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Initial value problems of p-Laplacian with a strong singular
indefinite weight

By HONG-XU LI (Chengdu)

Abstract. In this paper, we present some existence and uniqueness theorems for

initial value problems of p-Laplacian with a strong singular indefinite weight which are

related to singular p-Laplacian eigenvalue problems. Our results improve and generalize

some recent results.

1. Introduction

In this paper, we establish some existence and uniqueness results for the

following initial value problem of p-Laplacian with a strong singular indefinite

weight: 


ϕp(u

′(t))′ + h(t)f(u(t)) = 0, a.e. t ∈ (0, 1),

u(t0) = 0, u′(t0) = a, t0 ∈ [0, 1], a ∈ R,
(IVPt0

)

where ϕp(s) = |s|p−2s, p > 1, f ∈ C(R,R), h ∈ C((0, 1), [0,∞)) may be singular

at t = 0 and/or t = 1.

Problems (IVPt0) is related to the singular boundary value problem



ϕp(u

′(t))′ + h(t)f(u(t)) = 0, a.e. t ∈ (0, 1),

u(0) = u(1) = 0.
(BVP)

In particular, it is helpful to find sign-changing solutions for problem (BVP) (see

e.g. [6], [8]).
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The studies on the singular initial and boundary value problems with sign-

changing nonlinearity are much recent. For the studies on the first-order cases,

one may refer to Agarwal, O’Regan [1], [2] and Agarwal, O’Regan, Laksh-

mikantham and Leela [3]. For second-order initial value problems, by using the

Gronwall inequality, Yang [9] proved the existence and uniqueness of a solution

of the following initial value problem:




ϕp(u

′(t))′ + f(t, u(t)) = 0,

u(0) = 0, u′(0) = a > 0,

where |f(t, u)| ≤ ch(t)|u|p−1 with h ∈ Lq(0, 1), q > 1.

For h ∈ L1(0, 1), Zhang [10] showed the existence and uniqueness of a

solution for (IVPt0) with f(u) = ϕp(u), t0 = 0 and a = 1 by transforming to a

system and applying Sturmian comparison. One should also notice that Garćıa-

Huidobro, Manásevich and Ôtani [5] gave an existence and uniqueness result

for initial value problem (IVPt0) with t ∈ R, h ∈ L1
loc(R), f(u) = ϕp(u).

For h ∈ A with A defined by the set

{
h ∈ C((0, 1), [0,∞)) :

∫ 1

0

sα(1− s)βh(s)ds < ∞ for some α, β ∈ (0, p− 1)

}
,

some existence and uniqueness results were proved by Lee and Sim [7] for three

special cases of initial problem (IVPt0): t0 = 0, a = 1; t0 = 1, a = −1 and a = 0.

Denote

B =

{
h ∈ C((0, 1), [0,∞)) :

∫ 1

0

(s(1− s))p−1h(s)ds < ∞
}
.

It is clear that L1(0, 1) ⊂ A ⊂ B. For more properties of the classes of singular

indefinite weights A and B, one may refer to [4], [6]. For h ∈ B, Kajikiya, Lee

and Sim [6] obtained some existence and uniqueness results for (IVPt0) under

assumption that f(t, u(t)) = λϕp(u(t)) with λ a positive real parameter. Mo-

reover, these results were applied in the study of some eigenvalue problems for

p-Laplacian.

The aim of this paper is to present some existence and uniqueness results

for problem (IVPt0) with h ∈ B, t0 ∈ [0, 1], a ∈ R and f ∈ C(R,R) by using

Schauder’s fixed point theorem (see Theorem 2.1, 2.2 and Corollary 2.3). Our

results improve and generalize some results in [6], [7] (see Remark 2.4).
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2. Statements of the main results

Recall that a function u is said to be a solution of (IVPt0), if u ∈ C1(0, 1) ∩
C[0, 1] and ϕp(u

′) is absolutely continuous in any compact subinterval of (0, 1)

and u satisfies (IVPt0).

