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Cohomogeneity one Minkowski space Rn
1

By P. AHMADI (Tehran) and S. M. B. KASHANI (Tehran)

Abstract. In this paper we study cohomogeneity one Minkowski space Rn
1 . Among

other results, we prove that the orbit space is homeomorphic to R or [0,∞). We show

that if there is a spacelike principal orbit, then each of the orbits is spacelike and

principal. If n = 3 and there is a singular orbit, we characterize the orbits up to isometry,

and the acting group up to conjugacy.

1. Introduction

Cohomogeneity one Rimannian manifolds have been studied by many ma-

thematicians, see [1], [2], [3], [6], [21], [22], [23]. When the metric is indefinite

there are not so much papers in the literature. With this paper we want to

begin the study of cohomogeneity one pseudo-Riemannian manifolds. Here we

take M = Rn
1 , i.e. a Minkowski space, and suppose that a connected closed Lie

subgroup G ⊂ Iso(Rn
1 ) acts properly on Rn

1 with an orbit of codimension one.

The main result of this paper (found in § 3) is that if there is a spacelike

principal orbit, then there is no singular orbit and each orbit is isometric to Rn−1.

When n = 3 and there is a singular orbit B, we prove that B is a timelike affine

subspace of R3
1, each principal orbit is isometric to R1

1 × S1(r), r > 0, and G is

conjugate to R× SO(2).
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2. Preliminaries

Let (M, g) be a complete pseudo-Riemannian manifold of dimension n and G

a connected closed Lie subgroup of Isog(M) which acts properly on M . We say

that M is of cohomogeneity one under the action of G, if G has an orbit of codi-

mension one. For a general theory of (Riemannian) cohomogeneity one manifolds

we refer to [2], [3], [4], [6], [21], [22]. Here we remind some of the indispensable

backgrounds.

Definition 2.1 ([8, p. 53]). An action of a group G on a manifold M is said

to be proper if the mapping ϕ : G×M → M ×M , (g, x) 7→ (g.x, x) is proper.

Here is some of the main properties of proper actions which we use.

The orbit space M/G of a proper action of G on M is Hausdorff and the

orbits are closed submanifolds in M , and the stabilizer subgroups are compact [8,

p. 149].

Lemma 2.2 ([8, p. 150]). If there is a proper action of a Lie group G on

a connected manifold M , then M possesses a G-invariant Riemannian structure

which can be assumed complete.

Throughout the paper we assume that the investigated group action is effec-

tive and proper, so we can pass to a Riemannian manifold (M, g′), in which the

Riemannian metric g′ on M is G-invariant. A result by Mostert (see [17]) for

the compact case, and Berard Bergery [4] for the general case, says that the

orbit spaceM/G, equipped with the quotient topology, is homeomorphic to R, S1,

[0,+∞) or [0, 1]. When M is homotopy equivalent to Rn, we prove in Lemma 3.3

that M/G is homeomorphic to R or [0,+∞).

Consider the projection map M → M/G to the orbit space. Given a point

x ∈ M , we say that the orbitG(x) is principal (resp. singular) if the corresponding

image in the orbit space M/G is an internal (resp. boundary) point. A point x

whose orbit is principal (resp. singular) will be called regular (resp. singular). All

principal orbits are diffeomorphic to each other, each singular orbit is of dimension

less than or equal to n−1, where n = dimM . A singular orbit of dimension n−1

is called an exceptional orbit. Note that an exceptional orbit is never simply

connected, and if M is simply connected then exceptional orbits do not exist. If

M/G is homeomorphic to R, then each orbit is principal and the orbits form a

foliation on M . If M/G is homeomorphic to [0,+∞) and B is the singular orbit

with dimB = n−m, then M is homeomorphic to G×HV , where H is the isotropy

subgroup of a singular point y ∈ M and the manifold V is H-homeomorphic to

an m-dimensional Euclidean space in which the subgroup H acts linearly and
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transitively on the unit sphere Sm−1 ⊂ V (see [2]). Since G×H V is a V -bundle

over G/H, M is a fibre bundle with typical fibre Rm over B. If p : M → B is the

fibre bundle, then p restricted to a principal orbit is a fibre bundle with typical

fibre Sm−1 (see [6, p. 181] and [5]).

Proposition 2.3 ([8, p. 152]). Suppose that a Lie group G acts properly on

a manifold M such that the orbit space M/G is connected. Then the union M0

of all regular points is open and dense in M .

