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A family of temporal logics on finite trees
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Abstract. We associate a temporal logic XTL(L) with each class L of (regular)

tree languages and provide both an algebraic and a game-theoretic characterization of

the expressive power of the logic XTL(L).

1. Introduction

A characterization of a logic on trees or words is called effective if it gives

rise to an effective procedure to decide whether a property of trees or words

is expressible in the logic. The property is usually modeled by a tree or word

language and is given by a finite automaton. For example, it is known that a

word language is definable in the first-order logic FO(<) or in Linear Temporal

Logic (LTL) if and only if its minimal automaton is finite and counter-free, or

alternatively, if and only if its syntactic monoid is finite and aperiodic [16], [18].

Since it is decidable (PSPACE-complete) whether a finite automaton is counter-

free, this characterization of FO(<) (or LTL) is effective.

An algebraic characterization of first-order logic on finite trees using “prec-

lones of finite algebras” has been given in [11]. However, this result does not

provide any effective algorithm. In fact, finding an effective characterization of
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the expressive power of first-order logic on trees (with both the successor rela-

tions and the partial order relation derived from the successor relations) has been

a long standing open problem, cf. [14], [17], [23].1 With a few exceptions, there is

no effective characterization known for temporal logics on (finite and/or infinite)

trees. Most notably, no effective characterization of the logic CTL [5] is known.

In this paper we consider only finite trees. In [6], a logic FTL(L) was asso-

ciated with each class L of regular tree languages. Under the assumption that

the next modalities are expressible (and an additional technical condition), a

characterization of the languages definable in FTL(L) was obtained using pse-

udovarieties of finite tree automata and cascade products. It was argued that

by selecting particular (finite) language classes L, most of the familiar temporal

logics can be covered. In [8], we removed the extra condition on the next mo-

dalities by making use of a modified version of the cascade product, called the

Moore-product. The logics FTL(L) contain “built in” atomic formulas describing

the label of the root of a tree. This has the disadvantage that some classes of tree

languages do not possess a characterization in terms of the logics FTL(L). For

example, considering only unary trees, which correspond to words, no nontrivial

variety of group languages can be derived from these logics.

In this paper, we introduce a generalization of the logics FTL(L). We associ-

ate yet another logic, called XTL(L), with each class L of tree languages. In the

first part of the paper we show that, when L ranges over subclasses of regular tree

languages (and satisfies a technical condition), then the classes of languages de-

finable in XTL(L) are in a one-to-one correspondence with those pseudovarieties

of finite tree automata which are closed under a variant of the Moore-product.

In the second part of the paper we provide a game-theoretic characterization

of the logics XTL(L). With each class L of tree languages, we associate an

Ehrenfeucht–Fräıssé-type game, called the XTL(L)-game, between “Spoiler” and

“Duplicator”. We obtain that two trees s, t can be separated by an XTL(L)-
formula of “depth n” if and only if Spoiler has a winning strategy in the n-

round XTL(L)-game on (s, t). We also discuss a modification of the game that

characterizes the logics FTL(L).
The paper is ended by a few examples derived from the main theorems provi-

ding game-theoretic characterizations of some familiar logics, including a version

of CTL for finite trees, and some of its fragments. This paper is an expanded and

improved version of the extended abstract [10].

1The case when one has only the successor relations has been studied in [3] where an effective

characterization has been found.
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2. Preliminaries

A rank type is a nonempty finite set R of nonnegative integers containing 0.

A ranked alphabet Σ (of rank type R) is a union
⋃

n∈R Σn of pairwise disjoint,

finite nonempty sets of symbols. Elements of Σ0 are also called constant symbols.

We assume that each ranked alphabet Σ comes with a fixed lexicographic ordering

denoted <Σ, or just < when Σ is understood.

For the whole paper we now fix an arbitrary rank type R.

Given a ranked alphabet Σ, the set TΣ of Σ-trees is the least set such that

whenever σ ∈ Σk, k ∈ R is a symbol and t1, . . . , tk are Σ-trees, then σ(t1, . . . , tk)

is also a Σ-tree. When σ is a constant symbol, we often write σ for the tree σ().

A (Σ)-tree language L is any subset of TΣ.

We can also view a Σ-tree as a map from a tree domain to Σ. In this setting,

the domain dom(t) of a tree t is defined inductively as follows. When t = σ ∈ Σ0,

dom(t) = {ε}, the singleton set whose unique element is the empty word. Suppose

that t = σ(t1, . . . , tn), where n > 0. Then dom(t) = {ε}∪⋃n
i=1{i·v : v ∈ dom(ti)}.

Elements of dom(t) are also called nodes of t. Then, a Σ-tree t = σ(t1, . . . , tn) can

be viewed as a mapping t : dom(t) → Σ defined inductively as follows: t(ε) = σ,

and for any node i · v ∈ dom(t), t(i · v) = ti(v). We define Root(t) = t(ε). When

t(v) ∈ Σn, we also say that v is a node of rank n. When t is a Σ-tree and s is a

∆-tree such that dom(t) = dom(s), s is called a ∆-relabeling of t.

When t is a Σ-tree and v ∈ dom(t) is a node of t, the subtree of t rooted at v is

defined as the tree t|v with dom(t|v) = {w : v ·w ∈ dom(t)} and t|v(w) = t(v ·w).
We extend the above notions to tuples of trees as follows: when t = (t1, . . . , tn)

is an n-tuple of trees, let dom(t) =
⋃n

i=1{i · v : v ∈ dom(ti)}, and for any node

i · v ∈ dom(t), let t(i · v) = ti(v) and t|i·v = ti|v.
Suppose Σ and ∆ are ranked alphabets and h is a rank-preserving mapping

Σ → ∆, i.e., for any n ∈ R and σ ∈ Σn, h(σ) is contained in ∆n. Then h

determines a literal tree homomorphism TΣ → T∆, also denoted h, defined as

follows: for any tree t ∈ TΣ, let dom(h(t)) = dom(t), and for any node v ∈ dom(t),

let h(t)(v) = h(t(v)). Thus, h(t) is a ∆-relabeling of t.

