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Criteria for laws between infinite subsets of infinite groups

By A. BOUKAROURA (Setif) and M. BOUCHLAGHEM (Setif)

Abstract. A theorem of B. H. Neumman shows that infinite group in which every

two infinite subsets there exist two commuting elements, is abelian.

In this paper, we prove that if in an infinite group G, every two infinite subsets X

and Y , there exist a ∈ X and b ∈ Y such that [an1 , bn2 ] = 1, then G satisfies the law

[xn1 , yn2 ] = 1, where n2 ≡ 0[n1] and n2 ∈ {3, 6, 2k/k ∈ N∗}.
Moreover, and using this result, we also prove that an infinite group satisfies the

law (xn1
1 xn2

2 . . . xnr
r )2 = 1 if and only if in any r infinite subsets X1, . . . , Xr, of G there

exist ai ∈ Xi(i = 1, . . . , r) such that (an1
1 . . . anr

r )2 = 1, where n1, . . . , nr ∈ {2k/k ∈ N∗}
and r ≥ 2.

1. Introduction and results

Let w(x1, . . . , xr) be a word in a free group of rank r ≥ 1 and let V(w) be

the variety of groups defined by the law w(x1, . . . , xr) = 1. We define the class of

groups V(w∗) as follows:

A group G belongs to V(w∗) if and only if in every infinite subsets

X1, . . . , Xr there exist a1 ∈ X1, . . . , ar ∈ Xr, that w(a1, . . . , ar) = 1

In [7], P. Longobardi et al. posed the question of whether F ∪ V(w) =

V(w∗) is true; F being the class of finite groups. As an immediate consequence

of the answer of B. H Neumman to the question of P. Erdős [9], we have

F ∪ V(w) = V(w∗), where w(x, y) = [x, y]. Further questions of similar nature,

with slightly different aspects, have been considered by many authors (see, for

example, [1], [2], [3], [4], [13], [11], [12], [7], [8]).
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In [2], A. Abdollahi and B. Taeri proved that an infinite group G satisfies

the law [x, yn] = 1 if and only if in any pair X, Y of infinite subsets of G there

exist a ∈ X and b ∈ Y such that [a, bn] = 1, where n ∈ {2k/k ∈ N∗}. Later

A. Boukaroura [4] proved that an infinite group G satisfies the law [xn, yn] = 1,

if and only if in any pair X, Y of infinite subsets of G there exist a ∈ X and

b ∈ Y such that [an, bn] = 1, where n ∈ {2k/k ∈ N∗}.
In this note, we consider the words:

un1,n2
(x, y) = [xn1 , yn2 ] and wn,n1,...,nr

(x1, . . . , xr) = (xn1
1 . . . xnr

r )n.

The following theorem generalizes Theorem 1 of [1] and Theorem 1.1 of [4].

Theorem 1. If n2 ≡ 0[n1] and n2 ∈ {3, 6, 2k/k ∈ N∗}, then every infinite

V(un1,n2(x, y)
∗)-group is a V(un1,n2(x, y))-group.

Using Theorem 1, we also prove the following result:

Theorem 2. If n1, . . . , , nr ∈ {2k/k ∈ N∗}, then every infinite

V(w2,n1,...,nr (x1, . . . , xr)
∗)-group is a V(w2,n1,...,nr (x1, . . . , xr))-group.

2. Notations

Our notations and terminologies are usual and can be found in [10]. We give

a partial list for the convenience of the reader.

〈X〉 the subgroup generated by X

xy the conjugate y−1xy

Xy the set {xy/x ∈ X}
[x, y] the commutator x−1y−1xy

Be the Burnside variety of exponent dividing e

Z(G) and CG(x) denote respectively the centre of the group G and the cent-

ralizer of x in G. The following commutator identities will be used frequently

without special reference. [xy, z] = [x, z]y[y, z], [x, yz] = [x, z][x, y]z,

3. Proofs

Lemma 3 ([6], Lemma 3). Let w be a word in a free group and let G be an

infinite V(w∗)-group. If G has an infinite normal abelian subgroup, then G is a

V(w)-group.
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Lemma 4. Let n1, n2 be any integer such that n2 ≡ 0 [n1]. If G is an infinite

V(un1,n2(x, y)
∗)-group, then G satisfies the following properties:

i) CG(g
n2) is infinite, for any g ∈ G.

ii) If n2 ∈ {3, 6, 2k/k ∈ N∗}, G has an infinite abelian subgroup.