Lemma 2.4 ([8, p. 137]). Let G be a connected Lie group and H a Lie

subgroup of G. If πn(G/H) = 0 for each n > 0, where πn is the n-th homotopy

group, then the manifold G/H is diffeomorphic to Rm, where m = dimG/H.

Throughout in the following Rn
p denotes the n-dimensional real vector space

Rn with a scalar product of signature (p, n− p) given by

〈x, y〉 = −
p∑

i=1

xiyi +

n∑

j=p+1

xjyj .

The set of all linear isometries Rn
p → Rn

p is a Lie group, which may be identified

with the group O(p, n− p) of all matrices A ∈ GL(n,R) that preserve the scalar

product defined above. The identity component of O(p, n − p) is denoted by

SOo(p, n− p). It is known that each maximal compact subgroup of SOo(p, n− p)

is conjugate to SO(p)×SO(n−p) (see [11] or [16, p. 25]) where SO(p)×SO(n−p) is

considered with respect to the standard decomposition Rn
p = Rp

p⊕Rn−p. We write

Sn
1 (r) for the hypersurface {x ∈ Rn+1

1 | 〈x, x〉 = r2} and Hn(r) for a connected

component of the hypersurface Hn
o (r) = {x ∈ Rn+1

1 | 〈x, x〉 = −r2}.
Definition 2.5 ([18]). Let Ln+1 = Rn+1

1 and let N be a connected spacelike

hypersurface. N is said to be isoparametric if its shape operator S has constant

eigenvalues (principal curvatures).

In [18] Nomizu showed that a complete connected spacelike isoparametric

hypersurface in Rn+1
1 has at most two distinct constant principal curvatures. If

it has two distinct constant principal curvatures, then it is isometric to

Hk(r)× En−k = {(x1, x2, . . . , xn+1) ∈ Rn+1
1 | −x2

1 + x2
2 + · · ·+ x2

k+1 = −r2} .

If it is a complete, connected, totally umbilic spacelike hypersurface (has exactly

one principal curvature) then it is isometric to either Rn−1 or Hn(r) (see [19,

p. 117]).
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Definition 2.6. Let N ⊂ (M, g) be a pseudo-Riemannian submanifold of M .

N is called extrinsically homogeneous, if there is a Lie group G ⊂ Isog(M) such

that G acts on N transitively.

Suppose that M = Rn
1 is of cohomogeneity one under the proper action of a

connected, closed Lie subgroup G ⊂ Iso(M). Then each orbit G(x) is extrinsically

homogeneous, so isoparametric (see [20]). Furthermore, if G(x) is a spacelike

principal orbit, then it is a complete submanifold (see [10]).

Lemma 2.7 ([14]). If a Lie group G is compact, or connected and se-

misimple, then any smooth representation of G by affine transformations of Rn

admits a fixed point.

3. Main results

We begin with the formulation of our main Theorem.

Theorem 3.1. Let Rn
1 be of cohomogeneity one under the proper action of

a connected, closed Lie subgroup G ⊂ Iso(Rn
1 ). If there is a spacelike principal

orbit, then each orbit is spacelike and isometric to Rn−1. In particular there is

no singular orbit.

We prove the Theorem via proving some lemmas.

Lemma 3.2. If Rn
p , 1 6 p 6 n−1, is of cohomogeneity one under the action

of a connected, closed Lie subgroup G ⊂ Iso(M), then G is not compact.

Proof. If G is compact then each (principal) orbit is compact, but there is

no compact pseudo-Riemannian hypersurface in Rn
p (see [19, p. 125]), so G is not

compact. ¤

Lemma 3.3. If M = Rn
p , 1 6 p 6 n − 1, is of cohomogeneity one under

the proper action of a connected Lie group G, then the orbit space M/G is a one

dimensional Hausdorff space homeomorphic to R or [0,+∞). In particular, there

is at most one singular orbit.

Proof. Since the action of G on M is proper, by Lemma 2.2 M possesses

a G-invariant Riemannian structure, hence we may assume that (M, g′) is a Rie-

mannian manifold and G ⊂ Isog′(M) acts on M by cohomogeneity one, therefore

M/G is homeomorphic to one of the spaces (i) R, (ii) S1, (iii) [0,+∞), (iv) [0, 1],

(see [4]), and by Proposition 2.3 the set of regular points is dense in M . So using

the same argument as in the proof of Proposition 3.3 of [22] we obtain that the
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case (iv) is impossible. We claim that case (ii) is also not possible. If M/G ∼= S1

then by [2] the projection π : M → S1 is a fibration with fibre G/K, where K is

the stabilizer of a regular point. By Theorem 4.41 of [9, p. 379] there is a long

exact sequence

→ πm(G/K, x0) → πm(M,x0) → πm(S1, b0) → πm−1(G/K, x0) → . . .

