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On approximation properties of bi-parametric
parabolic type potentials

By SIMTEN BAYRAKCI (Antalya) and SINEM SEZER (Antalya)

Abstract. In this paper we investigate the approximation properties of bi-paramet-
ric parabolic potentials type operators A5 f and Aj f as the parameter o > 0 tends to
zero. For 8 = 2 these potentials coincide with the classical Jones-Sampson type para-
bolic potentials H f and H" f, respectively.

1. Introduction

Bi-parametric parabolic type potentials are defined as follows (see [1]):

(Agf)(th) = F(la) //T%_lw(ﬁ)(y’T)f(‘r -y, t— T)dydT
p 0 R™

(ha * [)(,t) (1.1)

and

(AL ) (1) = F(la) //e—w%*lwm(y,ﬂf(m oyt — 7)dydr
8709 gn

(ha * ) (2,1). (1.2)
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Here a >0, 3> 0; z,y e R", t e RY; f € L,(R"™), 1 < p < o0;

hal07) = e WO Raln) = e T )

T_?_ =79 if 7 > 0 and 74 = 0, otherwise.

The kernel w(®) (y,7) is defined as the Fourier transform of exp(—7|¢|?)

1

w® (y,7) = @

wyE—T B
/eyf €7 de, g€ =&+t ynbn, T >0. (13)
R’IL

The kernel w(® (y, 7) coincides with the classical Poisson kernel and Gauss—
Weierstrass kernel for § =1 and 8 = 2, respectively.

Also, note that for 8 = 2, the operators (1.1) and (1.2) become the classical
Jones—Sampson parabolic potentials H* f and H® f, respectively (see, [3], [6], [7],
9, [12], [14)).

In this paper it is investigated some approximation properties of the families
of A% f and AJ f as the parameter v > 0 tends to zero. It should be noted that the
approximation properties of parabolic potentials H* f and H* f were investigated
in [15]. The classical Riesz and Bessel kernels as approximations of the identity
have been studied by T. KUROKAWA [10]. See, also [4], [8] in which the relevant
problems concerning to Riesz and Bessel type potentials have been studied in
more general contexts.

We will need the following statements:

Lemma 1.1 ([1], [2], [5]; cf. [11, p. 44] for n = 1). Let w® (y, ) be defined
as (1.3). Then
a) Fory € R™ and 7 > 0,
w® (y,7) = 7/ Bay(B) (T_l/ﬁy, 1>; (1.4)
b) w® (y,7) is radial with respect to y € R™ and positive provided that
0<pB<2;
¢) If B > 0 is an even integer, then w'®)(y, 1) is infinitely smooth and rapidly

decreasing. If B # 2,4,6, ... then w'®(y, 1) has the following behavior when

ly| — oo:
wP (y,1) = caly| P (1 + o(1)); (1.5)

d) For all 7> 0 and 8 > 0,

w® (y, 7)dy = 1. (1.6)

R
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For f € L,(R™*!) we set

oo

1/p
Ipr=< /] |f<x,t>|f’dxdt> <p<oo |flle = vrai sup |f(a 1)

—o0 R™

We also need the following classes of smooth functions:

Ay ={f € La®") : ||f(w =yt = 7) = f(a, )| < p(lyl® + 7)) (L.7)

where u(r), r > 0 is a function of type of modulus of continuity. In the case of
wu(r) = cr?, 0 <y <1, the class (1.7) will be called as bi-parametric Lipschitz
class, depending on the parameters v and 5.

Throughout the paper, the letters ¢, c1,ca,... and ¢(0,8), c1(9,B), c2(d, 5),
are used for constants (¢;(d,8), ¢ = 1,2, ... depends on the parameters § and ).
We write “p(a) = O(¥(a)), @ = 017, if [p(a)| < c|ip(a)| as o — 0.

2. Formulation and proofs of the main results

Theorem 2.1. Let f € L,(R"™), 1 < p < o00,0 < 3 <2, and bi-parametric
family of operators Aj be defined as (1.1).
a) If the limit
lim f(y,7)=L, —o00o<L <00,
(y,7) = (=,t)
exists at a point (x,t) € R*"!, then lim,_,o+ (A f)(z,t) = L. In particular,
if f is continuous at a point (x,t), then

lim (A3 f)(z,t) = f(x,t).

a—0t

b) Let f € L,NCy, where Cy = Co(R™*1) is the class of continuous functions f,
for which lim|,| o f(z) = 0. Then the convergence lim, ,o+ AGf = f is

uniform on R*H. If f € L,NC, the convergence is uniform on any compact
K Cc R*HL,