Let us give the following assumptions on f :

(H1) ∃C > 0 such that |f(u)| ≤ C|ϕp(u)| for u ∈ R.
(H2) ∃C > 0 such that |f(u)− f(v)| ≤ C|ϕp(u)− ϕp(v)| for u, v ∈ R.

(H2+) ∀Γ > 0, ∃C > 0 such that |f(u)−f(v)| ≤ C|ϕp(u)−ϕp(v)| for u, v ∈ [0,Γ].

(H2−) ∀Γ > 0, ∃C > 0 such that |f(u)− f(v)| ≤ C|ϕp(u)− ϕp(v)| for
u, v ∈ [−Γ, 0].

The main results of this paper are as follows.

Theorem 2.1. Assume h ∈ B and (H1). Then problem (IVPt0) has at least

one solution. Especially, if a = 0, problem (IVPt0) has only a trivial solution.

Theorem 2.2. Assume h ∈ B. The following statements are true.

(i) Suppose that (H2+) holds. If a > 0, t0 ∈ [0, 1) or a < 0, t0 ∈ (0, 1], then

problem (IVPt0) has at most one solution.

(ii) Suppose that (H2−) holds. If a < 0, t0 ∈ [0, 1) or a > 0, t0 ∈ (0, 1], then

problem (IVPt0) has at most one solution.

It is clear that (H2) implies (H1), (H2+) and (H2−). Then by Theorem 2.1

and 2.2, we can get the following result immediately.

Corrollary 2.3. Assume h ∈ B and (H2). Then problem (IVPt0) has a

unique solution.

Remark 2.4. (a) Theorem 2.1 generalizes Theorem 1.1 and 1.3 in [7] by

extending the class of singular indefinite weights from h ∈ A to h ∈ B.
(b) Theorem 2.2 (i) improves Theorem 1.2 in [7]. In fact, it is clear that

assumption (H2+) is weaker than the assumption

(P) ∃C > 0 such that |f(u)− f(v)| ≤ C|ϕp(u)− ϕp(v)| for u, v ∈ [0,∞).

For example, f(u) = (ϕp(u))
2 does not satisfy (P), but satisfies (H2+) and (H2−)

with C = 2ϕp(Γ). Then Theorem 2.2 (i) is the same as Theorem 1.2 in [7] if

replace “h ∈ B and (H2+)” by “h ∈ A and (P)” and consider the two special

cases t0 = 0, a = 1 and t0 = 1, a = −1.

(c) Corollary 2.3 generalizes Theorem 2.2 and 2.3 in [6] by considering the

general function f ∈ C(R,R) instead of λϕp(u) with λ a positive real parameter.
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3. Proofs of the main results

In the sequel, we always assume that t0 ∈ [0, 1) and h ∈ B. For the case

when t0 ∈ (0, 1], we can analyze exactly the same way and we omit the details.

Let us start with some lemmas which will be used in the proofs of our main

results.

Lemma 3.1. Assume h ∈ B and (H1). If a = 0, problem (IVPt0) has only

a trivial solution.

Proof. Clearly 0 is a solution of (IVPt0) if a = 0. Let u be a solution of

(IVPt0). It is enough to prove that u = 0 for t ∈ [0, 1]. There are two cases to be

considered: t0 ∈ (0, 1) and t0 = 0.

Case 1. t0 ∈ (0, 1). For any t1 ∈ (t0, 1), we have u ∈ C1[t0, t1] and h ∈
C[t0, t1]. For t ∈ [t0, t1], it follows from (IVPt0) that

|u(t)| =
∣∣∣∣
∫ t

t0

ϕ−1
p

(∫ s

t0

h(τ)f(u(τ))dτ

)
ds

∣∣∣∣ ≤ ϕ−1
p

(∫ t

t0

h(s)|f(u(s))|ds
)
.

