgroup of a group

G and let P be a normal p-subgroup of G such that G = PM , where p is a prime.

Then P ∩M is a normal subgroup of G.
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Lemma 2.4 ([14, Lemma 2]). Let F be a saturated formation. Assume

that G is a non-F-group and there exists a maximal subgroup M of G such that

M ∈ F and G = F (G)M , where F (G) is the Fitting subgroup of G. Then

(1) GF/(GF )′ is a chief factor of G;

(2) GF is a p-group for some prime p;

(3) GF has exponent p if p > 2 and exponent at most 4 if p = 2;

(4) GF is either an elementary abelian group or (GF )′ = Z(GF ) = Φ(GF ) is an

elementary abelian group.

Lemma 2.5. Let G be a group and let p be a prime number dividing |G|
with (|G|, p− 1) = 1. Then

(1) If N is normal in G of order p, then N lies in Z(G);

(2) If G has cyclic Sylow p-subgroups, then G is p-nilpotent;

(3) If M is a subgroup of G of index p, then M is normal in G.

Proof. (1) Since G/CG(N) is isomorphic to a subgroup of Aut(N) and
|Aut(N)| = p − 1, |G/CG(N)| must divide (|G|, p − 1) = 1. It follows that G =
CG(N) and N ≤ Z(G).

(2) Let P ∈ Sylp(G) and |P | = pn. Since P is cyclic, we have |Aut(P )| =
pn−1(p − 1). Again, NG(P )/CG(P ) is isomorphic to a subgroup of Aut(P ), so
|NG(P )/CG(P )| must divide (|G|, p − 1) = 1. Thus NG(P ) = CG(P ), and (2)
follows by the well-known Burnside theorem.

(3) Obviously we can assume that M 6= 1. Moveover the result is well-known
if p = 2. So we can also assume that p is odd. This implies that |G| is odd and
therefore G is solvable, by the Odd Order Theorem. If MG = 1, then M is a
core-free maximal subgroup of G and |G : M | = p. Now G is a solvable primitive
group and there exists a self-centralizing minimal normal subgroup N of order p,
such that G = MN . This implies that M is isomorphic to a nontrival subgroup
of Aut(Cp) ∼= Cp−1 and then |M | divides p − 1. This is not possible. Therefore
MG 6= 1. By induction, M/MG is normal in G/MG and then M = MG is normal
in G. ¤

We remark that the hypothesis (|G|, p − 1) = 1 always holds when p is the
smallest prime divisor of |G|, hence Lemma 2.5(3) extends a result of Frobenius
(refer [15, Theorem 20]).
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3. Proofs of theorems

Proof of Theorem 1.1. If G is p-nilpotent, then GNp = 1. Therefore
necessity holds.

Conversely, we shall prove that each of the conditions (a)–(f) is sufficient to
guarantee that G is p-nilpotent. Let G be a minimal counterexample. Then we
have the following claims:

(1) M is p-nilpotent whenever P ≤ M < G.
Since NM (P ) ≤ NG(P ), NM (P ) is p-nilpotent. Let x be an element of

M\NM (P ). First assume that G satisfies (a), (b) or (c). Since P ∩ MNp ≤
P ∩ GNp , every element of P ∩ P x ∩MNp of order p is quasi-central in P . Now
it is easy to see that M satisfies (a) or (b). If G satisfies (c), then

[
Ω2

(
P ∩ P x ∩MNp

)
, P

] ≤ Z
(
P ∩GNp

) ∩ (
P ∩MNp

) ≤ Z
(
P ∩MNp

)
,

hence M satisfies (c) too. If G satisfies (d), every element of P ∩MNp of order
p is quasi-central in P . Moreover, since Ω1(P ∩ GNp) is an elementary abelian
p-group by Lemma 2.1, we have

[
Ω2

(
P ∩ P x ∩MNp

)
, P

] ≤ Ω1

(
P ∩GNp

) ∩ (
P ∩MNp

)
= Ω1

(
P ∩MNp

)
.

Thus M satisfies (d). If G satisfies (e) or (f) then so does M as is easy to see. In
other words, M satisfies the hypotheses of the theorem. The choice of G implies
that M is p-nilpotent.

