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On binomial Thue equations and ternary equations
with S-unit coefficients

By ANDRÁS BAZSÓ (Debrecen)

Abstract. In this paper we obtain some new results for a collection of equations of

the form (2) Axn−Byn = ±1 resp. (3) Axn−Byn = zm with m ∈ {3, n}, where x, y, z,
A, B, n are unknown nonzero integers such that n ≥ 3 is a prime and AB is composed of

two fixed primes. We prove among other things that under certain conditions formulated

in Section 2, equations (3) have no solutions with |xy| > 1, Ax, By and z coprime and

n > 13 (cf. Theorems 2 to 4). Combining this with some other results and techniques,

we establish a similar result for equations (2) (cf. Theorem 1).

1. Introduction and results on binomial Thue equations

In case of many number theoretical problems one has to deal with Diophan-

tine equations of the form

Axn −Byn = C (1)

where A, B, C, n are nonzero integers and n ≥ 3. We may assume that 1 ≤
A < B and gcd(A,B) = 1. If the exponent n were fixed, equation (1) would be

a binomial Thue equation, and we keep this name in our terminology also in the

case of unknown n. Thue equations and generalized Thue equations have many

applications in number theory, see e.g. [21], [25], [4], [19], [6], [8], [15], [7], [10],

[2], [17] and the references given there. By a classical theorem of Thue [29], for

fixed n, equation (1) has at most finitely many solutions in integers x, y. The first
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effective upper bounds for the size of the solutions of (1) are due to Baker [1]

for n fixed. For n also unknown, Tijdeman [30] proved that max{|x|, |y|, n} can

be still effectively bounded for every integer solution (x, y, n) of (1) with |xy| > 1.

This effective finiteness result is extended in [14] by Győry, Pink and Pintér

to the case when the numbers A, B, C are taken to be unknown S-units (i.e., all

their prime factors lie in S, where S is a finite set of primes).

Using Baker’s theory of linear forms in logarithms, the results of [1] and [30]

have been improved several times, but even the best known upper bounds are too

large for finding the solutions of (1) in concrete cases.

In [16], Győry and Pintér studied equation (1) for bounded positive integer

coefficients A, B and C. They first derived, for concrete values of A,B,C ≤ 100,

a relatively small upper bound for n, provided that (1) has no solutions with

|xy| ≤ 1. Moreover, they explicitly solved (1) for max {A,B,C} ≤ 10, for C = 1

and max {A,B} ≤ 20 and for A = C = 1 and B ≤ 70, respectively. The latter

results were recently generalized by Bazsó, Bérczes, Győry and Pintér [3] for

the cases C = 1 and max {A,B} ≤ 50 and for A = C = 1 and B < 235. Further

related results can also be found in [3] concerning (1) with bounded coefficients.

Apart from the above mentioned results, equation (1) was solved in only a

few instances, in each case with C = ±1, including the cases when B = A + 1

(cf. [4]) or when for a finite set of primes S (with |S| = 1, 2), the coefficients

A, B were unknown S-units. In the sequel we also restrict our attention to the

equation
Axn −Byn = ±1 (2)

in unknown S-units A,B ∈ Z, and unknown integers x, y, n with |xy| ≥ 1 and

n ≥ 3. For S = {p} with a prime p ∈ {3, 5, 7, 11, 13, 17, 19, 23, 29, 53, 59}, it

follows from the work of Wiles [31], Darmon and Merel [13] and Ribet [23]

on Fermat-type equations that (2) has no solutions with |xy| > 1 and n ≥ 3.

For S = {2, 3}, (2) was solved by Bennett [6]. His result was extended by

Bennett, Győry, Mignotte and Pintér [7] to the case when S = {p, q} with

primes 2 ≤ p, q ≤ 13. Independently, Bugeaud, Mignotte and Siksek [12]

solved (2) in the case when, in (2), A = 2α, B = qβ with a prime 3 ≤ q < 100,

or A = pα, B = qβ with primes 3 ≤ p < q ≤ 31, and in both cases α, β are

nonnegative integers. Recently, Győry and Pintér [17] generalized the results

of [7] to the case when S = {p, q} with primes 2 ≤ p, q ≤ 29.

In the present paper we extend the above results by studying the solutions of

equation (2) in the case when S = {p, q} with primes 2 ≤ p, q ≤ 71. Although our

Theorem 1 does not give the resolution of equation (2), we give reasonable upper
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bounds for n which may be useful if someone needs to solve concrete binomial

Thue equations of such type.

Our main result is the following.

Theorem 1. Let n ≥ 3 be a prime, S = {p, q} with primes 2 ≤ p, q ≤ 71

and let A, B be coprime integer S-units with A < B. If (A, p, q) 6= (1, 2, 31) and

(p, q) /∈ {(23, 41), (17, 47), (29, 61), (61, 67), (17, 71)} ,

then for every integer solution (x, y,A,B, n) of equation (2) with |xy| > 1 we

have n ≤ 31.

Moreover,

(i) if A = 1 and

(p, q, n)/∈{(47, q, 23),(59, q, 29),(2, 61, 31), (17, 61, 31),(43, 61, 31),(53, 67, 17)},
then for every integer solution (x, y,A,B, n) of equation (2) with |xy| > 1

we have n ≤ 13;

(ii) if A > 1 and

(p, q, n) /∈ {(3, 37, 19), (5, 37, 19), (3, 61, 31), (17, 61, 31), (43, 61, 31)}, then for

every integer solution (x, y,A,B, n) of equation (2) with |xy| > 1 we have

n ≤ 17.

For the exceptional (p, q, n), the methods used in the proof of Theorem 1

proved to be inefficient to solve equation (2) for arbitrary nonnegative integer

exponents of the primes p, q. However, they work for several particular exponents.