Proof. Let n1, n2 be any integer such that n2 ≡ 0[n1] and let G be an

infinite V(un1,n2(x, y)
∗)-group.

i) Let g be any element of G. If X and Y are two infinite subsets of G,

then there exist a ∈ X and b ∈ Y such that [an1 , bn2 ] = 1. Clearly, we may

assume that n2 = kn1 (k ∈ N), so [an2 , bn2 ] = [(an1)k, bn2 ] = 1. Therefore, G is

an infinite V([xn2 , yn2 ]∗)-group. Thus, by Lemma 2.1 of [4], CG(g
n2) is infinite

for any g ∈ G.

ii) As in the proof of i), G is a V([xn2 , yn2 ]∗)-group. Then, by Lemma 2.3

of [4], G has an infinite abelian subgroup. ¤

The next lemma is a special case of Lemma 1 of [2].

Lemma 5. If G be an infinite V(un1,n2(x, y)
∗)-group and A be an infinite

abelian subgroup of G, then for any g ∈ G,

A(g) = {a ∈ A/[gn1 , an2 ] = 1}
is infinite.

Proof of Theorem 1. Let G be an infinite group such that, for every pair

X, Y of infinite subsets of G, there exist a in X, b in Y satisfying un1,n2(a, b) = 1.

Let g1, g2 ∈ G be arbitrary two elements of G. By i) and ii) in Lemma 4, CG(g
n2
2 )

is an infinite V(un1,n2(x, y)
∗)-group and contains an infinite abelian subgroup

noted A. In order to show that [gn1
1 , gn2

2 ] = 1, we consider two cases:

Case 1. CA(g1) is infinite. If C = CA(g2) is infinite, by Lemma 5, C(g1) =

{a ∈ C/[gn1
1 , an2 ] = 1} is infinite. Consider the infinite subsets g1CA(g1) and

g2C(g1). Then there exist a1 ∈ CA(g1) and a2 ∈ C(g1) such that

[(g1a1)
n1 , (g2a2)

n2 ] = 1. But

[(g1a1)
n1 , (g2a2)

n2 ] = [gn1
1 an1

1 , gn2
2 an2

2 ] = [gn1
1 , a2

n2 ] [gn1
1 , gn2

2 ]
a2

n2

= [gn1
1 , gn2

2 ]
a2

n2

Then [gn1
1 , gn2

2 ] = 1. If C = CA(g2) is finite, then gA2 = {ga2/a ∈ A} is infinite.

Consider the infinite subsets g1CA(g1) and gA2 = {ga2/a ∈ A}, then there exist

a1 ∈ CA(g1) and a2 ∈ A such that [(g1a1)
n1 , (ga2

2 )n2 ] = 1. But

[(g1a1)
n1 , (ga2

2 )n2 ] = [gn1
1 an1

1 , (gn2
2 )a2 ] = [gn1

1 , gn2
2 ]

a
n1
1 = 1
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Then [gn1
1 , gn2

2 ] = 1.

Case 2. CA(g1) is finite. If C = CA(g2) is infinite, by Lemma 5, C(g1) = {a ∈
C/[gn1

1 , an2 ] = 1} is infinite. Consider the infinite subsets gA1 = {ga1/a ∈ A} and

g2C(g1). Then there exist a1 ∈A and a2 ∈C(g1) such that [(ga1
1 )n1 , (g2a2)

n2 ] = 1.

But

[(ga1
1 )n1 , (g2a2)

n2 ] = [(gn1
1 )a1 , gn2

2 a2
n2 ] = [gn1

1 , a2
n2 ] [gn1

1 , gn2
2 ]

a2
n2

= [gn1
1 , gn2

2 ]
a2

n2

Then [gn1
1 , gn2

2 ] = 1. If C = CA(g2) is finite. Consider the infinite subsets

gA1 = {ga1/a ∈ A} and gA2 = {ga2/a ∈ A}. Then there exist a1, a2 ∈ A such that

[(ga1
1 )n1 , (ga2

2 )n2 ] = 1. But

[(ga1
1 )n1 , (ga2

2 )n2 ] = [(gn1
1 )a1 , (gn2

2 )a2 ] = [(gn1
1 )a1 , gn2

2 ] = [gn1
1 , gn2

2 ]
a1

Then [gn1
1 , gn2

2 ] = 1. ¤

Lemma 6 ([3]). If w(x1, . . . , xr) = xn1
1 . . . xnr

r , where each ni is a non-

zero integer, then every infinite V(w(x1, . . . , xr)
∗)-group belongs to the variety

V(w(x1, . . . , xr)) = Bd, where d = gcd1≤i≤r(ni).

Lemma 7. If d ≡ 0[n], where d = gcd1≤i≤r(ni). Then every infinite

V(wn,n1,...,nr (x1, . . . , xr)
∗)-group is a Bnd-group.