When Σ is a ranked alphabet, let Σ(•) denote its enrichment by a new cons-

tant symbol • . A Σ-context is a tree ζ ∈ TΣ(•) in which • occurs exactly once.

When ζ is a Σ-context and t is a Σ-tree, ζ(t) denotes the Σ-tree resulting from

ζ by substituting t in place of the “hole” • . When L ⊆ TΣ is a tree language

and ζ is a Σ-context, the quotient of L with respect to ζ is the tree language

ζ−1(L) = {t : ζ(t) ∈ L}.
Suppose Σ is a ranked alphabet. A Σ-algebra A = (A,Σ) consists of a
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nonempty set A of states and for each symbol σ ∈ Σn an associated elementary

operation σA : An → A. Subalgebras, homomorphisms, quotients etc. are defined

as usual, cf. [13]. A Σ-tree automaton is a Σ-algebra which contains no proper

subalgebra. A tree automaton A = (A,Σ) is called finite if A is finite; if |A| = 1,

A is called trivial.

In any Σ-algebra A, any tree t ∈ TΣ evaluates to a state tA ∈ A defined as

usual. Thus, a Σ-algebra A = (A,Σ) is a tree automaton if and only if all of

its states are accessible, i.e. for each a ∈ A there exists some tree t ∈ TΣ with

tA = a. The connected part of a Σ-algebra A is the tree automaton which is the

subalgebra of A determined by the states tA, where t ranges over TΣ.

Suppose that A is a Σ-tree automaton. When also a set A′ ⊆ A is given,

A recognizes the tree language LA,A′ = {t : tA ∈ A′} with the set A′ of final

states. When A′ = {a} is a singleton set, we write just LA,a. A tree language L

is recognizable by the tree automaton A if L = LA,A′ for some set A′ ⊆ A of final

states. A tree language is called regular if it is recognizable by some finite tree

automaton.

We say that the tree automaton B = (B,∆) is a renaming of the tree auto-

maton A = (A,Σ) if B ⊆ A and each elementary operation of B is a restriction

of an elementary operation of A. When A = (A,Σ) is a tree automaton, ∆ is a

ranked alphabet and h : ∆ → Σ is a rank-preserving mapping, then h determines

the renaming B which is the connected part of the algebra A′ = (A,∆) where for

each δ ∈ ∆, δA
′
= (h(δ))A.

When A = (A,Σ) and B = (B,Σ) are tree automata, their direct product

A × B is the connected part of the Σ-algebra C = (A × B,Σ), where for each

σ ∈ Σn and states a1, . . . , an ∈ A, b1, . . . , bn ∈ B,

σC((a1, b1), . . . , (an, bn)) = (σA(a1, . . . , an), σ
B(b1, . . . , bn)).

We call a nonempty class V of finite tree automata a pseudovariety of finite

tree automata if it is closed under renamings, direct products and quotients. A

closely related notion is that of literal varieties of tree languages: a nonempty

class V of regular tree languages is a literal variety of tree languages if it is closed

under the Boolean operations, quotients and inverse literal homomorphisms.

There exists an Eilenberg correspondence between the lattice of pseudo-

varieties of finite tree automata and the lattice of literal varieties of tree languages:

the mapping

K 7→ VK = {L : L is recognizable by some member of K},
restricted to pseudovarieties, establishes an order isomorphism between the two
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lattices. For more information on (literal) varieties of tree languages the reader

is referred to [19], [20], [21], [6].

3. The logic XTL(L)

In this section we introduce an extension of the logics FTL(L) defined in [6]

and further investigated in [8], [9].

Each modal operator of the logic CTL corresponds to a regular tree language

in a canonical way, cf. [6]. For example, consider the ranked alphabet Bool which

contains exactly two symbols, ↑n and ↓n for each n∈R. As a shorthand, let

UP= {↑n: n ∈ R} and DOWN = {↓n: n ∈ R}. (For technical reasons, we fix

an arbitrary ordering <Bool satisfying ↑n<Bool↓n for each n ∈ R.) Then the EF∗

(nonstrict existential future) modality corresponds to the regular tree language

in TBool consisting of those trees having at least one node labeled in UP. Further

examples are given in Examples 1 and 2. Conversely, as argued in [6], each regular

tree language can in turn be seen as a modal operator. This allows us to treat

various temporal logics on trees in a unified manner. We make these ideas more

precise in the following definitions.

Let L be a class of tree languages and let Σ be a ranked alphabet. The set

of XTL(L)-formulas over Σ is the least set satisfying the following conditions:

(1) The symbol ↓ is an XTL(L)-formula (of depth 0).

(2) For any ranked alphabet ∆, rank-preserving mapping π : Σ → ∆ and ∆-tree

language L ∈ L, (L, π) is an (atomic) XTL(L)-formula (of depth 0).

(3) When ϕ is an XTL(L)-formula (of depth d), then (¬ϕ) is also an XTL(L)-
formula (of depth d).

(4) When ϕ and ψ are XTL(L)-formulas (of maximal depth d), then (ϕ ∨ ψ) is

also an XTL(L)-formula (of depth d).

(5) When ∆ is a ranked alphabet, L ∈ L is a ∆-tree language and for each δ ∈ ∆,

ϕδ is an XTL(L)-formula over Σ (of maximal depth d), then L(δ 7→ ϕδ)δ∈∆

is an XTL(L)-formula (of depth d+ 1).

We now turn to the definition of the semantics. We need to define what it

means that a Σ-tree t satisfies an XTL(L)-formula ϕ over Σ, in notation t |= ϕ.

Since Boolean connectives and the falsity symbol ↓ are handled as usual, we only

concentrate on two types of formulas.

(1) If ϕ = (L, π) for some rank-preserving mapping π : Σ → ∆ and ∆-tree

language L ∈ L, then t |= ϕ if and only if π(t) is contained in L;
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(2) If ϕ = L(δ 7→ ϕδ)δ∈∆ then t |= ϕ if and only if the characteristic tree t̂ of t

determined by the family (ϕδ)δ∈∆ is contained in L.