(2) Op′(G) = 1.
If not, consider G = G/N , where N = Op′(G). Clearly NG(P ) = NG(P )N/N

is p-nilpotent, where P = PN/N . For every xN ∈ G\NG(P ), since G
Np =

GNpN/N and P ∩ P xN = P ∩ P xn for some n ∈ N , we have

P ∩ P
xN ∩G

Np =
(
P ∩ P xn ∩GNpN

)
N/N =

(
P ∩ P xn ∩GNp

)
N/N.

Because xN ∈ G\NG(P ), we get xn ∈ G\NG(P ). Now it is clear that every
element of P ∩ P

xN ∩ G
Np of order p is quasi-central in P if G satisfies (a), (b)

or (c). Moreover, if (c) is satisfied, then we have

[
Ω2

(
P ∩ P

xN ∩G
Np

)
, P

]
=

[
Ω2

(
P ∩ P xn ∩GNp

)
, P

]
N/N ≤ Z

(
P ∩GNp

)
N/N,

that is, [
Ω2

(
P ∩ P

xN ∩G
Np

)
, P

] ≤ Z
(
P ∩G

Np
)
.
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If (d) is satisfied, every element of P ∩ G
Np of order p is quasi-central in P .

Besides,

[
Ω2

(
P ∩ P

xN ∩G
Np

)
, P

]
=

[
Ω2

(
P ∩ P xn ∩GNp

)
, P

]
N/N ≤ Ω1

(
P ∩GNp

)
N/N,

namely [
Ω2

(
P ∩ P

xN ∩G
Np

)
, P

] ≤ Ω1

(
P ∩G

Np
)
.

Now we see easily that G satisfies all the hypotheses of the theorem. The mini-
mality of G implies that G is p-nilpotent and so is G, a contradiction.

(3) G/Op(G) is p-nilpotent and CG(Op(G)) ≤ Op(G).
Suppose that G/Op(G) is not p-nilpotent. Then, by Frobenius’ theorem

(refer [16, Theorem 10.3.2]), there exists a subgroup of P properly containing
Op(G) such that its G-normalizer is not p-nilpotent. Since NG(P ) is p-nilpotent,
we may choice a subgroup P1 of P such that Op(G) < P1 < P and NG(P1)
is not p-nilpotent but NG(P2) is p-nilpotent whenever P1 < P2 ≤ P . Denote
H = NG(P1). It is obvious that P1 < P0 ≤ P for some Sylow p-subgroup P0

of H. The choice of P1 implies that NG(P0) is p-nilpotent, hence NH(P0) is also
p-nilpotent. Let x be an element of H\NH(P0). Since P0 = P ∩ H, we have
x ∈ G\NG(P ). Again, P0 ∩HNp ≤ P ∩GNp , so every element of P0 ∩ P x

0 ∩HNp

of order p is quasi-central in P0 if G satisfies (a), (b) or (c) and every element of
P0 ∩ HNp of order p is quasi-central in P0 if G satisfies (d). Furthermore, if G

satisfies (c), then

[
Ω2

(
P0 ∩ P x

0 ∩HNp
)
, P0

] ≤ Z
(
P ∩GNp

) ∩ (
P0 ∩HNp

) ≤ Z
(
P0 ∩HNp

)
.

If G satisfies (d), as Ω1(P ∩GNp) is an elementary abelian p-group, we have

[
Ω2

(
P0 ∩ P x

0 ∩HNp
)
, P0

] ≤ Ω1

(
P ∩GNp

) ∩ (
P0 ∩HNp

)
= Ω1

(
P0 ∩HNp

)
.

Now it is easily seen that H satisfies the hypotheses of the theorem. The mini-
mality of G allows us to conclude that H is p-nilpotent, which is contrary to the
choice of P1. Hence G/Op(G) is p-nilpotent and G is p-solvable with Op′(G) = 1.
Consequently, we obtain CG(Op(G)) ≤ Op(G) (refer [11, Theorem 6.3.2]).

(4) G = PQ, where Q is an elementary abelian Sylow q-subgroup of G for
a prime q 6= p. Moreover, P is maximal in G and QOp(G)/Op(G) is minimal
normal in G/Op(G).