PROOF. a) Firstly, it should be pointed out that the statement of the theorem
is true also for complex-valued functions because of the linearity of operators Af.
Now, let —oo < L < oo. The positivity of w®) (y,7) for 0 < 8 < 2 and the

equalities
o0

/w(ﬁ)(y,T)dy =1 and /T%_le*TdT =TI'(a/p),

R 0
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yield that
s
|( f)(l' t) ( ,7‘)|f(g;7y,t,7-)7Lef‘r|dy dr
0 |y|<s1/8
s
* ) / 7510 (y, )@ — y,t — ) — Le"|dy dr
0 Jy|=81/#
L [ [ e s N
+F(a/5) !RZM wP (y, 7)|f(x —y,t —7) — Le™ 7 |dy dr
EZl( )—‘1-22( —l—’ig(a). (2.1)

The choice of parameter § > 0 is at our disposal. Given £ > 0, we choose § > 0
such that

lf(x —y,t—7)—L|<e and |1—e7|<e (2.2)

for all |y| < 6'/# and 0 < 7 < §. Then we have

TE r—y,t—7)— Ll|dy dr
fa/ﬁ// =t —7) — Lidy
O‘y|<§l/ﬁ
|L‘ / / Y1 —e M w® (y,7)dy dr
0 Jyl<sr/8

P
(1+ L)) a1 8)
<e T(a/B) 0/7' dTRZw (y,7)dy

(6) £+ |LI) goys _ (14 |LDE”

LE — (2.3)
ar(4) r(1+9%)
Further,
1 )
is(a) < 75 1w ) fle —y, t —7)|dy dr
@) < a7 | (0.7~ .t = )ldy
0 |y|>51/4

5
L] 510 ®) (4. Py dr = i (a) + i (o
+F(a/ﬂ)0/ / (y,7)dy dr =i5(a) +iz(a).  (2.4)

ly|>a1/8
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The application of Holder’s inequality gives

IIfH T
ih(a) < 2/ 1le ( / / (5 1w®(y )]pdyd7'>
0 |y|>51/8
1l (7 K
() E / / T B0/ By B) (7= VBy 1) dy dr
F(a/ﬂ)( [ ( Y, )] Y
0 |y|>51/8

(we set y = T, dy = T5dz)

h 1/p'
— ||fHP (gflfﬂ)pq»ﬂ (8) o
I(a/5) (/ [ A WO ) dsdr

0 |2]>(&)1/8

) 1/p'
9 A 151 s
< ) 5 BIP 8 dr / 2|~ (AP g
Ma/5) \J g

21> (2)1/8

1/p'
_ 02(67 ﬁ)”f”p T(%_l_%)pl+%T(%+1)p,_%dT
[(a/B)
)

Yo < c4(6.8) o

[(e/B)  —

)
/
) /p’
_ 02(576 Hf”p (/Tgp'm_)l P . cg(&ﬁ)”f“p
0

as o — 0T. Similarly,

)
L (3
B < g [ [ e rdvar
® i
|L\ §-Ly(B)( 2
T8 (2, 1)dzdr < ¢5(0, B)|L)c.
0 |z[>(2)/8

Now, using (2.5) and (2.6) in (2.4) we have

iz(a) < (0, B) (I fllp + [L))a,  as @ — 0.

131

(2.5)

(2.6)
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Let us estimate i3(«). By using Holder inequality, we have

/Ooe / ®)(y, 7)dy
5

R™

1/p’
[l et e )
+F(a/ﬂ)(ﬁ/ﬂg( (7)) dyd) =d3(a) +i5(a).  (2.8)

By (1.6) it yields that

is(a) < c6(d, B)|L|a (2.9)

Using (1.4) and changing variables as y = T%Z, and then taking into account the
estimate (1.5), we have

0 1/p
#(0) < W( / <)d> <es(6 Al (210)
é

for o < %(% + 1)
Therefore,
is(c) < co(0, B)(||1 fllp + | L), as a—0. (2.11)

Now, substituting (2.3), (2.7) and (2.11) in (2.1), we obtain

(14 |L|)s/?

(437 @t) — Ll < e p s

@B fllp + Ve, (a<1). (2.12)

Since € > 0 is arbitrary, the last estimate yields that
lim [(AZf)(z,t) — L] = 0.
a—0

Let now lim(y )z f(y,7) = 400 (the case of L = —oo is investigated in a
similar way). For a given M > 0 there exists § > 0 such that f(z —y,t —7) > M,
for [y| < 6%/# and 0 < 7 < 4.