Here t̂ is a ∆-relabeling of t, defined as follows: for every node v ∈ dom(t)

with t(v) ∈ Σn, t̂(v) = δ, where δ is either the first symbol in ∆n with

t|v |= ϕδ; or there is no such symbol and δ is the last element of ∆n.

We use the usual shorthands ↑ for (¬ ↓) and (ϕ ∧ ψ) for ¬((¬ϕ) ∨ (¬ψ)).
An XTL(L)-formula over the ranked alphabet Σ defines the tree language

Lϕ = {t ∈ TΣ : t |= ϕ}. XTL(L) denotes the class of tree languages definable

by some XTL(L)-formula. We say that two formulas, ϕ and ψ are equivalent if

Lϕ = Lψ.

The logic FTL(L) [6] differs from the logic XTL(L) in that the atomic for-

mulas over Σ are ↓ and the formulas pσ, where σ ∈ Σ, defining the language of all

Σ-trees whose root is labeled σ. We let FTL(L) denote the class of tree languages
definable by the formulas of the logic FTL(L).

Example 1. Let R = {0, 2}, Σ2 = {f}, Σ0 = {a, b}. Consider the rank-

preserving mapping π : Σ → Bool given by π(f) =↓2, π(a) =↑0 and π(b) =↓0.
Let Leven be the set of all trees in TBool with an even number of nodes labeled

in UP. Then the formula ψ = ¬(Leven, π) defines the set of all Σ-trees having an

odd number of leaves labeled a. Let ϕ↑2 be the formula ψ defined above, and let

ϕδ =↓ for all δ ∈ Bool, δ 6=↑2. Then the formula Leven(δ 7→ ϕδ)δ∈Bool defines the

set of all Σ-trees with an even number of non-leaf subtrees having an odd number

of leaves labeled a.

Example 2. In this example let R = {0, 1}. When Σ is a ranked alphabet (of

rank type R), then any Σ-tree determines a word over Σ1 which is the sequence

of node labels from the root to the leaf of the tree not including the leaf label. By

extension, each tree language over Σ determines a word language over Σ1. Let

L′
even be the set of all trees in TBool with an even number of nodes labeled ↑1,

and let L = {L′
even}. Then a tree language K ⊆ TΣ is definable in XTL(L) if and

only if the word language determined by K is a (regular) group language whose

syntactic group is a p-group for p = 2, see [22]. There is no class L′ such that

FTL(L′) would define the same language class.

The operators FTL and XTL are related by Proposition 1 below. Let us

define the Bool-tree language

L↑ = {t ∈ TBool : Root(t) ∈ UP}.
Proposition 1. For any class L of tree languages,

FTL(L) = XTL(L ∪ {L↑}).
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Proof. Let Σ be a ranked alphabet. It is clear that for each σ ∈ Σn, the

formulas pσ and (L↑, π) define the same language, where π : Σ → Bool maps σ to

↑n and all other symbols to a symbol in DOWN. It follows by a straightforward

induction argument that FTL(L) ⊆ XTL(L ∪ {L↑}).
Now let ψ be an XTL(L ∪ {L↑})-formula over the ranked alphabet Σ. By

induction on the structure of ψ, we construct an FTL(L)-formula ψ′ defining the

language Lψ.

(1) When ψ =↓, then ψ′ =↓.
(2) Suppose ψ = (L↑, π) for some rank-preserving mapping π : Σ → Bool. Then

we define ψ′ as
∨

π(σ)∈UP pσ.

(3) Suppose ψ = (L, π) for some ∆-tree language L ∈ L and rank-preserving

mapping π : Σ → ∆. Then we define ψ′ as L(δ 7→ ψδ), where ψδ =
∨

π(σ)=δ pσ
for each δ.

(4) When ψ = (¬ψ1) or ψ = (ψ1 ∨ ψ2), we define ψ′ as (¬ψ′
1) and (ψ′

1 ∨ ψ′
2),

respectively.

(5) When ψ = L(δ 7→ ψδ)δ∈∆ for some ∆-tree language L ∈ L, we define ψ′ =
L(δ 7→ ψ′

δ)δ∈∆.

(6) Finally, when ψ = L↑(δ 7→ ψδ)δ∈Bool, we define ψ′ as
∨

n∈R ψ↑n . ¤

In [6], it has been shown that FTL is a closure operator preserving regularity.

Thus, when L is a class of regular tree languages then FTL(L) only contains

regular tree languages. Moreover, FTL(L) is closed under the Boolean operations

and inverse literal homomorphisms, and is closed under quotients if and only if

each quotient of any language in L belongs to FTL(L). The same facts hold for

the operator XTL, with almost the same proofs.

Theorem 1. (1) The operator XTL is a closure operator: for any classes

L, L′ of tree languages,

(a) L ⊆ XTL(L);
(b) XTL(XTL(L)) ⊆ XTL(L),
(c) if L ⊆ L′, then XTL(L) ⊆ XTL(L′).

(2) When L is a class of regular tree languages, then so is XTL(L).
(3) For any class L of tree languages, XTL(L) is closed under the Boolean

operations and inverse literal homomorphisms, and is closed under quotients

if and only if each quotient of any language in L is in XTL(L).
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4. Definability and membership

In this section we recall from [8] the notion of the strict Moore-product of

tree automata and that of strict Moore pseudovarieties, and relate the operator

XTL to strict Moore pseudovarieties.

Suppose A = (A,Σ) and B = (B,∆) are tree automata and α : A× R → ∆

is a rank-preserving mapping, i.e., for any n ∈ R and a ∈ A, α(a, n) is contained

in ∆n. Then the strict Moore-product of A and B determined by α is the tree

automaton A ×α B which is the connected part of the algebra C = (A × B,Σ),

where for each σ ∈ Σn and a1, . . . , an ∈ A, b1, . . . , bn ∈ B,

σC((a1, b1), . . . , (an, bn)) = (σA(a1, . . . , an), δ
B(b1, . . . , bn))

with δ = α(σA(a1, . . . , an), n).