→ π0(M,x0) → 0

of homotopy groups, where x0 ∈ π−1(b0) and b0 ∈ S1.

Hence π0(G/K, x0) ∼= Z and this contradicts the connectedness of G/K. ¤

Lemma 3.4. Let M = Rn
p , 1 6 p 6 n − 1, be of cohomogeneity one under

the proper action of a connected Lie group G. If there is a singular orbit G(y),

then it is diffeomorphic to Rk for some 1 6 k 6 n− 2.

Proof. Suppose that G(y) is a singular orbit. If dimG(y)= 0, then Gy=G,

so by the properness of the action G must be compact, which contradicts Lem-

ma 3.2. Thus 1 6 dimG(y) 6 n − 2. As there is at most one singular orbit by

Lemma 3.3, and the action is proper, by Lemma 2.2 and [2] M is homeomorphic

to G ×Gy V where V is an (n − k)-dimensional vector space. Hence M is a

fibre bundle with base G/Gy. Thus M and G(y) are of the same homotopy type,

therefore G(y) is diffeomorphic to Rk by Lemma 2.4. ¤

Lemma 3.5. Let Rn
1 be of cohomogeneity one under the proper action of a

connected, closed Lie subgroup G ⊂ Iso(Rn
1 ). Then

(a) If there is a spacelike principal orbit, there is no singular orbit.

(b) Each spacelike principal orbit is isometric to Rn−1.

Proof. (a) Suppose that G(x◦) is a spacelike principal orbit, for some

x◦ ∈ Rn
1 . Since each orbit is extrinsically homogeneous, it is a complete isopara-

metric hypersurface (see [10] and [20]), so by [18] and [19, p. 117] it is isometric

to one of the following spaces

(i) Rn−1;

(ii) Hn−1(r), a connected component of Hn−1
◦ (r);

(iii) Hk(r)× Rn−k−1 where 0 < k < n and r > 0

where each of them, and so G(x◦), is diffeomorphic to Rn−1. We claim that there

is no singular orbit. If G(y) is a (unique) singular orbit, it is diffeomorphic to Rk

by Lemma 3.4. Hence G(x◦) must be a spherical fibre bundle over G(y), (see [6,

p. 181]), which is not obviously possible.
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(b) Based on the proof of the case (a) it is enough to show that the cases

Hn−1(r) and Hk(r)× Rn−k−1 do not occur.

Case b − 1: If G(x◦) is isometric to Hn−1(r), for some x◦ ∈ Rn
1 and r > 0,

then without loss of generality we may assume that G(x◦) = Hn−1(r) with

〈x◦, x◦〉 = −r2. We show that G ⊂ SOo(1, n − 1) × {0}. Fix an arbitrary

element (A, a) ∈ G ⊂ SO◦(1, n− 1)nRn and y ∈ G(x◦). Then

Ay + a = (A, a).y ∈ G(x◦) = Hn−1(r)

Since a linear isometry A : Rn
1 −→ Rn

1 carries Hn−1
◦ (r) on to itself and Hn−1

◦ (r)

is a pseudo-Riemannian submanifold, A | Hn−1
◦ (r) ∈ Iso(Hn−1

◦ (r)). So

〈Ay,Ay〉 = −r2, 〈Ay + a,Ay + a〉 = −r2,

hence

〈Ay, a〉 = −1

2
〈a, a〉

so

〈x, a〉 = −1

2
〈a, a〉 for all x ∈ A(Hn−1(r)).

Thus for each x ∈ A(Hn−1(r)) and each curve γ in A(Hn−1
◦ (r)) with γ(0) = x

we have 〈γ′(0), a〉 = 0, so a ⊥ TxA(Hn−1(r)) for all x ∈ A(Hn−1(r)). But

A(Hn−1(r)) is one of the connected components of Hn−1
◦ (r), so a = 0. Therefore

G ⊂ SO◦(1, n − 1) and this implies that G stabilizes the origin. In particular G

must be compact, hence G(x) = Hn−1(r) is compact, which is not true.