Then, by (H1) we have, for t ∈ [t0, t1],

ϕp(|u(t)|) ≤
∫ t

t0

h(s)|f(u(s))|ds ≤ C

∫ t

t0

h(s)ϕp(|u(s)|)ds.

By the Gronwall inequality we have ϕp(|u(t)|) = 0 for t ∈ [t0, t1], that is u(t) = 0,

t ∈ [t0, t1]. This implies that u(t) = 0 for t ∈ [t0, 1] since t1 is arbitrary in (t0, 1)

and u is continuous in [0, 1]. Similarly, we can prove that u(t) = 0 for t ∈ [0, t0]

and then u(t) = 0 for all t ∈ [0, 1].

Case 2. t0 = 0. For t1 ∈ (0, 1), we have u ∈ C1[0, t1]. Let v(0) = 0 and

v(t) = u(t)/t for t ∈ (0, t1]. Then v ∈ C[0, t1]. For t ∈ (0, t1], from (IVPt0) we

have

|v(t)| =
∣∣∣∣
1

t

∫ t

0

ϕ−1
p

(∫ s

0

h(τ)f(u(τ))dτ

)
ds

∣∣∣∣ ≤ ϕ−1
p

(∫ t

0

h(s)|f(u(s))|ds
)
.

Thus for t ∈ [0, t1], by (H1) we get

ϕp(|v(t)|) ≤
∫ t

0

h(s)|f(u(s))|ds ≤
∫ t

0

h(s)C|ϕp(u(s))|ds

= C

∫ t

0

h(s)sp−1ϕp(|u(s)/s|)ds = C

∫ t

0

h(s)sp−1ϕp(|v(s)|)ds.

By the Gronwall inequality we have ϕp(|v(t)|) = 0 for t ∈ [0, t1]. That is u(t) = 0,

t ∈ [0, t1]. Therefore, it follows from the arbitrariness of t1 in (0, 1) and the

continuity of u that u(t) = 0 for t ∈ [0, 1]. This completes the proof. ¤
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By the Mean Value Theorem and a fundamental calculation, it is easy to get

the following inequality which will be used later:

|ϕp(x)− ϕp(y)| ≤ (p− 1)zp−2|x− y|, ∀x, y ∈ R, (3.1)

where z = max{|x|, |y|}.
Now we assume that a 6= 0. Let K > |a| be a constant. Since h ∈ B, there

exists β ∈ (t0, 1) such that

∫ β

t0

h(s)(s− t0)
p−1ds ≤ min

{
1− ϕp(|a|/K)

C
,
ϕp(|a|/K)

2C

}
, (3.2)

where C is the same constant as in (H1). Set

C0[t0, β] = {u ∈ C[t0, β] : u(t0) = 0} with ‖u‖ = max
t∈[t0,β]

|u(t)| for u ∈ C0[t0, β],

C1
0 [t0, β] = C0[t0, β] ∩ C1[t0, β] with ‖u‖1= max

t∈[t0,β]
|u′(t)| for u ∈ C1

0 [t0, β].

Clearly, (C0[t0, β], ‖ · ‖) and (C1
0 [t0, β], ‖ · ‖1) are Banach spaces and ‖u‖ ≤ ‖u‖1

for u ∈ C1
0 [t0, β]. Let

M = {u ∈ C1
0 [t0, β] : ‖u‖1 ≤ K}.

Define G : C1
0 [t0, β] → C1

0 [t0, β] by

G(u)(t) =

∫ t

t0

ϕ−1
p

(
ϕp(a)−

∫ s

t0

h(τ)f(u(τ))dτ

)
ds, for t ∈ [t0, β].