A pseudovariety V of finite tree automata is called a strict Moore pseudova-

riety if it is also closed under the strict Moore-product. It is clear that for any

class K of finite tree automata there exists a least strict Moore pseudovariety

〈K〉s containing K.

Proposition 2. Suppose A = (A,Σ) is a tree automaton and L is a class of

tree languages such that each tree language recognizable by A is inXTL(L). Then
any tree language recognizable by a renaming or quotient of A is also in XTL(L).

Proof. When B = (A,∆) is the renaming of A = (A,Σ) determined by the

rank-preserving mapping π : ∆ → Σ, then each language L recognizable by B is of

the form π−1(K), for some Σ-tree language K recognizable by A. Since XTL(L)
is closed under inverse literal homomorphisms, the claim is proved for renamings.

When B is a quotient of A, each language recognizable by B is also recogni-

zable by A, which proves the claim for quotients. ¤
Proposition 3. Suppose A = (A,Σ) and B = (B,Σ) are finite tree automata

and L is a class of tree languages such that each tree language recognizable by

either A or B is in XTL(L). Then each tree language recognizable by the direct

product A× B is also in XTL(L).
Proof. It suffices to show that whenever a ∈ A and b ∈ B are states, then

the tree language LA×B,(a,b) is definable in XTL(L). But when ϕa defines the tree

language LA,a and ϕb defines LB,b, then ϕa ∧ ϕb defines LA×B,(a,b). ¤
Proposition 4. Suppose A = (A,Σ) and B = (B,∆) are finite tree automata

and L is a class of tree languages such that each tree language recognizable by

either A or B is in XTL(L). Then each tree language recognizable by any strict

Moore-product A×α B is also in XTL(L).
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Proof. It suffices to show that whenever a ∈ A and b ∈ B, then the tree

language LA×αB,(a,b) is definable in XTL(L). By assumption, LB,b is definable

in XTL(L), and for each a′ ∈ A, LA,a′ is definable by some XTL(L)-formula τa′ .

Then LA×αB,(a,b) is definable by the XTL(XTL(L))-formula τa∧LB,b(δ 7→ ϕδ)δ∈∆,

where for each δ ∈ ∆n,

ϕδ =
∨

α(a′,n)=δ

τa′ .

Since by Theorem 1, XTL is a closure operator, the above formula is equivalent

to some XTL(L)-formula. ¤

Using Propositions 2, 3 and 4 we get:

Proposition 5. Suppose K is a class of finite tree automata and L is a class

of tree languages such that each tree language recognizable by some member

of K is definable in XTL(L). Then each tree language recognizable by some

automaton in 〈K〉s is also definable in XTL(L).
The converse also holds:

Proposition 6. Suppose L is a class of (regular) tree languages and K is a

class of finite tree automata such that each member of L is recognizable by some

automaton in K. Then every tree language definable in XTL(L) is recognizable

by some automaton in 〈K〉s.
Proof. We argue by induction on the structure of the XTL(L)-formula ϕ

over Σ.

(1) If ϕ =↓, Lϕ is the empty set which is recognizable by any tree automaton

in 〈K〉s.
(2) Suppose ϕ = (L, π) for some ∆-tree language L ∈ L and rank-preserving

mapping π : Σ → ∆. By assumption, L is recognizable by some tree auto-

maton B = (B,∆) contained in K. Then Lϕ is recognizable by the renaming

of B determined by π.

(3) Suppose ϕ = (¬ϕ1). By the induction hypothesis, Lϕ1 is recognizable by

some member A of 〈K〉s. Then Lϕ is also recognizable by A.
(4) Suppose ϕ = (ϕ1 ∨ ϕ2). By the induction hypothesis, Lϕi is recognizable by

some member Ai of 〈K〉s, i = 1, 2. Then Lϕ is recognizable by the direct

product A1 × A2.

(5) Suppose ϕ = L(δ 7→ ϕδ)δ∈∆ for some ∆-tree language L ∈ L and family

(ϕδ)δ∈∆ of XTL(L)-formulas. By the induction hypothesis, each Lϕδ
is re-

cognizable by some member Aδ of 〈K〉s with some set A′
δ ⊆ Aδ of final
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states. Moreover, by assumption L is recognizable by some B = (B,∆) ∈ K

with some set B′ of final states. Let us define the strict Moore-product

C = (
∏

δ∈∆ Aδ) ×α B, where for each state (aδ)δ∈∆ of the direct product

(
∏

δ∈∆ Aδ) and integer n ∈ R, α((aδ)δ∈∆, n) = δ ∈ ∆n if one of the following

holds:

(a) either aδ ∈ A′
δ and δ is the first such element of ∆n;

(b) or aδ′ /∈ A′
δ′ for each δ′ ∈ ∆n and δ is the last element of ∆n.

Then Lϕ is recognized by C with the set {((aδ)δ∈∆, b) : aδ ∈Aδ, b∈B′} of

final states. ¤

Propositions 5 and 6 imply the following characterization:

Theorem 2. For any class K of finite tree automata,

V〈K〉s = XTL(VK).

Corollary 1. The mapping K 7→ VK establishes an order isomorphism bet-

ween the lattice of strict Moore pseudovarieties of finite tree automata and the

lattice of literal varieties of tree languages V satisfying XTL(V) = V.
Observe that Proposition 6 implies also that the operator XTL preserves

regularity, i.e., when L is a class of regular tree languages, XTL(L) is also a class

of regular tree languages.

5. Ehrenfeucht–Fräıssé-type games

In this section we give a game-theoretic characterization of the logics XTL(L).
Let L be a class of tree languages, n ≥ 0 an integer, and let s, t be Σ-trees for

some ranked alphabet Σ. The n-round XTL(L)-game on the pair (s, t) of trees is

played between two competing players, Spoiler and Duplicator, according to the

following rules:

(1) If there exists an atomic formula (L, π) which is satisfied by exactly one of

the trees s and t, then Spoiler wins. Otherwise, Step 2 follows.

(2) If n = 0, Duplicator wins. Otherwise, Step 3 follows.