We further note that binomial Thue equations with degree at most 17 can be

solved in most cases by using a powerful computer and the program packages

magma [11], pari [22] or sage [28].

2. Results on ternary equations

Before proving Theorem 1, we first deal with more general Diophantine equa-

tions of the form
Axn −Byn = zm with m ∈ {3, n} , (3)

where A, B are given nonzero integers, n ≥ 3 and x, y, z are unknown integers.

Approaches to solve such equations, analogous to that employed by Wiles [31]

to prove Fermat’s Last Theorem, are based on the connection between a putative

integer solution (x, y, z) of ternary equations, Frey curves and certain modular

forms. We note that the applicability of this “modular” approach depends only on

the prime factors of the coefficients A, B. In this direction significant contributions
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can be found e.g. in [24], [23], [20], [13], [18], [9], [6], [7] and [17].

By means of the modular method we establish new results on the solutions

of equation (3) both for m = n and for m = 3. These results will be crucial in

the proof of Theorem 1.

Theorem 2. Let AB = 2αqβ with a prime 3 ≤ q ≤ 151, q 6= 31, 127 and

with nonnegative integers α, β. If n is a prime, then for every integer solution

(x, y, z, A,B, n) of the equation
Axn −Byn = zn (4)

with |xy| > 1 and Ax,By and z pairwise coprime we have n ≤ 53.

Moreover, apart from 31 possible exceptions (q, n, α) given in Table 1 below,

for every integer solution (x, y, z, A,B, n) of equation (4) with |xy| > 1 and Ax,

By and z pairwise coprime we have n ≤ 13.

(q, n, α) (q, n, α) (q, n, α) (q, n, α) (q, n, α)

(3, n, 1) (17, n, 4) (73, 17, 1) (109, 29, 1) (149, 37, 4)

(3, n, 2) (37, 19, α) (73, 37, α) (113, 19, α) (149, 41, 1)

(3, n, 3) (47, 23, 4) (83, 41, 4) (137, 17, 4) (151, 19, α)

(5, n, 2) (53, 17, 1) (97, 29, 1) (137, 23, α)

(5, n, 3) (59, 29, 4) (101, 17, α) (137, 29, 1)

(7, n, 2) (61, 31, α) (103, 17, 4) (139, 23, 4)

(7, n, 3) (67, 17, α) (107, 53, 4) (149, 17, 1)

Table 1

For q ≤ 13, n > 13, this gives Theorem 2.2 of [7]; and for q ≤ 29, n > 13,

this implies Theorem 3 of [17] (cf. Lemma 2). Further, our Theorem 2 can be

compared with the corresponding results of [24], [31], [23] and [6].

Theorem 3. Let AB = pαqβ with primes 5 ≤ p, q ≤ 71 and nonnegative

integers α, β. If n is a prime, then apart from 28 possible exceptions (p, q, n) given

in Table 2 below, for every integer solution (x, y, z, A,B, n) of (4) with |xy| > 1

and Ax,By and z pairwise coprime we have n ≤ 13.

(p, q, n) (p, q, n) (p, q, n) (p, q, n) (p, q, n)

(5, 7, n) (17, 23, n) (p, 47, 23) (17, 61, 31) (61, 67, n)

(7, 11, n) (5, 37, n) (17, 47, n) (29, 61, n) (7, 71, n)

(5, 13, n) (5, 41, n) (11, 53, n) (31, 61, 17) (17, 71, n)
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(p, q, n) (p, q, n) (p, q, n) (p, q, n) (p, q, n)

(7, 13, n) (13, 41, n) (5, 59, n) (43, 61, 31) (43, 71, 17)

(7, 17, n) (23, 41, n) (p, 59, 29) (5, 67, 17)

(13, 19, n) (11, 43, n) (5, 61, n) (53, 67, 17)

Table 2

This is a generalization of Theorem 4 of [17] (cf. Lemma 3). For max{p, q}≤29,

n > 13 our result possesses two exceptions (p, q, n) fewer.

Theorem 4. Let AB = pαqβ with nonnegative integers α, β and primes

3 ≤ p < q ≤ 71 such that pq ≤ 583. If n is a prime, then apart from 29 possible ex-

ceptions (p, q, n) given in Table 3 below, for every integer solution (x, y, z, A,B, n)

of the equation

Axn −Byn = z3 (5)

with |xy| > 1, xy even and Ax, By and z pairwise coprime we have n ≤ 13.

(p, q, n) (p, q, n) (p, q, n) (p, q, n) (p, q, n)

(11, 23, 17) (11, 31, 19) (7, 43, 19) (11, 47, 23) (5, 61, 31)

(13, 23, 17) (3, 37, 19) (13, 43, 17) (3, 59, 29) (7, 61, 31)

(11, 29, 17) (5, 37, 19) (3, 47, 23) (5, 59, 29) (3, 67, 17)

(11, 29, 23) (7, 37, 19) (5, 47, 23) (7, 59, 19) (5, 67, 17)

(13, 29, 19) (11, 37, 19) (7, 47, 23) (7, 59, 29) (7, 67, 17)

(19, 29, 23) (13, 37, 19) (11, 47, 17) (3, 61, 31)

Table 3

For q ≤ 13, n > 13, this gives Theorem 2.1 of [7]. Further, Theorem 4 is a

considerable extension of Theorem 5 of [17] (cf. Lemma 4). Under the assumptions

of Theorem 5 of [17] on p, q our result implies that if n > 13 is a prime, then (5)

has no solutions with xy even and |xy| > 1, without any exception (p, q, n).

3. Auxiliary results

In the proofs of our Theorems 1–4 we apply the results of this section.