For any prime divisor q of |G| with q 6= p, since G is p-solvable, there ex-
ists a Sylow q-subgroup Q of G such that G0 = PQ is a subgroup of G ([11,



240 Huaquan Wei, Yanming Wang and Guohua Qian

Theorem 6.3.5]). If G0 < G, then, by (1), G0 is p-nilpotent. This leads to
Q ≤ CG(Op(G)) ≤ Op(G), a contradiction. Thus G = PQ and so G is solv-
able. Now let T/Op(G) be a minimal normal subgroup of G/Op(G) contained in
Opp′(G)/Op(G). Then T = Op(G)(T ∩ Q). If T ∩ Q < Q, then PT < G and
therefore PT is p-nilpotent by (1). It follows that

1 < T ∩Q ≤ CG(Op(G)) ≤ Op(G),

which is impossible. Hence T = Opp′(G) and QOp(G)/Op(G) is an elementary
abelian q-group complementing P/Op(G). This yields that P is maximal in G.

(5) |P : Op(G)| = p.
Clearly, Op(G) < P . Let P0 be a maximal subgroup of P containing Op(G)

and let G0 = P0Opp′(G). Then P0 is a Sylow p-subgroup of G0. The maximality
of P in G implies that either NG(P0) = G or NG(P0) = P . If the latter holds, then
NG0(P0) = P0. On the other hand, GNp ≤ Op(G) by (3), hence P ∩ P x ∩GNp =
GNp for every x ∈ G. Now it is easy to check that G0 satisfies the hypotheses
of the theorem. Therefore G0 is p-nilpotent and Q ≤ CG(Op(G)) ≤ Op(G), a
contradiction. Thus NG(P0) = G and P0 = Op(G).

(6) G = GNpL, where L = 〈a〉[Q] is a non-abelian split extension of Q by
a cyclic p-subgroup 〈a〉, ap ∈ Z(L) and the action of a (by conjugation) on Q is
irreducible.

Write T = GNpQ. Then T CG as G/GNp is p-nilpotent. Let P0 be a maximal
subgroup of P containing GNp . Then, by the maximality of P , either NG(P0) = P

or NG(P0) = G. If NG(P0) = P , then NM (P0) = P0, where M = P0T = P0Q.
By (3), GNp ≤ Op(G), so P ∩ P x ∩ GNp = GNp for any x ∈ G. Evidently,
P0 ∩ P y

0 ∩MNp ≤ GNp for all y ∈ M\NM (P0), hence M satisfies the hypotheses
of the theorem. By the minimality of G, M is p-nilpotent. It follows that T =
GNpQ = GNp × Q and so Q C G, a contradiction. Thereby NG(P0) = G and
P0 ≤ Op(G). This yields from (5) that Op(G) = P0 and hence P/GNp is a cyclic
group. Now applying the Frattini argument we have G = GNpNG(Q). Therefore
we may assume that G = GNpL, where L = 〈a〉[Q] is a non-abelian split extension
of a normal Sylow q-subgroup Q by a cyclic p-group 〈a〉. Now that |P : Op(G)| = p

and Op(G) ∩ NG(Q) C NG(Q), we have ap ∈ Z(L). Also since P is maximal in
G, GNpQ/GNp is minimal normal in G/GNp and consequently a acts irreducibly
on Q.

(7) GNp has exponent p if p > 2 and exponent at most 4 if p = 2.
By Lemma 2.4 it will suffice to show that there exists a p-nilpotent maximal

subgroup M of G such that G = GNpM . In fact, let M be a maximal subgroup
of G containing L. Then M = L(M ∩ GNp) and G = GNpM . By Lemma 2.3,
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M ∩GNp C G, hence M = (〈a〉(M ∩GNp))Q. Write P0 = 〈a〉(M ∩GNp) and let
M0 be a maximal subgroup of M containing P0. Then M0 = P0(M0 ∩ Q) and
GNpM0 < G. By applying (1) we see that GNpM0 is p-nilpotent, therefore

M0 ∩Q ≤ CG(Op(G)) ≤ Op(G).

It follows that M0∩Q = 1 and so P0 is maximal in M . In this case, if P0CM , then
〈a〉 = P0 ∩ L C L, which is contrary to (6). Hence NM (P0) = P0 and M satisfies
the hypotheses of the theorem. The choice of G implies that M is p-nilpotent, as
desired.