(3) Spoiler chooses a tree language L ∈ L, over some ranked alphabet ∆, and

∆-relabelings ŝ and t̂ of s and t, respectively, such that exactly one of ŝ and

t̂ is contained in L. If he cannot do so, Duplicator wins; otherwise, Step 4

follows.
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(4) Duplicator chooses two nodes of the pair (s, t), x and y, of the same rank,

such that (ŝ, t̂)(x) 6= (ŝ, t̂)(y). (For the notation see the 5th paragraph of

Section 2.) If he cannot do so, Spoiler wins. Otherwise, an (n − 1)-round

XTL(L)-game is played on the pair ((s, t)|x, (s, t)|y). The player winning the

subgame also wins the whole game.

Clearly, for any class L of tree languages, integer n ≥ 0 and pair (s, t) of Σ-trees,

one of the players has a winning strategy in the n-round XTL(L)-game played on

(s, t). Let s ∼n
L t denote that Duplicator has a winning strategy in the n-round

XTL(L)-game on the pair (s, t). Also, when s and t are Σ-trees for some ranked

alphabet Σ, L is a class of tree languages and n ≥ 0 is an integer, let s ≡n
L t

denote that s and t satisfy the same set of XTL(L)-formulas (over Σ) having

depth at most n.

Proposition 7. For any class L of tree languages, integer n ≥ 0, ranked

alphabet Σ, and pair s, t of Σ-trees, if s ∼n
L t then s ≡n

L t.

Proof. We argue by induction on n, and by contraposition. Suppose s 6≡n
L t.

When n = 0, there exists an XTL(L)-formula (L, π) for some ∆-tree language

L ∈ L and rank-preserving mapping π : Σ → ∆ separating s and t. Then exactly

one of the ∆-trees π(s) and π(t) is contained in L, thus Spoiler indeed wins the

0-round XTL(L)-game on (s, t).

Let n > 0 and suppose that we have proved the claim for n−1. From s 6≡n
L t

we get that either s 6≡n−1
L t, or there exists an XTL(L)-formula L(δ 7→ ϕδ)δ∈∆ of

depth n separating s and t.

When s 6≡n−1
L t then by the induction hypothesis s 6∼n−1

L t, and thus s 6∼n
L t.

Assume now that s and t are separated by the XTL(L)-formula ϕ = L(δ 7→
ϕδ)δ∈∆ of depth n, say s |= ϕ and t 6|= ϕ. Without loss of generality we may

assume that the family (ϕδ)δ∈∆ is deterministic, i.e. for any tree t ∈ TΣ there

exists exactly one δ ∈ ∆k with t |= ϕδ, where k is the arity of the root symbol

of t. To see this, consider any family (ψδ)δ∈∆ of XTL(L)-formulas. Then the

family (ψ′
δ)δ∈∆ defined as

ψ′
δ =





ψδ ∧ ¬∨
δ′∈∆k,δ′<δ

ψδ′ if δ ∈∆k is not the maximal element of ∆k;

¬∨
δ′∈∆k,δ′<δ

ψδ′ otherwise,

is a deterministic family of formulas equivalent to (ψδ)δ∈∆, i.e., for any tree t, the

respective characteristic trees coincide.

A winning strategy for Spoiler is given as follows: let Spoiler choose the ∆-

tree language L ∈ L and the characteristic trees ŝ and t̂ of s and t, respectively,
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determined by the family (ϕδ)δ∈∆. From the semantics of XTL(L) we get that

ŝ ∈ L and t̂ /∈ L, thus this is a valid move. Now assume Duplicator responds by

choosing some nodes x, y of (s, t) of the same rank such that (ŝ, t̂)(x) 6= (ŝ, t̂)(y).

Let δ = (ŝ, t̂)(x). Since the family (ϕδ)δ∈∆ is deterministic, ϕδ separates (s, t)|x
and (s, t)|y. Since ϕδ is of depth at most n−1, applying the induction hypothesis

we get that Spoiler wins the (n−1)-round XTL(L)-game on ((s, t)|x, (s, t)|y), and
thus wins the whole game. ¤

Proposition 8. For any class L of tree languages, integer n ≥ 0, ranked

alphabet Σ and trees s, t ∈ TΣ, if s ≡n
L t then s ∼n

L t.

Proof. We again argue by induction on n and by contraposition. Let s, t

be Σ-trees with s 6∼n
L t.

If n = 0, then for some ranked alphabet ∆, rank-preserving mapping π : Σ →
∆ and ∆-tree language L ∈ L, exactly one of the trees π(s) and π(t) is contained

in L. Thus, the XTL(L)-formula (L, π) of depth 0 separates s and t.

Suppose that n > 0 and we have proved the claim for n−1. We consider two

cases. If Spoiler has a winning strategy in the (n− 1)-round XTL(L)-game, then

by the induction hypothesis we have s 6≡n−1
L t, which clearly implies s 6≡n

L t. Ot-

herwise, suppose that Spoiler chooses a ∆-tree language L ∈ L and two relabelings

of the trees s and t in the first step following his winning strategy in the n-round

game. Let the two relabelings be ŝ ∈ L and t̂ /∈ L. Then for any pair x, y of nodes

of (s, t) of the same rank with (ŝ, t̂)(x) 6= (ŝ, t̂)(y), Spoiler has a winning strategy

in the (n − 1)-round XTL(L)-game on ((s, t)|x, (s, t)|y). Applying the induction

hypothesis, we get that for any such pair (x, y) there exists an XTL(L)-formula

ϕx,y of depth at most n− 1 with (s, t)|x |= ϕx,y and (s, t)|y 6|= ϕx,y.

For each δ ∈ ∆k, let us define the formula

ϕδ =
∨

(ŝ,t̂)(x)=δ

∧

(ŝ,t̂)(y)6=δ

ϕx,y,

where x and y range over the nodes of (s, t) of rank k. Observe that

(ŝ, t̂)(z) = δ ⇒ (s, t)|z |= ϕδ (1)

for any node z of (s, t) and symbol δ ∈ ∆. Also, if z is a k-ary node of (s, t), then

(s, t)|z |= ϕδ ⇒ (ŝ, t̂)(z) = δ. (2)

Indeed, suppose that z is a k-ary node, (ŝ, t̂)(z) 6= δ and (s, t)|z |= ϕδ. Then there

exists a node x with (ŝ, t̂)(x) = δ such that (s, t)|z |= ∧
(ŝ,t̂)(y)6=δ ϕx,y, where y
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ranges over all nodes of (s, t) of rank k. Then (s, t)|z |= ϕx,z, which contradicts

the definition of the formula ϕx,z.