The following Lemma 1 summarizes some results obtained by Kraus [20],

and Bennett, Vatsal and Yazdani [9] on ternary equations of the form (3).
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For a given prime q and nonzero integer u, set

Radq (u) :=
∏

p|u
p6=q

p,

where the product is taken over all positive primes p different from q and divi-

ding u, and write ordq (u) for the largest integer k with qk|u. Suppose that for

given A, B and n ≥ 3, we have a solution (x, y, z) to (3) in nonzero integers.

If m = 3 (see [9]) we assume, without loss of generality, that 3 - Ax and

Byn 6≡ 2 (mod 3), and A and B are nth-power free. We consider the elliptic

curve

E : Y 2 + 3zXY +BynY = X3,

and set

Nn(E) = Rad3(AB)ε3,

where

ε3 :=





1 if ord3(B) = 3,

3 if ord3(Byn) > 3 and ord3(B) 6= 3,

32 if 9 | (2 +Byn − 3z),

33 if 3‖(2 +Byn − 3z) or ord3(Byn) = 2,

34 if ord3(Byn) = 1,

If m = n (see [20]), then we may assume without loss of generality that

Axn ≡ −1 (mod 4) and Byn ≡ 0 (mod 2). The corresponding Frey curve is

E : Y 2 = X(X −Axn)(X +Byn).

Put

Nn(E) = Rad2(AB)εn,

where

εn :=





1 if ord2(AB) = 4,

2 if ord2(AB) = 0 or ord2(AB) ≥ 5,

2 if 1 ≤ ord2(B) ≤ 3 and xyz even,

8 if ord2(AB) = 2 or 3 and xyz odd,

32 if ord2(AB) = 1 and xyz odd.

We note that both for m = 3 and for m = n, the numbers Nn(E) are closely

related to the conductors of the above curves (cf. [9] and [20]).

Lemma 1. Suppose that A, B, x, y and z are nonzero integers with Ax,

By and z pairwise coprime, xy 6= ±1, satisfying equation (3) with prime n ≥ 5
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and n - AB. Then there exists a cuspidal newform f =
∑∞

r=1 crq
r (q := e2πiz) of

weight 2, trivial Nebentypus character and level Nn(E) for Nn(E) given as above.

Moreover, if we write Kf for the field of definition of the Fourier coefficients cr
of the form f and suppose that p is a prime coprime to nNn(E), then

NormKf/Q (cp − ap) ≡ 0 (mod n)

with ap = ± (p+ 1) (if p | xy) or ap ∈ Sp,m (if p - xy), where

Sp,3 = {u : |u| < 2
√
p, u ≡ p+ 1 (mod 3)}

and

Sp,n = {u : |u| < 2
√
p, u ≡ p+ 1 (mod 4)} .

Proof. This deep result was proved in [9] (for m = 3) and [20] (for m = n).

(For a survey on this topic, see [5], [26] or [27].) ¤

Lemma 2. Suppose that AB = 2αqβ , where q is a prime with 3 ≤ q ≤ 29

and α, β are nonnegative integers. If n > 11 is a prime, then equation (4) has no

solutions in integers (x, y, z) with |xy| > 1 and Ax, By and z pairwise coprime,

unless, possibly,

(q, α) ∈ {(3, 1), (3, 2), (3, 3), (5, 2), (5, 3), (7, 2), (7, 3), (17, 4)}

and xy is odd.

Proof. See Theorem 3 in [17]. ¤

Lemma 3. Suppose that AB = pαqβ , where p, q are primes with 5 ≤ p < q ≤
29 and α, β are nonnegative integers. If n > 11 is a prime, then equation (4) has no

solutions in integers (x, y, z) with |xy| > 1 and Ax, By and z pairwise coprime, un-

less, possibly (p, q, n) = (19, 29, 13) or (p, q)∈{(5, 7), (5, 13), (7, 11), (7, 13), (7, 17),
(7, 23), (13, 17), (13, 19), (17, 23)}.

Proof. See Theorem 4 in [17]. ¤

Lemma 4. Suppose that AB = pαqβ , where α, β are nonnegative integers

and p, q are primes with 3 ≤ p < q ≤ 29 such that either p ≤ 7 or

(p, q) ∈ {(11, 13), (11, 17), (11, 19), (13, 17), (13, 19), (17, 23)} .

If n > 11 is a prime, then equation (5) has no solutions in integers (x, y, z) with

|xy| > 1, xy even, and Ax, By and z pairwise coprime, unless, possibly (p, q, n) ∈
{(3, 23, 13), (5, 19, 13), (5, 23, 23), (5, 29, 13), (5, 29, 23), (7, 17, 17), (7, 17, 19),
(7, 19, 13), (11, 13, 13), (11, 17, 23), (11, 19, 13), (11, 19, 31), (13, 17, 17), (13, 19, 13}.
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Proof. This is Theorem 5 in [17]. ¤

We recall that for a finite set of primes S, an integer u is an S-unit if all

its prime factors lie in S. The following result is due to Bennett, Győry,

Mignotte and Pintér [7] for 2 ≤ p, q ≤ 13, and to Győry and Pintér [17] for

2 ≤ p, q ≤ 29.

Lemma 5. Let S = {p, q} for p and q primes with 2 ≤ p, q ≤ 29. If A, B,

x, y and n are positive integers with A, B S-units, A < B and n ≥ 3, then the

only solutions to equation (2) are those with

n ≥ 3, A ∈ {1, 2, 3, 4, 7, 8, 16} , x = y = 1

and

n = 3, (A, x) = (1, 2) , (1, 3) , (1, 4) , (1, 9) , (1, 19) , (1, 23), (3, 2), (5, 11),

n = 4, (A, x) = (1, 2) , (1, 3) , (1, 5) , (3, 2) ,

n = 5, (A, x) = (1, 2) , (1, 3) ,

n = 6, (A, x) = (1, 2) .

