
Publ. Math. Debrecen

77/3-4 (2010), 465–470

On the exponential diophantine equation (an − 1)(bn − 1) = x2

By LI LAN (Xi’an) and LÁSZLÓ SZALAY (Sopron)

Abstract. Let a and b be fixed positive integers such that a 6= b and min(a, b) > 1.

In this paper, we combine some divisibility properties of the solutions of Pell equations

with elementary arguments to prove that if a ≡ 2 (mod 6) and b ≡ 0 (mod 3), then the

title equation (an−1)(bn−1) = x2 has no positive integer solution (n, x). Moreover, we

show that in case of a ≡ 2 (mod 20) and b ≡ 5 (mod 20), where b − 1 is a full square,

the only possible solution belongs to n = 1.

1. Introduction

Let N+ denote the set of all positive integers, further let a and b be distinct

fixed positive integers such that min(a, b) > 1. In this paper, we discuss the

problem of the solution to the exponential diophantine equation

(an − 1)(bn − 1) = x2, n, x ∈ N+ (1)

in some particular cases.

The literature of this equation and its alternations is very rich, see e.g. the

papers [6], [2], [1], [5], [4]and the references given there. First, Szalay [6], using a

relatively complicated method, proved that if (a, b) = (2, 3) then equation (1) has

no solution. He also showed that only (n, x) = (1, 2) satisfies (2n−1)(5n−1) = x2.

Then, Hajdu and Szalay [2] justified the insolubility of (1) when (a, b) = (2, 6),
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further they determined all the solutions if a > 1 is an arbitrary integer and

b = ak. This result was extended by Cohn [1] to the case ak = bl. He also proved

that there is no solution to (1) when 4 | n, except for (a, b) = (13, 239). Luca and

Walsh [5] described a computational method for solving (1), and their approach

was used to solve completely the equations for almost all pairs (a, b) in the range

1 < a < b ≤ 100. Recently, Le [4] showed that equation (1) is insoluble if a = 2

and 3 | b.
Several problems and conjectures linked to the title equation have already

been posed (see [1], [5], [4]).

The main purpose of this paper is to prove the following general results by

combining certain divisibility properties of the solutions of Pell equations, and

partially applying the techniques described in [4] and [5].

Theorem 1. If a ≡ 2 (mod 6) and b ≡ 0 (mod 3) then the equation

(an − 1)(bn − 1) = x2 has no positive integer solution (n, x).

Theorem 2. Suppose that b−1 = t2 is a full square. If a ≡ 2 (mod 20) and

b ≡ 5 (mod 20) then the only possible solution to the equation (an−1)(bn−1) =

x2 is

(n, x) = (1, t
√
a− 1 ).

Theorem 1 states that there is no solution in at least 1
18 part of the possible

integer pairs (a, b). At the same time, this theorem generalizes the results appe-

aring in [6] (Theorem 1), in [2] (Theorem 1), and in [4], while Theorem 2 extends

Theorem 2 of [6].

It is worthwhile noting that if one replaces the condition b ≡ 5 (mod 20)

in Theorem 2 by the weaker relation b ≡ 0 (mod 5) then our approach does

not work. Although, the cases b ≡ −5 (mod 20) and b ≡ 0( (mod 20) can be

handled trivially by applying modulo 20 arithmetic, in case of b ≡ 10 (mod 20)

the method fails.

Obviously, there are infinitely many pairs (a, b) satisfying the conditions of

Theorem 2. In particular, by choosing a such that a − 1 is a perfect square, we

get equations (1) having unique solutions.

2. Divisibility properties of the solutions of Pell equation

Let D be a positive integer which is not a square. It is well known (see, for

example, [3] (Theorems 10.9.1 and 10.9.2)) that the Pell equation

u2 −Dv2 = 1, u, v ∈ N+ (2)
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has infinitely many solutions (u, v). If (u, v) = (u1, v1) denotes the smallest

non-trivial positive solution to equation (2) then every positive solution (uk, vk)

(k ∈ N+) can be generated by

uk + vk
√
D =

(
u1 + v1

√
D

)k
. (3)

The trivial solution (u, v) = (1, 0) is denoted by (u0, v0).

The proof of the Theorems 1 and 2 partially relies on

Lemma 1. (i) If 2 | k then 2 - uk.

(ii) If 2 | k then each prime factor p of uk satisfies p ≡ ±1 (mod 8).

(iii) If 2 - k then u1 | uk.

(iv) If q is a prime in the set {2, 3, 5} then q | uk implies q | u1.

We remark that the feature (iv) is not valid longer in its form for p ≥ 7

since, for instance, the fundamental solution to u2 − 3v2 = 1 is (u1, v1) = (2, 1),

7 | u2 = 7 but 7 - u1.

Proof of Lemma 1. (i) Let k = 2t, where t is positive integer. By (3), we

have

uk + vk
√
D =

(
u1 + v1

√
D

)2t
=

((
u1 + v1

√
D

)t)2

=
(
ut + vt

√
D

)2
= (u2

t +Dv2t ) + 2utvt
√
D. (4)

Further, u2
t −Dv2t = 1 holds since (u, v) = (ut, vt) is the solution to equation (2).