From (1) and (2) we get that ŝ and t̂ are the characteristic trees of s and t,

respectively, determined by the family (ϕδ)δ∈∆. Now since ŝ ∈ L and t̂ /∈ L, we

conclude that the XTL(L)-formula L(δ 7→ ϕδ)δ∈∆ of depth n separates s and t,

completing the proof. ¤

Theorem 3. For any class L of tree languages and any n ≥ 0, the relations

∼n
L and ≡n

L coincide.

Corollary 2. The following are equivalent for any finite class L of tree

languages and any tree language L:

i) L ∈ XTL(L);
ii) there exists an integer n ≥ 0 such that for all s ∈ L and t /∈ L, Spoiler has a

winning strategy in the n-round XTL(L)-game on (s, t).

Proof. Suppose L is a finite class of tree languages, L is a tree language

and n ≥ 0 is an integer such that Spoiler wins the n-round XTL(L)-game on any

pair (s, t) of trees with s ∈ L and t /∈ L.

Then for any such pair (s, t) of trees there exists an XTL(L)-formula ϕs,t

such that s |= ϕs,t and t 6|= ϕs,t. Each of these formulas is of depth at most n.

Since L is finite, by standard arguments from finite model theory, it follows

that, up to equivalence, there exist only a finite number of formulas of depth at

most n.

Thus, for any tree s ∈ L, the “infinitary conjunction”
∧

t/∈L ϕs,t is equivalent

to some XTL(L)-formula ϕs of depth at most n. Also the “infinitary disjunction”∨
s∈L ϕs is equivalent to some XTL(L)-formula ϕ; it is straightforward to see that

Lϕ = L indeed holds, proving ii) → i). The other direction is a direct consequence

of Theorem 3. ¤

6. Modified games

We have argued that the logics FTL(L) may be seen as special cases of

the logics XTL(L). We may thus modify the game introduced in the previous

section to obtain a game-theoretic characterization of the logics FTL(L). In

this section, we introduce for each n ≥ 0 and class L of tree languages the n-

round FTL(L)-game characterizing the expressive power of FTL(L). Second, we
introduce a modified n-round XTL(L)-game, applicable to certain classes L of

tree languages. This game resembles the original Ehrenfeucht–Fräıssé game more
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than the n-round XTL(L)-game of the previous section. A combination of the

two modifications is also introduced. By selecting special language classes L, in
the last section we derive games for some familiar temporal logics on finite trees

related to CTL, cf. [1], [24].

Let L be a class of tree languages, n ≥ 0, and let s, t be Σ-trees. The n-

round FTL(L)-game on the pair (s, t) is played between Spoiler and Duplicator

according to the same rules as the n-round XTL(L)-game, except for the first

step which gets replaced by:

1’. If Root(s) 6= Root(t), Spoiler wins. Otherwise, Step 2 follows.

(We may also modify step 4 by dropping the requirement that x and y have the

same rank.) The following characterization theorem holds:

Theorem 4. For any class L of tree languages, integer n ≥ 0 and trees

s, t ∈ TΣ, Duplicator has a winning strategy in the n-round FTL(L)-game if

and only if s and t satisfy the same set of FTL(L)-formulas of depth at most n.

Consequently, if L is finite, then for any tree language L, L ∈ FTL(L) if and only

if there exists an n ≥ 0 such that Spoiler has a winning strategy in the n-round

FTL(L)-game on any pair (s, t) of trees with s ∈ L and t /∈ L.

Now we turn to the modified n-round XTL(L)-game. Recall that each ranked

alphabet Σ comes with a fixed lexicographic ordering <Σ. We define the following

partial order ¹Σ on Σ-trees: when s, t ∈ TΣ, let s ¹Σ t if and only if dom(s) =

dom(t) and for any node v ∈ dom(s), either s(v) = t(v) or t(v) is the last element

of the corresponding Σn with respect to <Σ. If in addition s 6= t holds, then we

write s ≺Σ t.

Let L be a class of tree languages, let n ≥ 0, and let s, t be Σ-trees. The

modified n-round XTL(L)-game on the pair (s, t) is played between Spoiler and

Duplicator according to the following rules:

(1–2) These steps are the same as in the n-round XTL(L)-game.

(3) Spoiler chooses one of the two trees, say s, some ∆-tree language L ∈ L
and a relabeling ŝ of s such that ŝ ∈ L and for any s′ ∈ T∆, if ŝ ≺∆ s′

then s′ /∈ L. (That is, ŝ is a maximal relabeling of s in L). If he cannot

do so, Duplicator wins, otherwise Step 4 follows.

(4) Duplicator chooses a maximal relabeling t̂ of t in the language L. If he

cannot do so (i.e., t has no relabeling in L), then Spoiler wins, otherwise

Step 5 follows.

(5) Spoiler chooses a node y of t such that δ = t̂(y) is not the last element of
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the respective ∆k. If he cannot do so, Duplicator wins, otherwise Step 6

follows.

(6) Duplicator chooses a node x of s with ŝ(x) = δ. If he cannot do so, Spoiler

wins. Otherwise, a modified (n− 1)-round XTL(L)-game is played on the

pair (s|x, t|y). The player winning the subgame also wins the whole game.

It is clear that for any class L of tree languages, n ≥ 0, ranked alphabet Σ and

Σ-trees s, t, one of the players has a winning strategy in the modified n-round

XTL(L)-game on (s, t). Let s ≈n
L t denote that Duplicator possesses such a

strategy.

When Σ is a ranked alphabet, we also define the following partial ordering

≤Σ on Σ-trees: let s ≤Σ t if and only if dom(s) = dom(t), and for any node

x ∈ dom(s), s(x) ≤Σ t(x). We omit the subscript when it is clear from the

context.