Proof. This is Theorem 1 in [17]; see also Theorem 1.1 in [7]. ¤

The following two lemmas are special cases of two theorems of Bugeaud,

Mignotte and Siksek [12].

Lemma 6. Suppose 3 ≤ q < 100 is a prime. The equation

qαxn − 2βyn = ±1

has no solutions in integers x, y, α, β, n with x, y > 0, |xy| > 1, α, β ≥ 0 and

n > 5.

Proof. See Theorem 1.1 in [12]. ¤

Lemma 7. Suppose 3 ≤ p < q ≤ 31 are primes. The equation

pαxn − qβyn = ±1

has no solutions in integers x, y, α, β, n with x, y > 0, α, β ≥ 0 and n > 5.

Proof. See Theorem 1.2 in [12]. ¤
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We note that in contrast with Lemma 5, Lemmas 6 and 7 cannot be applied

to equations of the form (2) when A = 1 and B has two distinct prime factors.

Further, in case A = 1 equation (2) cannot be solved by the methods used in [7],

[17] and [12] when B is divisible by more than two distinct primes.

Let φ(B) denote Euler’s function. The following result has recently been

proved by Bazsó, Bérczes, Győry and Pintér [3].

Lemma 8. Suppose that in the equation

xn −Byn = ±1 (6)

n is a prime and that each of the following conditions holds:

(i) n ≥ 17,

(ii) B ≤ exp {3000},
(iii) n - Bφ(B),

(iv) Bn−1 6≡ 2n−1 (mod n2),

(v) rn−1 6≡ 1 (mod n2) for some divisor r of B.

Then equation (6) has no solutions in integers (x, y, n) with |xy| > 1.

Proof. See Theorem 6 in [3]. ¤

4. Proofs

First we prove Theorems 2, 3 and 4.

Proof of Theorem 2. Suppose that for some prime n > 13 and for some

A,B under consideration, equation (4) has a nontrivial solution (x, y, z, A,B, n)

with Ax, By, and z coprime. By Lemma 2 we may assume that 30 < q ≤ 151.

Further, we may assume that α > 0 and β > 0, since otherwise the assertion of

Theorem 2 follows from the results of [31], [23] and [13].

By Lemma 1, there exists a cuspidal newform f of level N = 2γq with

γ ∈ {0, 1, 3, 5}. Using the notation of Lemma 1 with m = n, set

Ar,n := NormKf/Q(cr − (r + 1)) ·NormKf/Q(cr + (r + 1))

·
∏

ar∈Sr,n

NormKf/Q(cr − ar),

where r is a prime, coprime to 2nq. In fact, in Ar,n, the index n is used only

to indicate that we are dealing with the case m = n. In view of Lemma 1, n
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must be a divisor of Ar,n for every prime r with r - 2nq. In the following Table 4

we give the common prime divisors of the nonzero values of A3,n, A5,n, . . . , A47,n

for every level N under consideration. There is “®” in those cells for which all

corresponding values of Ar,n are equal to 0. One can see that in these cases

x = y = 1 is a solution to (4) for every n ≥ 3.

q\N q 2q 8q 32q

31 5 ® 2, 3 2, 3, 7

37 3 3, 19 2, 3, 5 2, 3, 5

41 2, 5 2, 3, 7 2, 3, 5 2, 3, 7, 13

43 3, 7 3, 5, 11 2, 3, 5 2, 3, 5, 11

47 3, 23 2, 3 2, 5 2, 3, 5

53 3, 13 3 2, 7 2, 3, 5, 17

59 29 3, 5 2, 3, 5, 7 2, 3, 5, 7

61 3, 5 3, 31 2, 5, 7 2, 3, 5, 13

67 3, 5, 11 3, 17 2, 3, 5 2, 3, 5, 17

71 3, 5, 7 2, 3, 5 2, 3, 5, 7 2, 3, 7

73 2, 3, 5 2, 3, 37 2 2, 3, 5, 13, 17

79 3, 5, 13 2, 3, 5 2, 3, 5 2, 3, 5

83 3, 41 3, 5, 7 2, 3, 5 2, 3, 5, 7

89 2, 3, 5, 11 2, 3, 5 2, 3, 5 2, 3, 5, 7

97 2 2, 3, 5, 7 2, 3, 5 2, 3, 5, 7, 29

101 3, 5 3, 7, 17 2, 3 2, 3, 5, 13

103 5, 17 2, 3, 5, 7, 13 2, 3, 5 2, 3, 5, 13

107 5, 53 3, 5 2, 3 2, 3, 5

109 3 3, 5, 11 2, 3 2, 3, 5, 13, 29

113 2, 3, 7 2, 3, 19 2, 3, 5 2, 3, 5

127 3, 7 ® 2, 3, 5 2, 3, 5

131 3, 5, 13 3, 5, 7, 11 2, 3, 5 2, 3, 5, 11

137 2, 7, 17 2, 3, 5, 23 2, 3, 5 2, 3, 5, 29

139 3, 7, 23 3, 5, 7 2, 3, 7 2, 3, 5, 7

149 3, 37 3, 5 2, 5 2, 3, 5, 17, 41

151 3, 5 2, 3, 5, 19 2, 3 2, 3, 5, 7, 19

Table 4

Now Table 4 shows that n ≤ 53 for all (q, α) under consideration, and that

nontrivial solutions with n > 13 may occur only in the cases (q, n, α) which are

listed in Table 1. This completes the proof of Theorem 2. ¤

Proof of Theorem 3. Suppose that for some prime n > 13 and for some

A,B having the required properties, equation (4) has a nontrivial solution (x, y, z,
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A,B, n) with Ax, By, and z coprime. Again we may assume that, in AB = pαqβ ,

both α and β are positive. In view of Lemma 3 we may further assume that

30 < max{p, q} ≤ 71 or that

(p, q) ∈ {(5, 7), (5, 13), (7, 11), (7, 13), (7, 17), (7, 23), (13, 17), (13, 19), (17, 23)} .