Consequently,

uk = u2
t +Dv2t = 2u2

t − 1 (5)

implies that uk is an odd number. In other words, if uk is an even number then

the subscript k must be odd.

(ii) From part (i) of Lemma 1 it follows, that if k is even then all prime

factors p of uk are odd. For such a p, by (5), the Legendre symbol
(
2
p

)
equals 1.

Thus p ≡ ±1 (mod 8).

(iii) If 2 - k, then by (3), together with the binomial theorem, we obtain

immediately

uk = u1

(k−1)/2∑

i=0

(
k

2i

)
uk−2i−1
1 (Dv21)

i, (6)

which implies u1 | uk.

(iv) It is easy to see, that the terms of the sequence of uk satisfy the recurrence

relation uk+1 = 2u1uk − uk−1. Since the sequence uk is periodic modulo any
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positive integer, so if p = 2, 3, 5, we have to eliminate those cases where p | uk

occurs. Recall, that u0 = 1 and note that the recurrence uk+1 = 2u1uk − uk−1 is

valid modulo p, too. We find that by any of the three possibilities for p,

p | uk if and only if k ≡ 1 (mod 2) and u1 ≡ 0 (mod p). ¤

3. Proof of the theorems

Proof of Theorem 1. Let a ≡ 2 (mod 6) and b ≡ 0 (mod 3), and sup-

pose that the pair (n, x) is a solution to equation (1). Put D = gcd(an−1, bn−1).

By (1), we get

an − 1 = Dy2, bn − 1 = Dz2, x = Dyz, D, y, z ∈ N+. (7)

Since 3 | b, by bn−1 = Dz2 it follows that 3 - D and 3 - z. Hence z2 ≡ 1 (mod 3).

Consequently,

D ≡ Dz2 = bn − 1 ≡ 2 (mod 3). (8)

Now we distinguish two cases. Firstly, if 3 - y, then y2 ≡ 1 (mod 3), and (7),

together with (8) implies

an = Dy2 + 1 ≡ D + 1 ≡ 0 (mod 3). (9)

However, it contradicts a ≡ 2 (mod 3). Thus we can exclude 3 - y.
Assume now that 3 | y. Since a ≡ 2 (mod 3), by an − 1 = Dy2 we obtain

2n ≡ an = Dy2 + 1 ≡ 1 (mod 3). (10)

Clearly, 2n ≡ ±1 (mod 3), and +1 is occurring exactly when n is even.

Put n = 2m. Therefore, by (7), D cannot be a square, and the corresponding

Pell equation u2 −Dv2 = 1 has two solutions

(u, v) = (am, y), (bm, z). (11)

Since a 6= b, there exist distinct positive integers r and s such that

(am, y) = (ur, vr) and (bm, z) = (us, vs)

hold.

If s is even , by (ii) of Lemma 1 we know that any prime factor p of b satisfies

p ≡ ±1 (mod 8). But it is impossible since 3 | b. Therefore, s must be odd.
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Hence, by (iv) of Lemma 1 and 3 | b we obtain 3 | u1. On the other hand,

2 | a which, together with (i) of Lemma 1 and (am, y) = (ur, vr) shows that r

is odd. However, by the statement (iii) of Lemma 1 and 3 | u1 we have 3 | am,

which leads to a contradiction, since a ≡ 2 (mod 6). This completes the proof of

Theorem 1. ¤

Proof of Theorem 2. Now let a ≡ 2 (mod 20) and b ≡ 5 (mod 20),

where b − 1 is a square of a nonzero integer t. First, we deal with even ex-

ponents n in the proof of Theorem 2. Replace the prime 3 by 5 in the proof

of Theorem 1, and repeat step by step arguments handling the case n = 2m to

obtain the statement in this case.

Assume now that n is odd. Suppose that there is a non-negative integer m

such that n = 4m + 3. Consider the equation (an − 1)(bn − 1) = x2 modulo 10.

Obviously,

x2 = (a4m+3 − 1)(b4m+3 − 1) ≡ (24m+3 − 1)(54m+3 − 1) ≡ 7 · 4 ≡ 8 (mod 10),

which is impossible since 8 is not a quadratic residue modulo 10.

Finally, let n = 4m+1 for some non-negative integer m. Recall, that b−1 =

t2. Thus, if (n, x) is a solution to (1) then

(a4m+1 − 1)(b4m + b4m−1 + · · ·+ b+ 1) =
(x
t

)2

∈ N. (12)

Suppose that m> 0 and consider (12) modulo 4 to obtain (24m+1 − 1)(4m+1)≡
3 · 1 = 3, which is not a quadratic residue modulo 4. Thus we arrive at a contra-

diction. If m = 0, equation (12) simplifies

(x
t

)2

= a− 1.

That is, if a − 1 is a full square then there is exactly one solution (n, x) =

(1, t
√
a− 1 ). The proof of Theorem 2 is complete. ¤
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