For any u ∈ C1
0 [t0, β], we have |u(t)| ≤ ‖u‖1(t− t0) for t ∈ [t0, β]. Then by (H1)

we have, for t ∈ [t0, β],

∣∣∣∣
∫ t

t0

h(τ)f(u(τ))dτ

∣∣∣∣ ≤
∫ t

t0

h(τ)C|u(τ)|p−1dτ

≤ C‖u‖p−1
1

∫ t

t0

h(τ)(τ − t0)
p−1dτ < ∞. (3.3)

So G is well defined. In addition, noticing that

(G(u))′(t) = ϕ−1
p

(
ϕp(a)−

∫ t

t0

h(τ)f(u(τ))dτ

)
,

(3.3) implies that G is bounded, i.e., send bounded subsets of C1
0 [t0, β] into boun-

ded subsets of C1
0 [t0, β]. Furthermore, it is easy to see that u(t) is a local solution

of problem (IVPt0) for t ∈ [t0, β] if and only if u is a fixed point of G in C1
0 [t0, β].
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Lemma 3.2. Assume h ∈ B and (H1). Then G(M) ⊂ M and G : M → M

is continuous.

Proof. By (H1) and (3.2), for u ∈ M, t ∈ [t0, β],

|(G(u))′(t)| =
∣∣∣∣ϕ−1

p

(
ϕp(a)−

∫ t

t0

h(τ)f(u(τ))dτ

)∣∣∣∣

≤ ϕ−1
p

(
ϕp(|a|) +

∫ t

t0

h(τ)C|ϕp(u(τ))|dτ
)

≤ ϕ−1
p

(
ϕp(|a|) + C‖u‖p−1

1

∫ t

t0

h(τ)(τ − t0)
p−1dτ

)

≤ ϕ−1
p

(
ϕp(|a|) + CKp−1 1− ϕp(|a|/K)

C

)
= K.

That is ‖G(u)‖1 ≤ K, and then G(M) ⊂ M .

Now we prove the continuity of G. For u ∈ M , t ∈ [t0, β], by (H1) and (3.2)

we have
∣∣∣∣
∫ t

t0

h(τ)f(u(τ))dτ

∣∣∣∣ ≤
∫ t

t0

h(τ)C|ϕp(u(τ))|dτ ≤ C‖u‖p−1
1

∫ t

t0

h(τ)(τ − t0)
p−1dτ

≤ CKp−1ϕp(|a|/K)

2C
= ϕp(|a|)/2.

Then ∣∣∣∣ϕp(a)−
∫ t

t0

h(τ)f(u(τ))dτ

∣∣∣∣ ≤ 3ϕp(|a|)/2 for t ∈ [t0, β]. (3.4)

Let q = p/(p− 1), then ϕ−1
p = ϕq. Denote

C1 =
1

2(q − 1)(3ϕp(|a|)/2)q−2
. (3.5)

Given ε > 0, there exists η ∈ (t0, β) such that

∫ η

t0

h(s)(s− t0)
p−1ds ≤ C1ε

2CKp−1

since h ∈ B. Then for u ∈ M , by (H1),

∫ η

t0

h(s)|f(u(s))|ds ≤
∫ η

t0

h(τ)C|ϕp(u(τ))|dτ ≤ C‖u‖p−1
1

∫ η

t0

h(s)(s− t0)
p−1ds

≤ CKp−1 C1ε

2CKp−1
=

C1ε

2
. (3.6)



Initial value problems of p-Laplacian with a strong singular. . . 421

Let {un} ⊂ M such that un → u0 in M as n → ∞. Then for t ∈ [t0, β], by (3.1),

(3.4) and (3.5) we get

|(G(un))
′(t)− (G(u0))

′(t)|

=

∣∣∣∣ϕ−1
p

(
ϕp(a)−

∫ t

t0

h(τ)f(un(τ))dτ

)
− ϕ−1

p

(
ϕp(a)−

∫ t

t0

h(τ)f(u0(τ))dτ

)∣∣∣∣

≤ (q − 1)(3ϕp(|a|)/2)q−2

∫ t

t0

h(τ)|f(un(τ))− f(u0(τ))|dτ

=
1

2C1

∫ t

t0

h(τ)|f(un(τ))− f(u0(τ))|dτ. (3.7)

Now we have two cases to be considered.