Without losing generality, we assume in the following that P = GNp〈a〉.
(8) The exponent of GNp is not p.
If not, GNp has exponent p. First assume that G satisfies one of the conditions

(a), (b), (c) and (d). Denote GNp ∩ 〈a〉 = 〈c〉. Then cp = 1 and (GNp/〈c〉) ∩
(〈a〉/〈c〉) = 1. Noticing that GNp ∩ 〈a〉 < 〈a〉, we have c ∈ 〈ap〉 ≤ Z(L). By
Lemma 2.1, GNp is an elementary abelian p-group, hence c ∈ Z(G). Now we
consider G/〈c〉. Let y〈c〉 be an element of GNp/〈c〉, where y ∈ GNp . By the
hypotheses, 〈y〉〈a〉 = 〈a〉〈y〉, hence

(〈y〉〈c〉/〈c〉)(〈a〉/〈c〉) = (〈a〉/〈c〉)(〈y〉〈c〉/〈c〉).
It follows that

(y〈c〉)a〈c〉 ∈ (GNp/〈c〉) ∩ (〈y〉〈c〉/〈c〉)(〈a〉/〈c〉) = 〈y〉〈c〉/〈c〉.

This indicates that a〈c〉 induces a power automorphism of p-power order in the
elementary abelian p-group GNp/〈c〉. Therefore [GNp/〈c〉, a〈c〉] = 1 and GNp/〈c〉
is centralized by P/〈c〉. If we write CG/〈c〉(GNp/〈c〉) = K/〈c〉, then P ≤ K C G.
By the maximality of P , either P = K or K = G. If P = K then NG(P ) = G is
p-nilpotent, contradicting to the choice of G. Hence K = G and [GNp , Q] ≤ 〈c〉.
This means that Q stabilizes the chain of subgroups 1 ≤ 〈c〉 ≤ GNp . It follows
from [11, Theorem 5.3.2] that [GNp , Q] = 1 and Q is normal in G, a contradiction.

Now assume that G satisfies (e) or (f). Let N be a minimal normal subgroup
of G contained in Op(G). Then NG/N (P/N) = NG(P )/N is p-nilpotent as NG(P )
is. Moreover, since (G/N)Np = GNpN/N and GNp has exponent p, we obtain

|Ω1((G/N)Np)| = |Ω((G/N)Np)| = |GNpN/N | ≤ |GNp | ≤ pp−1.

This proves that G/N satisfies (e) or (f). Hence G/N is p-nilpotent by the choice
of G. Since the class of p-nilpotent groups is a saturated formation, we may
assume that N is the unique minimal normal subgroup of G contained in Op(G)
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and Φ(G) = 1 as Φ(G) ≤ F (G) = Op(G). Furthermore, Op(G) is the direct
product of minimal normal subgroups of G by [2, III, Satz 4.5], thus Op(G) =
N = GNp . Using (5), we obtain |P | ≤ pp. It follows from [2, III, Satz 10.2(b)]
that P is regular and, by Wielandt’s theorem [2, IV, Satz 8.1], G is p-nilpotent,
also a contradiction.

(9) The final contradiction.
From (7) and (8) we see that p = 2 and the exponent of GN2 is 4. By

applying Lemma 2.4, (GN2)′ = Z(GN2) = Φ(GN2) is an elementary abelian 2-
group, it follows that Φ(GN2) ≤ Ω1(GN2). First assume that G satisfies one
of (a), (b), (c) and (d). Since Ω1(GN2) is an elementary abelian 2-group, we
have Ω1(GN2) < GN2 . However, GN2/Φ(GN2) is a chief factor of G by Lemma
2.4, so Z(GN2) = Φ(GN2) = Ω1(GN2). Now assume that G satisfies (a). If
Φ(GN2) ∩ 〈a〉 6= 1 then there exists an element c in Φ(GN2) ∩ 〈a〉 such that
◦(c) = 2. As Φ(GN2) ∩ 〈a〉 < 〈a〉, we have c ∈ 〈a2〉 ≤ Z(L). So c ∈ Z(G).
If Φ(GN2) ∩ 〈a〉 = 1 then a induces a power automorphism of 2-power order
in the elementary abelian 2-group Φ(GN2), hence [Φ(GN2), a] = 1. In view of
Lemma 2.1, Φ(GN2) is also centralized by GN2 , thereby we get Φ(GN2) ≤ Z(P ).
Furthermore, by the Frattini argument,

G = NG(Φ(GN2)) = CG(Φ(GN2))NG(P ).