Case b− 2: G(x) = Hk(r)×Rn−k−1 ⊂ Rk+1
1 ⊕Rn−k−1. Fixing an arbitrary

element (A, a) ∈ G ⊂ SOo(1, n − 1) n Rn, let A = (A1, . . . , An), where Ai is

i-th row of A and a = (a1, . . . , an)
T . Let p1 : Rk+1

1 ⊕ Rn−k−1 −→ Rk+1
1 be the

canonical projection, and denote by 〈 | 〉 the usual inner product in Rn. Since

(A, a).x = Ax+ a ∈ Hk(r)× Rn−k−1, ∀x ∈ Hk(r)× Rn−k−1,

it follows that

p1(Ax+ a) =




〈A1 | x〉
...

〈Ak+1 | x〉


+




a1
...

ak+1


 ∈ Hk(r).

If

Ai = (Ai1 , Ai2) ∈ Rk+1 × Rn−k−1 and x = (x1, x2) ∈ Hk(r)× Rn−k−1 ,
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then 


〈A11 | x1〉
...

〈Ak+11 | x1〉


+




〈A12 | x2〉
...

〈Ak+12 | x2〉


+




a1
...

ak+1


 ∈ Hk(r).

If we fix x1 ∈ Hk(r) and choose x2 ∈ Rn−k−1 arbitrarily, then we get

A12 = · · · = Ak+12 = 0.

Hence

A =

[
B 0

0 C

]
∈ SO◦(1, n),

where B ∈ O(1, k) and C ∈ O(n− k − 1). Thus A(Hk
◦ (r)× {0}) = Hk

◦ (r)× {0},
i.e., BHk

◦ (r) = Hk
◦ (r) and

Bx1 +




a1
...

ak+1


 ∈ Hk(r), ∀x1 ∈ Hk(r);

hence by subcase b− 1 one gets that a1 = · · · = ak+1 = 0.

Thus

G =

{([
B 0

0 C

]
,

[
0

b

])
∣∣ B ∈ O(1, k), C ∈ O(n− k − 1), b ∈ Rn−k−1

}

This shows that G(0) = Rn−k−1 is a singular orbit which contradicts to (a). ¤

Now we are in a position to prove Theorem 3.1.

Proof of Theorem 3.1. Suppose that there is a spacelike principal orbit

G(x◦). We show that G(x) is spacelike and principal for all x ∈ Rn
1 . Without loss

of generality we may suppose that x◦ = 0. Then G(0) is isometric to Rn−1 and

there is no singular orbit by Lemma 3.5. Consider the foliation defined by

{fx = x+G(0) | x ∈ Rn
1}.

Here each leaf is a translation of G(0). Denote the space of leaves by ∆, and

consider the canonical projection map π : Rn
1 → ∆. Then ∆ with the quotient

topology is a manifold diffeomorphic to R. Each vector field X tangent to ∆ has

a unique lift X̄ normal to the fibres on M = Rn
1 , hence one may define a scalar

product 〈 | 〉 by 〈X | X〉 ◦ π = 〈X̄, X̄〉. Thus (∆, 〈 | 〉) is isometric to R1
1, and π is
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a pseudo-Riemannian submersion. Now define the (isometric) action of G on ∆

as follows

G×∆ → ∆, (g, π(x)) 7→ π(gx)

Since G(π(0)) = π(0), G fixes ∆ pointwise, i.e. G acts on ∆ trivially. Thus G(x)

is contained in fx for each x ∈ Rn
1 , which implies that G(x) is spacelike, and

hence isometric to Rn−1 by Lemma 3.5. ¤

By Theorem 3.1, if there is a spacelike principal orbit, then each orbit is

spacelike. One would like to get that this result holds, when there is a Lorentzian

principal orbit. However the following example shows that this is expectation

false. In fact, in the next example there is an open dense subset of M consisting

of Lorentzian principal orbits, but there is another degenerate principal orbit!

Example 3.6. Let M = R3
1 and

G=




(At, bt,s)∈SOo(1, 2)nR3 | At =



cosh t sinh t 0

sinh t cosh t 0

0 0 1


, bt,s =



s

s

t


 s, t∈R





.