Case 1. Suppose
∫ β

η
h(s)ds = 0. Since f ∈ C(R, R), we have |f(u)| ≤ C2 for

u ∈ [−K,K] and some C2 > 0. Then by (3.6) and (3.7) we get

|(G(un))
′(t)− (G(u0))

′(t)| ≤ 1

2C1

(∫ η

t0

+

∫ β

η

)
h(τ)(|f(un(τ))|+ |f(u0(τ))|)dτ

≤ 1

2C1

(
C1ε+ 2C2

∫ β

η

h(τ)dτ

)
=

ε

2
.

This implies that G : M → M is continuous.

Case 2. Suppose
∫ β

η
h(s)ds 6= 0. Since f is uniformly continuous in [−K,K],

there exists ρ > 0 such that u, v ∈ [−K,K], |u− v| < ρ implies

|f(u)− f(v)| ≤ C1ε

(∫ β

η

h(s)ds

)−1

.

Meanwhile, there exists N > 0 such that |un(t)−u0(t)| < ρ for t ∈ [t0, β], n > N .

Thus

|f(un(t))− f(u0(t))| ≤ C1ε

(∫ β

η

h(s)ds

)−1

for n > N, t ∈ [t0, β]. (3.8)

Now, for t ∈ [t0, β] and n > N , by (3.6) – (3.8) we have

|(G(un))
′(t)− (G(u0))

′(t)| ≤ 1

2C1

(∫ η

t0

+

∫ β

η

)
h(τ)|f(un(τ))− f(u0(τ))|dτ

≤ 1

2C1

(∫ η

t0

h(τ)(|f(un(τ))|+ |f(u0(τ))|)dτ +
∫ β

η

h(τ)(|f(un(τ))−f(u0(τ))|)dτ
)

≤ 1

2C1

(
C1ε+

∫ β

η

h(τ)C1ε

(∫ β

η

h(s)ds

)−1

dτ

)
= ε,

which implies that G : M → M is continuous. The proof is complete. ¤
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Lemma 3.3. Assume h ∈ B and (H1). Then G : M → M is compact.

Proof. Suppose {un} ⊂ M is bounded, then {un} and {G(un)} are boun-

ded in M . By the Arzela Ascoli Theorem, {un} and {G(un)} has a subsequence

(denote again by {un} and {G(un)}, respectively) converging to some u and v in

C0[t0, β], respectively. By (H1) we have

|h(t)f(un(t))| ≤ Ch(t)|ϕp(un(t))| ≤ Ch(t)ϕp(‖un‖1(t− t0))

≤ CKp−1h(t)(t− t0)
p−1.

for t ∈ [t0, β]. So by the Lebesgue dominated convergence theorem, we have

G(un)(t) =

∫ t

t0

ϕ−1
p

(
ϕp(a)−

∫ s

t0

h(τ)f(un(τ))dτ

)
ds

→
∫ t

0

ϕ−1
p

(
ϕp(a)−

∫ s

t0

h(τ)f(u(τ))dτ

)
ds = v(t),

uniformly in t ∈ [t0, β], and

(G(un))
′(t) = ϕ−1

p

(
ϕp(a)−

∫ t

t0

h(τ)f(un(τ))dτ

)

→ ϕ−1
p

(
ϕp(a)−

∫ t

t0

h(τ)f(u(τ))dτ

)
,

uniformly in t ∈ [t0, β]. So v ∈ C1
0 [0, 1] and

v′(t) = ϕ−1
p

(
ϕp(a)−

∫ t

t0

h(τ)f(u(τ))dτ

)
.

Clearly, ‖v‖1 ≤ K. Therefore, G : M → M is compact. The proof is complete.