We have

>

(Aﬁf)(x t 1w(B) (:l/7 T)f(m - Y, t— T)dydT

w® (y, 7)f(z —y,t — 7)dydr

0 |y|>s1/8



On approximation properties of bi-parametric parabolic type potentials 133

a/ﬁ // ,7) [z =y, t — 7)dydT

= j1(@) + ja(@) + ja(a).

/ / a1 ('6) (y, 7)dydr

0 |y|<st/8

Further,

J(a Z

we use (1.4) and set y = T%Z)

_ a/ﬁ / //:z« (z 1)dsz>F(M/B)jT%—1dT / w'? (z,1)dz

0 |z<(2)t |z[<1
a/B
=c— Ma /B = C%M (2.13)
ar(4) r(1+%)
It is not difficult to see that (cf. (2.7) and (2.11)
2(e)] < e6 (8, B) (I fllp + Ve, lis(@)] < eo(@,B) (I fllp + D). (2.14)
Using (2.13) and (2.14) we have
§5o/B

(A5f)(z,t) > c M —c5(8,8)(Ilfllp + 1) — (8, 8) (| fllp + 1) e,

r(1+%)
and therefore,
lim inf (A% t) > cM.
iminf(A5f)(z,t) 2 ¢
Since M > 0 is arbitrary, it follows lim, o+ (Aj f)(2,t) = oo
b) Let f € L, N Cy. Given € > 0, we choose a parameter 6 > 0 such that

sup  |f(z—y,t—7)— f(z,t)]<e and (1—e7)<e (2.15)
(z,t)eR™+1

for all |y| <67 and 0 < 7 < 4.
Now, setting L = f(x,t) in (2.1), and using (2.3), (2.7), (2.11) and (2.15),
we have
5o/

i:(f;j}gj +¢(8, B) (1 + || flloo v

[AZf = flloo < €1+ [ fll0)

The latter estimate implies lim,,_,q+ HAgf — flleo = 0. 0
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Remark 2.2. By using the estimate

[AGfllp < cllfllp, 1<p<oo (2.16)

and equality (cf. (2.1))

gf(w,t) =L

§
! 5 LB (0 V(e — vt — 1) — .
F(a/ﬂ)o/ / (y,7)(f(x —y,t — 1) — L)dyd

lyl <81/

)
# 6_7—7’%711[}(6) - T — _— -
T T@/B / / (y, 7)(f(x —y,t —7) — L)dyd

0 |y|>s1/7
+ m !R[ 6777%_1w(ﬁ) (va)(f(I —y,t— 7‘) — L)dydT, (217)

in complete analogy to Theorem 2.1 the following theorem can be proved.
Theorem 2.3. Let f € L,(R"™!), 1 < p < oo, and the operator AG be
defined by (1.2). Then,

a) If the limit lim(y -y (z¢ f(y,7) = L exists, at a point (z,t) € R™ 1! then
lim, 0+ (AG f)(2,t) = L. In particular, if f is continuous at a point (,1),
then lim, o+ (AG f)(z,t) = f(x,1).

b) Let f € L, N Co. Then the convergence lim, o+ A§f = f is uniform on
R If f € L,NC, the convergence is uniform on any compact K C R"*1,

) If f € Ly(R"), 1 < p < oo, then limg_o+ [|AGf — fll, = 0.

The next theorem gives an estimation of an error of approximation of func-
tions f € A, by the families A§f and A§f as o — 0F.
Theorem 2.4. Let the operator P§ be either Aj or Ag, a > 0.

a) Suppose that f € L, N A,, where 1 < p < oo and pu(s), s > 0, is a function
of type of modulus of continuity which satisfies the condition

T

1

/ ) lnl dr < oo. (2.18)
T

0

If 0 < B <2, then

|P§f = fllo=0(1)a asa—0".
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In particular, for Lipschitz functions (i.e., for f € A, NL,, where ji(s) = cs7,
0 << 1) we have

|P§f = fllo=0(1)a asa—0".
b) Let f € L, N Ay, where u(s) = cs*|logs]”, 0 <X <1 and v > 0. Then
|P§f— fllo=0(1)a asa—0".