Noticing that NG(P ) = P and P ≤ CG(Φ(GN2)), we obtain CG(Φ(GN2)) = G,
i.e., Φ(GN2) ≤ Z(G). Thus we can also take an element c in Φ(GN2) such that
◦(c) = 2 and c ∈ Z(G). Denote N = 〈c〉 and consider G = G/N . For any y ∈ GN2 ,
since y is quasi-central in P , yN is quasi-central in P = P/N . This shows that
G satisfies (a). The minimality of G implies that G is 2-nilpotent and so is G, a
contradiction. Now assume that G satisfies (b), (c) or (d). Let M be a maximal
subgroup of G containing L. Then M is 2-nilpotent by the proof of (7), hence
Φ(GN2)Q is 2-nilpotent and [Φ(GN2), Q] = 1. In this case, if G satisfies (b), then
Q acts trivially on GN2 by Lemma 2.2, thus Q is normal in G, a contradiction.
Assume that G satisfies (c) or (d). Denote K = CG(GN2/Φ(GN2)). Then, by the
hypotheses, P ≤ K C G. The maximality of P yields that P = K or K = G. If
the former holds, then G = NG(P ) is 2-nilpotent, a contradiction. If the latter
holds, then [GN2 , Q] ≤ Φ(GN2). Therefore Q stabilizes the chain of subgroups
1 ≤ Φ(GN2) ≤ GN2 . It follows from [11, Theorem 5.3.2] that [GN2 , Q] = 1 and Q

is normal in G, which is impossible.
Finally we assume that G satisfies (e). In this case, Ω1(GN2) is a cyclic

subgroup of order 2, of course, Q acts trivially on Ω1(GN2). Consequently, Q acts
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trivially on GN2 by Lemma 2.2 and Q is normal in G, a contradiction. Similarly,
we can get a final contradiction if G satisfies (f). This completes our proof. ¤

Proof of Theorem 1.2. By Theorem 1.1, we only need to prove NG(P )
is p-nilpotent under the sufficient conditions.

If NG(P ) is not p-nilpotent, then NG(P ) has a minimal non-p-nilpotent sub-
group H. By results of Itô ([2, IV, 5.4]) and Schmidt ([2, III, 5.2]), H has a normal
Sylow p-subgroup Hp and a cyclic Sylow q-subgroup Hq such that H = [Hp]Hq.
Moreover, Hp is of exponent p if p > 2 and of exponent at most 4 if p = 2.
On the other hand, the minimality of H implies that HNp = Hp. Let x be an
element of Hp of order p. Then, by the hypotheses, 〈x〉Hq is a subgroup of H. If
〈x〉Hq = H, then Hp = 〈x〉 is cyclic and H is p-nilpotent by Lemma 2.5, a con-
tradiction. Hence 〈x〉Hq < H and 〈x〉Hq = 〈x〉 ×Hq. Thus Ω1(Hp) is centralized
by Hq. Also, by Lemma 2.1, Ω1(Hp) is centralized by Hp, so Ω1(Hp) ≤ Z(H).
If Hp is of exponent p or Hp is quaternion-free, then Hq acts trivially on Hp by
Lemma 2.2, that is, Hq is normal in H, a contradiction. Thus p = 2 and H2 is
of exponent 4. Applying Lemma 2.4, Z(H2) is an elementary abelian 2-group,
hence Ω1(H2) = Z(H2). Assume that (a) is satisfied. Let y be an element of
H2 of order 4. Since 〈y〉 is quasi-central in NG(P ), we obtain 〈y〉Hq = Hq〈y〉.
If 〈y〉Hq = H then 〈y〉 = H2 is cyclic and H is 2-nilpotent, a contradiction. So
〈y〉Hq < H and 〈y〉Hq is nilpotent and, consequently, 〈y〉Hq = 〈y〉×Hq. Further-
more, H2 = Ω2(H2) centralizes Hq and Hq is normal in H, a contradiction. The
proof is complete. ¤
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