We say that a tree language L ⊆ TΣ is downwards closed if whenever s and

t are Σ-trees with s ≤Σ t and t ∈ L, then also s ∈ L.

Proposition 9. For any class L of downwards closed tree languages, integer

n ≥ 0, ranked alphabet Σ and trees s, t ∈ TΣ, if s ≈n
L t then s ≡n

L t.

Proof. The proof of this statement is similar to that of Proposition 7: only

the case when s and t are separated by some XTL(L)-formula ϕ = L(δ 7→ ϕδ)δ∈∆

of depth n > 0 needs to be elaborated. Again, we can assume that s |= ϕ, t 6|= ϕ

and that the family (ϕδ)δ∈∆ is deterministic.

We give a winning strategy for Spoiler as follows. Let s′ be the characteristic
tree of s determined by the family (ϕδ)δ∈∆. Let Spoiler choose the tree s, the

tree language L over the alphabet ∆ and an arbitrary maximal relabeling ŝ of s

in L satisfying s′ ¹∆ ŝ. Since s′ ∈ L, such a tree is guaranteed to exist. Note

that for any node x of s, if ŝ(x) = δ is not the maximal element of the respective

∆k, then s|x |= ϕδ.

Suppose Duplicator responds by choosing a maximal relabeling t̂ of t in L.

We claim that there exists a node y of t such that δ = t̂(y) is not the last element

of the respective ∆k, moreover, t|y 6|= ϕδ. Indeed, suppose this is not the case.

Then (since the family (ϕδ)δ∈∆ is deterministic) the characteristic tree t′ of t

determined by (ϕδ)δ∈∆ satisfies t′ ¹∆ t̂, and hence also t′ ≤∆ t̂, so that t′ ∈ L

since L is downwards closed. This contradicts the assumption that t 6|= ϕ. Let

Spoiler choose such a node y of t in Step 5 and let δ ∈ ∆k be the label t̂(y).

Assume Duplicator responds by choosing a node x of s with ŝ(x)=δ. Since δ

is not the maximal element of ∆k, s|x |= ϕδ. Hence, the formula ϕδ of depth at
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most n− 1 separates s|x and t|y. Applying the induction hypothesis we get that

s|x 6≈n−1
L t|y, thus s 6≈n

L t, proving the statement. ¤

Proposition 10. For any class L of downwards closed tree languages, integer

n ≥ 0, ranked alphabet Σ and trees s, t ∈ TΣ, if s ≡n
L t then s ≈n

L t.

Proof. The proof of this statement is similar to that of Proposition 8. We

only elaborate the case when s 6≈n
L t and s ≈n−1

L t hold for n > 0.

Suppose that Spoiler chooses the maximal relabeling ŝ of s in L for some

∆-tree language L ∈ L according to his winning strategy. Then, for any maximal

relabeling t̂ of t in L, Spoiler can pick a node yt̂ of t (and of t̂) such that t̂(yt̂) = δt̂
is not the maximal element of the respective ∆k, moreover, Spoiler wins the

(n− 1)-round game on any pair (s|x, t|yt̂
) with ŝ(x) = δt̂. Applying the induction

hypothesis we get that for any maximal relabeling t̂ and node x of s with ŝ(x) = δt̂,

there exists an XTL(L)-formula ϕt̂,x of depth at most n − 1 separating s|x and

t|yt̂
, say s|x |= ϕt̂,x and t|yt̂

6|= ϕt̂,x.

Now let us define the formula

ϕδ =
∧

δt̂=δ

∨

ŝ(x)=δ

ϕt̂,x

for each δ ∈ ∆ that is not the maximal element of the respective ∆k, where t̂

ranges over the maximal relabelings of t in L and x ranges over the nodes of s.

Moreover, whenever δ is the maximal element of the respective ∆k, let ϕδ be the

formula ↑. Finally, let ϕ stand for the XTL(L)-formula L(δ 7→ ϕδ)δ∈∆.

We claim that t 6|= ϕ. Indeed,

t |= ϕ ⇔ the characteristic tree t′ of t determined by (ϕδ)δ∈∆ is in L

⇔ for some relabeling t̂ ∈ L of t we have t|y |= ϕt̂(y)

for all nodes y of t such that t̂(y) is not the maximal element

of the respective ∆k (since L is downwards closed)

⇔ for some maximal relabeling t̂ ∈ L of t we have t|y |= ϕt̂(y)

for all nodes y of t such that t̂(y) is not the maximal element

of the respective ∆k.

However, the latter is clearly not possible. Indeed, suppose that t|yt̂
|= ϕδt̂ . Then,

t|yt̂
|= ∨

ŝ(x)=δt̂
ϕt̂,x, and thus t|yt̂

|= ϕt̂,x for some node x of s with ŝ(x) = δt̂,

contradicting the definition of the formulas ϕt̂,x.

We also claim that s |= ϕ. Since L is downwards closed and ŝ is in L, it

suffices to show that s′ ≤∆ ŝ, where s′ is the characteristic tree of s determined

by the family (ϕδ)δ∈∆. Thus, it suffices to show that for any node z of s for
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which ŝ(z) = δ is not the maximal element of the respective ∆k, we have s|z |= ϕδ

(implying s′(z) ≤∆ ŝ(z)). This is clear, since for any relabeling t̂ with δt̂ = δ we

have s|z |= ϕt̂,z by the definition of the formulas ϕt̂,z.

Hence the XTL(L)-formula ϕ of depth at most n separates s and t, thus

s 6≡n
L t and the statement is proved. ¤

Propositions 9 and 10 imply the following characterization:

Theorem 5. Suppose L is a class of downwards closed tree languages. Then

for any n ≥ 0 and trees s, t ∈ TΣ, Duplicator has a winning strategy on (s, t) in

the modified n-round XTL(L)-game if and only if s and t satisfy the same set of

XTL(L)-formulas of depth at most n. Consequently, if L is finite, then for any

tree language L, L ∈ XTL(L) if and only if there exists some n ≥ 0 such that

Spoiler has a winning strategy in the modified n-round XTL(L)-game on any pair

(s, t) of trees with s ∈ L and t /∈ L.