¤

Now we are in a position to give the proofs of the main results.

Proof of Theorem 2.1. Lemma 3.1 leads to the conclusion for the special

case a = 0. Now we assume that a 6= 0. It follows from Lemma 3.2 and 3.3 that

G : M → M is completely continuous. Then by Schauder’s Fixed Point Theorem,

G has a fixed point in M . That is problem (IVPt0) has a local solution u ∈ M .

Now we prove the global existence of solutions of problem (IVPt0). Let [t0, T )

be the right maximal interval of existence for solution u. It is enough to show
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that T = 1. Suppose on the contrary that T < 1. Then by (H1), for t ∈ [t0, T )

we have

|ϕp(u
′(t))| =

∣∣∣∣ϕp(a)−
∫ t

t0

h(τ)f(u(τ))dτ

∣∣∣∣ ≤ ϕp(|a|) + C

∫ t

t0

h(τ)|u(τ)|p−1dτ

≤ ϕp(|a|) + C

∫ t

t0

h(τ)(τ − t0)
p−1 max

s∈[t0,τ ]
|u′(s)|p−1dτ

So we have

max
r∈[t0,t]

|u′(r)|p−1 ≤ ϕp(|a|) + C

∫ t

t0

(τ)(τ − t0)
p−1 max

s∈[t0,τ ]
|u′(s)|p−1dτ.

By the Gronwall inequality, we obtain

max
r∈[t0,t]

|u′(r)|p−1 ≤ ϕp(|a|) exp
(
C

∫ t

t0

h(τ)(τ − t0)
p−1dτ

)

≤ ϕp(|a|) exp
(
C

∫ T

t0

h(τ)(τ − t0)
p−1dτ

)
,

which implies that u′ is bounded in [t0, T ), and consequently u is bounded in

[t0, T ). This contradicts the fact that [0, T ) with T < 1 is the maximal existence

interval for solution u. The proof is complete. ¤

Proof of Theorem 2.2. We prove statement (i). By a similar argument

we can prove statement (ii) and we omit the details. Moreover, we only prove

statement (i) for the case a > 0 and t0 ∈ [0, 1). The case a < 0 and t0 ∈ (0, 1]

can be proved similarly and we also omit the details.

Suppose u, v are two solutions of problem (IVPt0). It suffices to prove that

u(t) = v(t) for t ∈ [t0, β] with some β ∈ (t0, 1) which will be determined later.

Let K > a such that max{|u′(t)|, |v′(t)|} ≤ K for all t ∈ [t0, (1 + t0)/2].

Since a > 0, we can choose β1 ∈ (t0, (1 + t0)/2) such that u(t), v(t) > 0 for all

t ∈ (t0, β1]. By (H2+), there exists some C > 0 such that

|f(u)| ≤ Cϕp(u), |f(u)− f(v)| ≤ C|ϕp(u)− ϕp(v)| for u, v ∈ [0,K]. (3.9)

Then

|f(u(t))| ≤ Cϕp(u(t)), |f(v(t))| ≤ Cϕp(v(t)) and (3.10)

|f(u(t)− f(v(t))| ≤ C|ϕp(u(t))− ϕp(v(t))| for t ∈ [t0, β1]. (3.11)
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Since h ∈ B, we can choose β ∈ (t0, β1) such that

∫ β

t0

h(s)(s− t0)
p−1ds < min

{
ϕp(a/K)

2C
,

1

(3ϕp(a)/2)q−2Kp−2C

}
. (3.12)

where q = p/(1 − p), K and C are the same constants as in (3.9). It is obvious

that

u, v ∈ M = {w ∈ C1
0 [t0, β] : ‖w‖1 ≤ K}.