As in the proof of Theorem 2, we apply Lemma 1 with m = n. Under the

assumptions of Theorem 3 the level N of the corresponding modular forms is 2pq.

In Table 5, for all the 134 pairs (p, q) under consideration, we list the common

prime divisors (briefly CPD ’s) of Ar,n (defined in the proof of Theorem 2) for

primes r ∈ {3, 5, 7, . . . , 47} which are coprime to pq. Again “®” indicates the

case that the corresponding values of Ar,n are all equal to 0.

(p, q) CPD’s (p, q) CPD’s (p, q) CPD’s

(5, 7) ® (37, 43) 2, 3, 5, 7 (17, 61) 2, 3, 5, 7, 31

(7, 11) ® (41, 43) 2, 3, 5, 7 (19, 61) 2, 3, 5, 7, 11

(5, 13) ® (5, 47) 2, 3, 5, 23 (23, 61) 2, 3, 5, 7, 11

(7, 13) ® (7, 47) 2, 3, 5, 23 (29, 61) ®
(7, 17) ® (11, 47) 2, 3, 5, 7, 23 (31, 61) 2, 3, 5, 7, 17

(13, 17) 2, 3, 5 (13, 47) 2, 3, 5, 7, 23 (37, 61) 2, 3, 5, 7

(13, 19) ® (17, 47) ® (41, 61) 2, 3, 5, 7, 11

(7, 23) 2, 3, 5, 11 (19, 47) 2, 3, 5, 23 (43, 61) 2, 3, 5, 7, 13, 31

(17, 23) ® (23, 47) 2, 3, 5, 11, 23 (47, 61) 2, 3, 5, 7, 23

(5, 31) 2, 3, 5 (29, 47) 2, 3, 5, 7, 23 (53, 61) 2, 3, 5, 7, 13

(7, 31) 2, 3, 5, 7 (31, 47) 2, 3, 5, 7, 23 (59, 61) 2, 3, 5, 7, 11, 29

(11, 31) 2, 3, 5, 7, 11 (37, 47) 2, 3, 5, 7, 11, 23 (5, 67) 2, 3, 5, 7, 11, 17

(13, 31) 2, 3, 5, 7 (41, 47) 2, 3, 5, 7, 23 (7, 67) 2, 3, 5, 11

(17, 31) 2, 3, 5 (43, 47) 2, 3, 5, 7, 23 (11, 67) 2, 3, 5, 7, 11

(19, 31) 2, 3, 5 (5, 53) 2, 3, 5, 7, 11, 13 (13, 67) 2, 3, 5, 11

(23, 31) 2, 3, 5, 7, 11 (7, 53) 2, 3, 5, 7, 13 (17, 67) 2, 3, 5, 7, 11

(29, 31) 2, 3, 5, 7 (11, 53) ® (19, 67) 2, 3, 5, 7, 11

(5, 37) ® (13, 53) 2, 3, 5, 13 (23, 67) 2, 3, 5, 7, 11

(7, 37) 2, 3, 5, 7 (17, 53) 2, 3, 5, 13 (29, 67) 2, 3, 5, 7, 11

(11, 37) 2, 3, 5, 7 (19, 53) 2, 3, 5, 7, 13 (31, 67) 2, 3, 5, 7, 11

(13, 37) 2, 3, 5 (23, 53) 2, 3, 5, 11, 13 (37, 67) 2, 3, 5, 7, 11

(17, 37) 2, 3, 5, 7 (29, 53) 2, 3, 5, 7, 13 (41, 67) 2, 3, 5, 7, 11, 13

(19, 37) 2, 3, 5, 7 (31, 53) 2, 3, 5, 7, 13 (43, 67) 2, 3, 5, 7, 11

(23, 37) 2, 3, 5, 11 (37, 53) 2, 3, 5, 11, 13 (47, 67) 2, 3, 5, 11, 23

(29, 37) 2, 3, 5, 7 (41, 53) 2, 3, 5, 7, 13 (53, 67) 2, 3, 5, 11, 13, 17

(31, 37) 2, 3, 5, 7, 13 (43, 53) 2, 3, 5, 7, 13 (59, 67) 2, 3, 5, 11, 29

(5, 41) ® (47, 53) 2, 3, 5, 7, 13, 23 (61, 67) ®
(7, 41) 2, 3, 5, 7 (5, 59) ® (5, 71) 2, 3, 5, 7
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(p, q) CPD’s (p, q) CPD’s (p, q) CPD’s

(11, 41) 2, 3, 5, 7 (7, 59) 2, 3, 5, 7, 29 (7, 71) ®
(13, 41) ® (11, 59) 2, 3, 5, 13, 29 (11, 71) 2, 3, 5, 7

(17, 41) 2, 3, 5, 7 (13, 59) 2, 3, 5, 7, 29 (13, 71) 2, 3, 5, 7

(19, 41) 2, 3, 5, 7 (17, 59) 2, 3, 5, 7, 29 (17, 71) ®
(23, 41) ® (19, 59) 2, 3, 5, 29 (19, 71) 2, 3, 5, 7