It is possible to combine the FTL(L)-game and the modified XTL(L)-game.

We call the resulting game the modified n-round FTL(L)-game. A characteriza-

tion theorem similar to the previous ones again holds:

Theorem 6. Suppose L is a class of downwards closed tree languages. Then

for any n ≥ 0 and trees s, t ∈ TΣ, Duplicator has a winning strategy on (s, t) in

the modified n-round FTL(L)-game if and only if s and t satisfy the same set of

FTL(L)-formulas of depth at most n. Consequently, if L is finite, then for any

tree language L, L ∈ FTL(L) if and only if there exists some n ≥ 0 such that

Spoiler has a winning strategy in the modified n-round FTL(L)-game on any pair

(s, t) of trees with s ∈ L and t /∈ L.

7. Examples

Recall the definition of the ranked alphabet Bool from Sec. 3, paragraph 2.

Example 3. Let LEF+ and LEF∗ denote the Bool-tree languages of those trees

having a non-root node labeled in UP, and any node labeled in UP, respectively.

Then the logics FTL({LEF+}) and FTL({LEF∗}) are related to the fragments

of CTL2 determined by the strict and non-strict existential future modalities.

The modified n-round FTL({LEF+})-game and FTL({LEF∗})-game have the same

rules as the corresponding games described in [24]. (Observe that LEF+ and LEF∗

2CTL was originally introduced in [5] as a logic on Kripke structures, or infinite (unranked)

trees. Regarding the definition of CTL on finite trees as used here, cf. [6].
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are downwards closed.) It is shown in the papers [4], [9], [24] (using in part

different arguments), that it is decidable for a regular tree language whether it is

definable in these logics. For fragments of CTL involving the next modality and

the strict or non-strict existential future modality, we refer to [4], [7].

Example 4. Let LEG ⊆ TBool consist of the Bool-trees having a maximal

path p such that each node of p is labeled in UP. Then the logic FTL({LEG})
corresponds to the (non-strict) EG fragment of CTL. The modified n-round

FTL({LEG})-game characterizing this logic has the following rules, when played

on the pair of trees (s, t):

(1) If Root(s) 6= Root(t), Spoiler wins. Otherwise Step 2 follows.

(2) If n = 0, Duplicator wins. Otherwise Step 3 follows.

(3) Spoiler chooses one of the trees, say s, and a leaf node x of s (and thus selects

a maximal path of s).

(4) Duplicator chooses a leaf node y of t.

(5) Spoiler chooses a (not necessarily strict) ancestor y′ of y.

(6) Duplicator chooses a (not necessarily strict) ancestor x′ of x.

(7) An (n − 1)-round FTL({LEG})-game is played on (s|x′ , t|y′). The player

winning the subgame also wins the whole game.

Example 5. Recall from Example 1 the definition of Leven. This language is

not downwards closed. Let L = {Leven}. The n-round FTL(L)-game characteri-

zes the modular temporal logic FTL(L). The rules of this game on the pair (s, t)

of trees are formulated as follows:

(1) If Root(s) 6= Root(t), Spoiler wins. Otherwise Step 2 follows.

(2) If n = 0, Duplicator wins. Otherwise Step 3 follows.

(3) Spoiler marks an even number of nodes of one tree, and an odd number of

nodes of the other tree. After that, Step 4 follows.

(4) Duplicator chooses a marked node x and an unmarked node y, either in the

same tree or in different trees, and an (n− 1)-round FTL(L)-game is played

on the subtrees rooted in x and y. If he cannot do so, Spoiler wins. The

player winning the subgame also wins the game.

The question whether FTL(L) is decidable when the rank type R contains an

integer greater than 1 is open. For the classical case R = {0, 1}, see [2], [22].

Suppose Step 1 above gets replaced by the following:

(1’) If for some σ ∈ Σ exactly one of the trees contains an even number of nodes

labeled σ, Spoiler wins. Otherwise Step 2 follows.
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The resulting game characterizes the (weaker) modular logic XTL(L), where the

root node is not distinguished from the other nodes.

Example 6. Consider the following n-round game on the pair of trees (s, t):

(1) If Root(s) 6= Root(t), Spoiler wins. Otherwise Step 2 follows.

(2) If n = 0, Duplicator wins. Otherwise Step 3 follows.

(3) Spoiler chooses either to make an EX-move, in which case Step 4 follows, or

an EU-move, in which case Step 5 follows.

(4) (EX-move.) Spoiler chooses one of the trees, say s, and a node x of s of depth

one. If he cannot do so, Duplicator wins. Otherwise, Duplicator chooses a

node y of t of depth one (if he cannot, he immediately loses), and an (n−1)-

round game is played on the trees (s|x, t|y). The player winning the subgame

also wins the whole game.

(5) (EU-move.) Spoiler chooses one of the trees, say s, and a node x of s. After

that, Duplicator chooses a node y of t. Then, Spoiler again can make a

decision to continue the game either with the pair of trees (s|x, t|y), or with
(s|x′ , t|y′), where x′ is a strict ancestor of x and y′ is a strict ancestor of y.

(6) In the first case, an (n−1)-round game is played on (s|x, t|y) and the winner

of the subgame wins the game.

(7) In the second case, Spoiler chooses a strict ancestor y′ of y, after which

Duplicator chooses a strict ancestor x′ of x. (If someone cannot choose such

a node, the other player wins.) Then, an (n − 1)-round game is played on

(s|x′ , t|y′). The winner of the subgame also wins the whole game.

This game (resulting from Theorem 6) characterizes the temporal logic CTL: a

tree language L is definable in CTL if and only if there exists an integer n ≥ 0

such that Spoiler wins the n-round game on any pair (s, t) of trees with s ∈ L

and t /∈ L.

When R = {0, 1}, our game is similar to the one described in [12] for words.

(See also [15] for a similar game for Mazurkiewicz traces). It is also closely related

to the game developed for full CTL (over Kripke structures) in [1].
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