Then G is a subgroup of Iso(R3
1), the action of G on R3

1 is proper, and the

orbit G(0) = {(s, s, t) | s, t ∈ R} is a two dimensional subspace of R3
1. Since

{(1, 1, 0), (0, 0, 1)} is a basis of this subspace, v = (1, 1, 0) is null and normal to

u = (0, 0, 1), G(0) is a degenerate subspace. If a = (x1, x2, x3) is an arbitrary

point in R3
1 such that x1 6= x2 then the shape operator of G(a) at Ata+ bt,s is

S = −et

[
0 0

1 0

]

so the minimal polynomial of the shape operator is x2 (the shape operator is not

diagonalizable), hence G(a) is a generalized cylinder of type 1 (see [13]). Thus for

such an a ∈ R3
1 the orbit G(a) is a Lorentzian orbit, but G(0) is not Lorentzian.

As a final result, we characterize the orbits of R3
1 up to isometry, and the

acting group up to conjugacy, when there is a singular orbit.

Theorem 3.7. Let R3
1 be of cohomogeneity one under the proper action of

a connected and closed Lie subgroup G ⊂ Iso(R3
1). If there is a singular orbit B

then:

(a) B is a one dimensional timelike affine subspace of R3
1.
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(b) G is conjugate to

S =

{([
1 0

0 SO(2)

]
,

[
t

0

])
| t ∈ R

}

(c) Each principal orbit D is isometric to R1
1 × S1(r) for some r > 0.

For the proof we need the following lemma.

Lemma 3.8. Let Rn
1 be of cohomogeneity one under the proper action of

a connected, closed Lie subgroup G ⊂ Iso(Rn
1 ), let B be a singular orbit, and

H = Gb the isotropy subgroup at a point b ∈ B. Then H is maximal compact

subgroup in G.

Proof. Suppose that H is not a maximal compact subgroup, and that H $
H ′, where H ′ is a compact Lie subgroup of G. There is a point x0 ∈ Rn

1 which is

fixed under the action of H ′, so under H, by Lemma 2.7. We note that G(x0) is

necessarily a singular orbit and x0 does not belong to the orbit B, since otherwise

H and H ′ would be conjugate, and hence equal. The unique geodesic γ through

b and x0 is fixed pointwise under the action of H, since b and x0 are fixed. By the

properness of the action M0 is open and dense in M , so γ(t0) is a regular point

for some t0 ∈ R and is fixed under the action of H, hence H ⊂ Gγ(t0), which is a

contradiction. ¤

Proof of Theorem 3.7. Since there is no exceptional orbit, by Lemma 3.4

we conclude that dimB = 1. By Lemma 3.3, B is the only singular orbit, hence

B is homotopic to M (see [22]), so B is diffeomorphic to R by Lemma 2.4.

We prove that B is a one dimensional affine subspace of R3
1. Fixing y ∈ B, as

Gy is compact by the properness of the action and connected by Proposition 17 of

[19, p. 309], Gy(x) is a compact connected submanifold of B ∼= R for each x ∈ B,

so Gy(x) = {x}. Therefore B is left invariant by Gy pointwise and the geodesic γ

through y and x ∈ B is left invariant by Gy pointwise as well. By the uniqueness

of the singular orbit B we get that B = γ(R).
Suppose that

SO(1)× SO(2) =

{([
1 0

0 SO(2)

]
,

[
0

0

])}
⊂ SOo(1, 2)nR3.

We claim that Gy is conjugate to SO(1)×SO(2). We know that Gy is a maximal

compact subgroup in G by Lemma 3.8, and by [11, p. 275] any maximal compact

subgroup of SOo(1, 2)nR3 is conjugate to SO(1)×SO(2), so Gy is conjugate to
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some subgroup H of SO(1) × SO(2). If H $ SO(1) × SO(2), then dimH = 0,

since by Proposition 17 of [19, p. 309] H is connected, so H = {I} and this is

impossible since Gx $ H = {I} for each regular point x, a contradiction. Hence

Gy is conjugate to SO(1) × SO(2). Since Gy leaves B pointwise invariant, it is

a normal subgroup in G, and G is isomorphic to Gy × R, so G is Abelian and

dimG = 2, hence G = ZG(Gy) is conjugate to a Lie subgroup of

ZSOo(1,2)nR3(SO(1)× SO(2)) =

{([
1 0

0 SO(2)

]
,

[
t

0

])
| t ∈ R

}
;

thus G is conjugate to S.

Now we prove that B is timelike. Without loss of generality we may suppose

that

G =

{((
1 0

0 SO(2)

)
,

(
t

0

))
| t ∈ R

}
.

Hence B = G(0) = R1
1 × {0} is timelike. Each element of SOo(1, 2) preserves

time- and space-orientation, thus the singular orbit is a timelike subspace.

The statement (c) is a consequence of (a) and (b). ¤
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