(29, 41) 2, 3, 5, 7 (23, 59) 2, 3, 5, 11, 29 (23, 71) 2, 3, 5, 7, 11

(31, 41) 2, 3, 5 (29, 59) 2, 3, 5, 7, 29 (29, 71) 2, 3, 5, 7

(37, 41) 2, 3, 5, 7 (31, 59) 2, 3, 5, 7, 29 (31, 71) 2, 3, 5, 7, 11

(5, 43) 2, 3, 5, 7, 11 (37, 59) 2, 3, 5, 7, 29 (37, 71) 2, 3, 5, 7

(7, 43) 2, 3, 5, 7 (41, 59) 2, 3, 5, 7, 29 (41, 71) 2, 3, 5, 7

(11, 43) ® (43, 59) 2, 3, 5, 7, 29 (43, 71) 2, 3, 5, 7, 17

(13, 43) 2, 3, 5, 7, 11 (47, 59) 2, 3, 5, 7, 23, 29 (47, 71) 2, 3, 5, 7, 11, 23

(17, 43) 2, 3, 5, 7 (53, 59) 2, 3, 5, 13, 29 (53, 71) 2, 3, 5, 7, 11, 13

(19, 43) 2, 3, 5, 7, 11 (5, 61) ® (59, 71) 2, 3, 5, 7, 29

(23, 43) 2, 3, 5, 7, 11 (7, 61) 2, 3, 5 (61, 71) 2, 3, 5, 7

(29, 43) 2, 3, 5, 7, 11 (11, 61) 2, 3, 5 (67, 71) 2, 3, 5, 7, 11

(31, 43) 2, 3, 5, 7, 13 (13, 61) 2, 3, 5, 11

Table 5

By Lemma 1, n must divide Ar,n for each r in question. However, as is seen

from Table 5, apart from the exceptions listed in Table 2, we get a contradiction

since n > 13. Thus Theorem 3 is proved. ¤

Proof of Theorem 4. Suppose that for some A,B under consideration,

equation (5) has a nontrivial solution (x, y, z, A,B, n) with xy even, Ax,By and z

coprime, and with n > 13. Lemma 4 proves the assertion for those primes p, q

for which either p ≤ 7 and q ≤ 29 or

(p, q) ∈ {(11, 13), (11, 17), (11, 19), (13, 17), (13, 19), (17, 23)} ,
unless

(p, q) ∈ {(5, 23), (5, 29), (7, 17), (11, 17), (11, 19), (13, 17)} .
We use again Lemma 1 but now with m = 3. First we study the case when,

in AB = pαqβ , either p = 3, α > 0, q ∈ {31, 37, 41, 43, 47, 53, 59, 61, 67, 71} or

αβ = 0. Then we have to consider modular forms f of level N = 3γq with

γ ∈ {0, 1, 2, 3, 4}. With the notation of Lemma 1, put

Br,3 := NormKf/Q(cr − (r + 1)) ·NormKf/Q(cr + (r + 1)).

Since xy is even, in the case r = 2, it is enough to consider B2,3 instead of the

product

A2,3 := NormKf/Q(c2 − 3) ·NormKf/Q(c2) ·NormKf/Q(c2 + 3).
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Moreover, the Hasse–Weil (HW ) bound yields n ≤ 2
√
2 + 3 for all rational new-

forms f , so we deal only with the non-rational ones. We note that all the newforms

of level N = 37 are one dimensional. The following Table 6 contains the common

prime divisors of B2,3 and Ar,3 for primes r ∈ {5, 7, . . . , 47} different from q.

q\N 1q 3q 9q 27q 81q

31 5 2, 7 2, 3, 5, 7 2, 3, 5 2, 3, 5, 7

37 HW 2, 19 2, 3, 5, 19 2, 3, 7 2, 3, 5

41 2, 5 2, 7 2, 5, 7 2, 3, 7 2, 3, 7, 11

43 7 2, 7, 11 2, 3, 7, 11 2, 3, 5 2, 3, 5, 7

47 23 2 2, 23 2, 3, 13 2, 3, 7

53 2, 5, 13 2, 3 2, 3, 5, 13 2, 3, 5 2, 3, 5, 13

59 2, 29 2, 5, 7 2, 5, 7, 29 2, 3, 5, 11 2, 3, 5, 7

61 2, 5 2, 5, 31 2, 3, 5, 31 2, 3, 5 3, 7

67 5, 11 2, 17 2, 3, 5, 11, 17 3, 5, 7, 11 2, 3, 7, 13

71 5, 7 2, 3, 5 2, 3, 5, 7 2, 3, 5, 7 2, 3, 5, 7

Table 6

In view of Lemma 1 Table 6 shows that we get a contradiction with n > 13

unless (p, q, n) ∈ {(3, 37, 19), (3, 47, 23), (3, 59, 29), (3, 61, 31), (3, 67, 17)}.
In the remaining cases we have in AB = pαqβ that p ≥ 5 and α, β > 0. By

virtue of Lemma 4, it suffices to deal with the pairs (p, q) which are not considered

there and with (p, q) ∈ {(5, 23), (5, 29), (7, 17), (11, 17), (11, 19), (13, 17)}. For each
of the remaining pairs (p, q) we use again Lemma 1 with m = 3, and collect the

common prime divisors of B2,3 and Ar,n with primes r ∈ {5, 7, 11, . . . , 47} for

each occuring newforms of levels N = 3pq, 9pq, 27pq. To these computations we

used magma and its results are listed in the following Table 7.