Then by (3.10), (3.12) and the same way to get (3.4), we can obtain that (3.4)

also holds for these u, v. That is

∣∣∣∣ϕp(a)−
∫ t

t0

h(τ)f(x(τ))dτ

∣∣∣∣ ≤ 3ϕp(a)/2 for t ∈ [t0, β], (3.13)

where x = u, v. Meanwhile, by the Mean Value Theorem, for t ∈ [t0, β], there

exist some θ1, θ2, θ3 ∈ (t0, t) such that

∣∣∣∣
u(t)

t− t0

∣∣∣∣ = |u′(θ1)| ≤ ‖u‖1 ≤ K, (3.14)

∣∣∣∣
v(t)

t− t0

∣∣∣∣ = |v′(θ2)| ≤ ‖v‖1 ≤ K, (3.15)

∣∣∣∣
u(t)− v(t)

t− t0

∣∣∣∣ = |u′(θ3)− v′(θ3)| ≤ ‖u− v‖1. (3.16)

Notice that ϕ−1
p = ϕq and (p − 1)(q − 1) = 1. If ‖u − v‖1 > 0, then by (3.1),

(3.11)–(3.16), for t ∈ [t0, β],

|u′(t)− v′(t)|

=

∣∣∣∣ϕ−1
p

(
ϕp(a)−

∫ t

t0

h(τ)f(u(τ))dτ

)
− ϕ−1

p

(
ϕp(a)−

∫ t

t0

h(τ)f(v(τ))dτ

)∣∣∣∣

≤ (q − 1)(3ϕp(a)/2)
q−2

∫ t

t0

h(τ)|f(u(τ))− f(v(τ))|dτ

≤ (q − 1)(3ϕp(a)/2)
q−2C

∫ t

t0

h(τ)|ϕp(u(τ))− ϕp(v(τ))|dτ

= (q − 1)(3ϕp(a)/2)
q−2C

∫ t

t0

h(τ)(τ − t0)
p−1

∣∣∣∣ϕp

(
u(τ)

τ − t0

)
− ϕp

(
v(τ)

τ − t0

)∣∣∣∣dτ

≤ (q − 1)(3ϕp(a)/2)
q−2C

∫ t

t0

h(τ)(τ − t0)
p−1(p− 1)Kp−2

∣∣∣∣
u(τ)− v(τ)

τ − t0

∣∣∣∣ dτ
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≤ (3ϕp(a)/2)
q−2Kp−2C

∫ β

t0

h(τ)(τ − t0)
p−1dτ‖u− v‖1 < ‖u− v‖1,

which is impossible, and then ‖u − v‖1 = 0, i.e. u(t) = v(t) for t ∈ [t0, β]. This

completes the proof. ¤
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[5] M. Garćıa-Huidobro, R. Manásevich and M. Ôtani, Existence results for p-Laplacian-
like systems of O.D.E.’s, Funkcial. Ekvac. 46 (2003), 253–85.

[6] R. Kajikiya, Y. H. Lee and I. Sim, One-dimensional p-Laplacian with a strong singular
indefinite weight, I. Eigenvalue, J. Differential Equations 244 (2008), 1985–2019.

[7] Y. H. Lee and I. Sim, Second-order initial value problems with a singular indefinite weight,
Appl. Math. Lett. 22 (2009), 36–40.

[8] Y. H. Lee and I. Sim, Existence results of sign-changing solutions for singular one-dimensi-
onal p-Laplacian problems, Nonlinear Anal. 68 (2008), 1195–1209.

[9] X. Yang, Sturm type problems for singular p-Laplacian boundary value problems, Appl.
Math. Comput. 136 (2003), 181–193.

[10] M. Zhang, Nonuniform nonresonance of semilinear differential equations, J. Differential
Equations 166 (2000), 33–50.

HONG-XU LI

DEPARTMENT OF MATHEMATICS

SICHUAN UNIVERSITY

CHENGDU, SICHUAN 610064

P.R. CHINA

E-mail: hoxuli@sohu.com

(Received May 18, 2009)