PROOF. We only prove the case when Pg = Aj. The case of P§’ = AF may
be proved by the same way.

a) Let f € L,NA,, where A, is defined by (1.7). Setting L = f(x,t)
in (2.1), we get

(A5 f)(@,t) — f(z, )] <id1(a) +i2(a) +i5(a). (2.19)
In a complete analogy with (2.7) and (2.11), it follows that
ia(a) < (6, B)(If1lp + 1 flloc)r, is(a) < (6 B)Ifllp + 1flloc)e.  (2.20)

Let us estimate 41 («). We have

o
i1 (o o 75 LB (y, )| flx —y,t —7) — e T f(x T
@< o | / (. P — gt =) = " (o 1)l dyd

lyl<d?

)
! §—1,(8) ) i
SF(&/B)! / T oDy )| f (e =yt =) = f () sedyd

lyl<s®
)
0 lyl<6®
e ) (2.21)

Since,

/ w® (y, 7)dy < /w(ﬁ)(yﬁ)dy =1,

1 R
lyl<s?

it follows that

(@) < (0. P = G A o (222)
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On the other hand,

5
i(@) < 75w (y, m)u(ly|? + 7)dydr
& lyl<s®
5
BBy B (7 5y, Du(ly|® + 7)dydr
g lyl<s®

(we set y = TF2, dy =77dz)

- a/ﬁ / / (2, 1)pu(r(|2|® + 1)) dzdr.

0 Jz|<(£)L1/5
Since pu(s) is a function of type of modulus of continuity, we have
p(r(121” +1)) < (217 + 2)p(7).

Therefore, for 0 < § < 1 we have
)

1 o
i (a) < Wo/w—lum<| | (Z) ) w'®(z,1)(|z)? +2)dz>d7.
z|< - 1
Since

/ w®(2,1) (2] +2)dz = ¢1(6, B) < 00
|z]<1
it follows that

[ w0 o= [ we el + 2

j21<(2)1/ =<1
+ / w® (2,1)(|2]° + 2)dz = ¢1(5, B) + / w?® (2, 1)(|2)" + 2)dz,
1<|z|<(2)1/8 1<z <(2)1/5

and therefore,

“u(r)

m\p

o
/T
0

o
1 -1 ®) E >
+ 75 u(r) w'?(z,1)(|z]° 4+ 2)dz |dr. (2.23)
ol

1<]z|<(£)1/8




On approximation properties of bi-parametric parabolic type potentials 137
Further,

[ O +e S w6 [ R 2

1<|z|<(£)1/8 1<]z|<(£)1/8

< c3(4,8) / [2|7"dz = c4(6, B) In (i) , (0< 7<)

1<|z]<(2)1/8

Using this in (2.23), for & — 07 we have

IN

b
. a_q o
i1 (@) T(a/5) /Tﬁ w(7) In dT
0
(), 0 (219

In ;dT < (0, B)a (2.24)

IN

The estimates (2.21), (2.22) and (2.24) yield that

in(@) <70, B) (| flloe + 1) (2.25)

Finally, from (2.20) and (2.25) it follows that
IAZf = fllso < es(8, B)(Ifllp + [Iflloc + D)ex, s o — 0.

b) By taking into account (2.21), we have

75 Oy, )| f (= y,t = 7) = fla,0) ]| sodydr

~.
N
|||

0 |y|<s1/8

IN

)
C o
ﬂ%/ /‘Tﬁlwmwmxmﬂ+ﬂﬂbamﬂ+ﬂmmm

0 |ly|<§t/8

1 n
(we assume 0 < § < — and set y = T%Z7 dy =717dz)
e

5
< ¢ /TE*H’\llogT\v/w(ﬁ)(z,1)(|z|ﬁ +1)* (1 + 0g(|z|—&|—)> dzdr.
0

|log T
R’VL
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Since 0 <7 <8< 1 wehave ;<1 and therefore, by (1.5)

\log‘r
(6,8) )
-/ 1 L 14X
< 8 1 7d
i) < o] / [log 7["dr

/ 21778 (1] + 1) (1 + log(|2] + 1))dz

|2[>1
(6.8 |
€219 —14x 2! / —n—B+BA v
< T log 7|7dT z log |2])7dz. 2.26
‘FW)O/ gt | (log |=) (2:26)

Since A > 0, the first integral is finite for all v > 0.
Let us estimate the second integral. We have

|2| 7P+ (log |2])Vdz = es(6, B) /rﬁ()‘ D=1 (log r)Ydr.
1

|z1=1

Since 0 < A < 1, the latter integral is finite for all v > 0. Now it follows from
(2.26) that

it (a) < cs(6,B)a, asa—0F. (2.27)
Finally, the desired result follows from (2.19), (2.20), (2.21) and (2.27). O
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