(p, q) 3pq 9pq 27pq

(5, 23) 2, 3, 7, 11 2, 3, 7, 11 2, 3, 5, 7

(5, 29) 2, 5, 7 2, 3, 5, 7 2, 3, 5, 7

(5, 31) 2, 5, 7 2, 3, 5, 7 2, 3, 5

(5, 37) 2, 5, 11, 19 2, 3, 5, 7, 11, 19 2, 3, 5, 7, 11

(5, 41) 2, 3, 5 2, 3, 5, 7, 11 2, 3, 5, 7

(5, 43) 2, 5, 7 2, 3, 5, 7, 11 2, 3, 5, 7

(5, 47) 2, 5, 23 2, 3, 5, 7, 23 2, 3, 5, 13

(5, 53) 2, 5, 7, 13 2, 3, 5, 7, 13 2, 3, 5

(5, 59) 2, 3, 5, 29 2, 3, 5, 29 2, 3, 5, 7, 11
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(p, q) 3pq 9pq 27pq

(5, 61) 2, 3, 5, 7 2, 3, 5, 7, 31 2, 3, 5, 7

(5, 67) 2, 5, 7, 11 2, 3, 5, 7, 11, 13, 17 2, 3, 5, 7, 11

(5, 71) 2, 3, 5, 7, 13 2, 3, 5, 7, 13 2, 3, 5, 7

(7, 17) 2, 7 2, 3, 5, 7 2, 3, 5

(7, 31) 2, 5, 7 2, 3, 5, 7 2, 3, 5, 7

(7, 37) 2, 3, 7 2, 3, 5, 7, 19 2, 3, 5

(7, 41) 2, 5, 7 2, 3, 5, 7, 11 2, 3, 5, 7

(7, 43) 2, 5, 7, 11 2, 3, 5, 7, 11 2, 3, 5, 11, 19

(7, 47) 2, 5, 7, 13, 23 2, 3, 5, 7, 13, 23 2, 3, 5

(7, 53) 2, 5, 7, 13 2, 3, 5, 7, 13 2, 3, 5, 7

(7, 59) 2, 5, 7, 11, 19, 29 2, 3, 5, 7, 11, 19, 29 2, 3, 5, 7, 11, 13

(7, 61) 2, 3, 5, 7 2, 3, 5, 7, 13, 31 2, 3, 5, 13

(7, 67) 2, 3, 11 2, 3, 5, 11, 17 2, 3, 5, 7

(7, 71) 2, 3, 5, 7 2, 3, 5, 7 2, 3, 5, 7, 11

(11, 17) 2, 3, 5 2, 3, 5 2, 3, 5

(11, 23) 2, 3, 5, 7, 11 2, 3, 5, 7, 11, 17 2, 3, 5, 7

(11, 29) 2, 3, 5, 7, 13, 17 2, 3, 5, 7, 13, 17 2, 3, 23

(11, 31) 2, 5, 7 2, 3, 5, 7, 19 2, 3, 5, 13

(11, 37) 2, 3, 5, 7, 13 2, 3, 5, 7, 11, 13, 19 2, 3, 5, 7

(11, 41) 2, 3, 5, 7 2, 3, 5, 7 2, 3, 5, 7

(11, 43) 2, 5, 7, 11 2, 3, 5, 7, 11 2, 3, 5

(11, 47) 2, 3, 5, 7, 17, 23 2, 3, 5, 7, 17, 23 2, 3, 5, 7, 13

(11, 53) 2, 3, 5, 7, 13 2, 3, 5, 7, 13 2, 3, 5, 7

(13, 17) 2, 5 2, 3, 5, 7 3, 5, 7

(13, 23) 2, 5, 11, 13 2, 3, 5, 7, 11, 13 2, 3, 5, 11, 17

(13, 29) 2, 5, 7 2, 3, 5, 7 2, 3, 5, 7, 19

(13, 31) 2, 3, 5, 7 2, 3, 5, 7 2, 3, 5, 7

(13, 37) 2, 3, 5, 7, 19 2, 3, 5, 7, 19 2, 3, 5, 7

(13, 41) 2, 5, 7 2, 3, 5, 7 2, 3, 5, 7, 11, 13

(13, 43) 2, 3, 5, 7 2, 3, 5, 7, 11, 17 2, 3, 5, 7, 13

(17, 19) 2, 3, 5, 7 2, 3, 5, 7 2, 3, 5, 7, 13

(17, 29) 2, 3, 5, 7, 11 2, 3, 5, 7, 11 2, 3, 5, 7

(17, 31) 2, 5, 11 2, 3, 5, 11 2, 3, 5, 7, 11, 13

(19, 23) 2, 3, 5, 11 2, 3, 5, 7, 11 2, 3, 5

(19, 29) 2, 3, 5, 7 2, 3, 5, 7 2, 3, 5, 7, 11, 23

Table 7

Lemma 1 now implies that equation (5) has no solutions for those triples

(p, q, n) for which n does not occur in Table 7 as a common prime divisor. It is

seen from Tables 6 and 7 that there are 29 triples (p, q, n) with n > 13 which are

those listed in our Theorem 4 as possible exceptions. This proves Theorem 4. ¤
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Proof of Theorem 1. In view of Lemmas 7 and 5 it is enough to solve

equation (2) for primes 31 ≤ max{p, q} ≤ 71. Let x,y, A, B, n be a solution

of equation (2) with |xy| > 1, n ≥ 3 and A, B coprime S-units. Then clearly,

(x, y,±1) is a solution of the ternary equations (4) and (5) respectively. Then

Theorems 2, 3 and 4 imply that n ≤ 31 unless

(p, q) ∈ {(2, 31), (23, 41), (17, 47), (29, 61), (61, 67), (17, 71)} .

For A > 1 and (p, q) = (2, 31) one can apply Lemma 6 to obtain that n < 6 is true

for all solutions of 2αxn − 31βyn = ±1, thus the first statement of the theorem is

proved.