Proof. Let G be an infinite V(wn,n1,...,nr (x1, . . . , xr)
∗)-group and let d =

gcd1≤i≤r(ni) and suppose that d ≡ 0[n]. Put X = {g ∈ G/gd = 1}.
If X is infinite. For any t(1 ≤ t ≤ r), let Y be an infinite subset of G and

consider the infinite subsets X1 = · · · = Xt−1 = X, Xt = Y,Xt+1 = · · · = Xr =

X. Then there exist a ∈ Y such that annt = 1. So G is V((xnnt)∗)-group, and by

Lemma 6, G is Bnnt -group. Therefore G is Bnd-group, where d = gcd1≤i≤r(ni).

If X is finite, by Dicman’s Lemma (see Lemma 14.5.7 of [10]), N = 〈X〉
is a finite normal subgroup of G, and G

N is V((xn1
1 . . . xnr

r )∗)-group. Hence G
N is

Bd-group so that Gd ≤ N , and therefore Gd is finite. Let C = CG(G
d), obviously

C1≤i≤r = ∩CG(G
ni) and C is infinite. If C1, C2, . . . , Cr are infinite subsets of C,

then there exist ci ∈ Ci such that (cn1
1 . . . cnr

r )n = cnn1
1 . . . cnnr

r = 1. Therefore C is

Bnd-group. For any t(1 ≤ t ≤ r), let Y be an infinite subset of G and consider the

infinite subsets X1 = · · · = Xt−1 = C, Xt = Y,Xt+1 = · · · = Xr = C. Then there

exist a ∈ Y such that annt = 1. So G is a V((xnnt)∗)-group, and by Lemma 6, G

is Bnnt-group. Therefore G is a Bnd-group, where d = gcd1≤i≤r(ni). ¤

Lemma 8. If n1, . . . , nr ∈ {2k/k ∈ N∗}. Then every infinite

V(w2,n1,...,nr (x1, . . . , xr)
∗)-group is a V([xnk , ynl ])-group, for any k, l(1 ≤ k ≤ r,

1 ≤ l ≤ r).
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Proof. Let k and l be a number such that 1 ≤ k ≤ l ≤ r and put X = {g ∈
G/gd = 1}, where d = gcd1≤i≤r(ni) = Min1≤i≤r(ni).

If X is infinite, let U and V be two infinite subsets of G, and consider the

infinite subsets X = X1 = · · · = Xk−1, U,X = Xk+1 = · · · = Xl−1, V,X =

Xl+1 = · · · = Xr. Then there exist u in U and v in V such that (unkvnl)2 = 1. It

follows that [unk , vnl ] = 1 since G is B2nk
∩B2nl

-group. Thus, G is V([xni , ynj ]∗)-
group, and by Theorem 1, G is V([xni , ynj ])-group.

If X is finite, let C1≤i≤r = ∩CG(G
ni), by proof of Lemma 7, C is infinite.

Consider now two arbitrary infinite subsets U and V of G and let C = X1 =

· · · = Xk−1, U, C = Xk+1 = · · · = Xl−1, V, C = Xl+1 = · · · = Xr. Then there

exist c1, . . . , ck−1, ck+1, . . . , cl−1, cl+1, . . . , cr ∈ C and u ∈ U , v ∈ V such that

(
cn1
1 . . . c

nk−1

k−1 unkcnk+1
k+1 . . . c

nl−1

l−1 vnlc
nl+1

l+1 . . . cnr
r

)2
= 1

It follows that

cn1
1 . . . c

nk−1

k−1 unkc
nk+1

k+1 . . . c
nl−1

l−1 vnlc
nl+1

l+1 . . . cnr
r

= cnr
r . . . c

nl+1

l+1 vnlc
nl−1

l−1 . . . c
nk+1

k+1 unkc
nk−1

k−1 . . . cn1
1

Then unkvnl = vnlunk and G is V([xnk , ynj ]∗)-group, and by Theorem 1, G

is V([xnk , ynl ])-group. ¤

Proof of Theorem 2. Let G be an infinite V(w2,n1,...,nr (x1, . . . , xr)
∗)-

group and let a1, . . . , ar be any element of G. By Lemma 8, G is a V([xnk , ynl ])-

group for any k, l(1 ≤ k ≤ r, 1 ≤ l ≤ r), so (an1
1 . . . anr

r )2 = a2n1
1 . . . a2nr

r . And,

by Lemma 7, G is a B2ni -group, for any i; 1 ≤ i ≤ r. Hence (an1
1 . . . anr

r )2 = 1,

and G is a V(w2,n1,...,nr (x1, . . . , xr))-group. ¤
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