For the proof of the stronger statements (i) and (ii) of Theorem 1, by The-

orems 2, 3 and 4 we have to consider the equation

Axn −Byn = ±1

for 50 cases of (p, q, n) which are listed in Table 8.

(p, q, n) (p, q, n) (p, q, n) (p, q, n) (p, q, n)

(2, 37, 19) (23, 47, 23) (7, 59, 29) (43, 59, 29) (59, 61, 29)

(3, 37, 19) (29, 47, 23) (11, 59, 29) (47, 59, 23) (2, 67, 17)

(5, 37, 19) (31, 47, 23) (13, 59, 29) (47, 59, 29) (3, 67, 17)

(2, 47, 23) (37, 47, 23) (17, 59, 29) (53, 59, 29) (5, 67, 17)

(3, 47, 23) (41, 47, 23) (19, 59, 29) (2, 61, 31) (47, 67, 23)

(5, 47, 23) (43, 47, 23) (23, 59, 29) (3, 61, 31) (53, 67, 17)

(7, 47, 23) (2, 53, 17) (29, 59, 29) (17, 61, 31) (59, 67, 29)

(11, 47, 23) (47, 53, 23) (31, 59, 29) (31, 61, 17) (43, 71, 17)

(13, 47, 23) (2, 59, 29) (37, 59, 29) (43, 61, 31) (47, 71, 23)

(19, 47, 23) (3, 59, 29) (41, 59, 29) (47, 61, 23) (59, 71, 29)

Table 8

For each such triple, we have to consider the equation for

A = 1, B = pαqβ ; and for A = pα, B = qβ

with every (α, β) ∈ {1, . . . , n − 1}2. For example, that means 2 · 282 = 1568

equations to solve when n = 29.

First, let A = 1. For (p, q, n) ∈ {(3, 37, 19), (5, 37, 19), (2, 53, 17), (3, 61, 31),
(31, 61, 17), (3, 67, 17), (43, 71, 17)} we applied Lemma 8 combined with the mo-

dular method with signature (n, n, n) to exclude the solvability of all equations



514 András Bazsó

under consideration. To illustrate how this approach works we give the details

for the case (p, q, n) = (5, 37, 19). We checked that apart from the pairs (α, β) in

Table 9 below, for each (α, β) ∈ {1, . . . , 18}2 the equations

x19 − 5α37βy19 = ±1 (7)

fullfill the conditions (i)− (v) of Lemma 8, so they do not have nontrivial integer

solutions. For each pair in Table 9, by local arguments we found two distinct

primes p1, p2 which divide xy, where x, y is a putative nontrivial solution of the

corresponding equation (7). These primes are also listed in Table 9.

(α, β) p1, p2 (α, β) p1, p2 (α, β) p1, p2
(1, 5) 419, 457 (8, 1) 191, 761 (14, 3) 191, 229

(2, 18) 191, 229 (9, 14) 191, 229 (15, 16) 191, 229

(3, 12) 229, 419 (10, 8) 191, 229 (16, 10) 191, 229

(4, 6) 191, 419 (11, 2) 191, 229 (17, 4) 191, 419

(6, 13) 191, 419 (12, 15) 229, 457 (18, 17) 191, 229

(7, 7) 457, 571 (13, 9) 229, 1483

Table 9

There are 16 cuspidal newforms f at level 2 ·5 ·37. We recall that Kf denotes

the number field generated by the Fourier coefficients cr of the modular form f .

Using the program package magma for each pairs (α, β) of Table 9, we obtained

that

19 - NormKf/Q(cpi − (pi + 1)) ·NormKf/Q(cpi + (pi + 1))

with either i = 1 or i = 2 for all 16 newforms. Thus, Lemma 1 implies that the

equations (7) corresponding to the pairs (α, β) in Table 9 have no solutions with

|xy| > 1.

In the case (p, q, n)∈{(2, 37, 19), (2, 67, 17), (5, 67, 17)}, we combined Lem-

ma 8 with the routine of pari for solving Thue equations of low degree. For

example, Lemma 8 implies that the equation

x19 − 2α37βy19 = ±1

has no nontrivial solutions, unless (α, β) ∈ {(3, 16), (5, 13), (6, 2), (7, 10), (8, 18),
(9, 7), (10, 15), (11, 4), (12, 12), (13, 1), (14, 9), (15, 17), (16, 6), (17, 14), (18, 13)}.
We solved each equation corresponding to these pairs using pari.

In the sequel let A > 1. For (p, q, n) ∈ {(2, 37, 19), (2, 47, 23), (2, 59, 29),
(2, 61, 31)} we can apply again Lemma 6 to exclude the solvability of the corres-

ponding equations.
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For the remaining 46 triples of Table 8, and for each corresponding binomial

Thue equation we used the following local method. Choose a small integer k such

that p = 2kn+ 1 is a prime. Then both xn and yn are either 2kth roots of unity

(mod p) or zero. Thus we have to check the congruence

Axn −Byn ≡ ±1 (mod p)

only in (2k+1)2 cases. Programmed in magma, this method works very efficiently.

(We note that it cannot be used when A = 1, because xn − Byn = 1 always has

the solution (x, y) = (1, 0).) These computations proved the unsolvability of each

binomial Thue equation under consideration, except the ones with

(p, q, n) ∈ {(3, 37, 19), (5, 37, 19), (3, 61, 31), (17, 61, 31), (43, 61, 31)} .
This completes the proof of Theorem 1. ¤
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[10] A. Bérczes and A. Pethő, Computational experiences on norm form equations with
solutions from an arithmetic progression, Glasnik Matematički. Serija III 41(61) (2006),
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