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A new construction for abundant semigroups
with multiplicative quasi-adequate transversals

By XIANGJUN KONG (Lanzhou) and PEI WANG (Qufu)

Abstract. In any abundant semigroup with a quasi-adequate transversal, we de-

fine two sets R and L and give some properties and characterizations associated with

them. Then we give a structure theorem for abundant semigroups with multiplicative

quasi-adequate transversals by means of two quasi-adequate semigroups R and L.

1. Introduction

The concept of an inverse transversal of a regular semigroup was first intro-

duced by Blyth and McFadden in 1982 [1]. Since then, this class of regular

semigroups has attracted several authors’ attention and a series of important

results have been obtained ([1], [13] and its references). If S is a regular se-

migroup, then an inverse transversal of S is an inverse subsemigroup So such

that So meets V (a) precisely once for each a ∈ S (that is, |V (a) ∩ So| = 1),

where V (a) = {x ∈ S | axa = a and xax = x} denotes the set of inverses of a.

Blyth and McFadden in [1] gave a structure theorem for regular semigroups

with multiplicative inverse transversals. Orthodox transversals were introduced

by Chen [2] as a generalization of inverse transversals, and a structure theorem

for regular semigroups with quasi-ideal orthodox transversals was given. In [8]

and [10], Kong also gave two structure theorems for this class of regular semigro-

ups by means of a formal set (B,R) and a like-spined product (R,L) respectively.
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An analogue of an inverse transversal, which is termed an adequate trans-

versal, was introduced for abundant semigroups by El-Qallali [4]. In [4], El-

Qallali constructed abundant semigroups with multiplicative type-A transvers-

als. Afterwards, Kong [11] considered some properties associated with adequate

transversals and [9] gave a construction of abundant semigroups with quasi-ideal

adequate transversals by a like-spined product (R,L). Quasi-adequate transvers-

als, as a common generalization of orthodox transversals and adequate transvers-

als, were introduced by Ni in [12]. And in [12], Ni gave a structure theorem for

abundant semigroups with multiplicative quasi-adequate transversals by a QA-

system. The aim of this paper is to get a construction for this class of abundant

semigroups by the method used in [9] and [10], that is by a like-spined product

(R,L). As a consequence, it will be rather difficult to describe the three relations

R∗, L∗ and δ by two components K(x) and L∗
a.

In order to overcome the above difficulty we introduce a new relation K by

(a, b) ∈ K if R∗
a = R∗

b and δ(a) = δ(b) in quasi-adequate semigroups. By the

set (R,L) and the new defined relation K, a structure theorem for abundant

semigroups with multiplicative quasi-adequate transversals is obtained in this

paper.

On a semigroup S the relation L∗ is defined by the rule that aL∗b if and only

if the elements a, b of S are related by Green’s relation L in some oversemigroup

of S. The relation R∗ is dually defined. Evidently, L∗ is a right congruence

and R∗ is a left congruence and L ⊆ L∗, R ⊆ R∗. If a, b are regular elements

of S, then aL∗b (aR∗b) if and only if aLb (aRb), what is more, if S is a regular

semigroup, then L∗ = L and R∗ = R. A semigroup in which each L∗-class and

each R∗-class contains at least one idempotent is called abundant. An abundant

semigroup S is called quasi − adequate if its idempotents form a subsemigroup.

An adequate semigroup is a quasi-adequate semigroup in which the idempotents

commute. We list some basic results as follows which are frequently used in this

paper. The following Lemma is due to Fountain [6] which providing an alternative

description for L∗(R∗).

Lemma 1.1 ([6]). Let S be a semigroup and a, b ∈ S. Then the following

conditions are equivalent:

(1) aL∗b (aR∗b);

(2) For all x, y ∈ S1, ax = ay (xa = ya) if and only if bx = by (xb = yb).

As an easy but useful consequence of (2) we have

Corollary 1.2. Let a be an element of a semigroup S and e be an idempotent

of S. Then the following conditions are equivalent:
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(1) aL∗e (aR∗e);

(2) a = ae (ea = a) and for all x, y ∈ S1, ax = ay (xa = ya) implies ex = ey

(xe = ye).

Lemma 1.3 ([4]). Let S be an abundant semigroup with the set of idempo-

tents E and x, y ∈ S. If there exist e, f ∈ E such that x = eyf and eLy+, fRy∗

for some y+, y∗ ∈ E, then eR∗x and fL∗x.

Let S be a quasi-adequate semigroup with the band of idempotents B. For

e ∈ B, denote by E(e) the J -class of B containing e. It is known that E(e) is

a rectangular subband of B and E(e) = V (e), the set of inverses of e in B (for

detail, see [7]). Define a relation δ on S by: for a, b ∈ S,

aδb ⇐⇒ E(a+)aE(a∗) = E(b+)bE(b∗) for some a+, a∗, b+, b∗.

It follows from [5] that δ is an equivalence relation which contained in any ade-

quate congruence on S. In particular, if S is an orthodox semigroup, then δ is

the least inverse congruence on S. Consequently, δ ∩ (B × B) = J B is the least

semilattice congruence on B.

Lemma 1.4 ([5]). Let S be a quasi-adequate semigroup with the band of

idempotents B and a, b ∈ S. Then

(1) δ(a) = E(a+)aE(a∗);

(2) aδb ⇐⇒ b = eaf for some e ∈ E(a+), f ∈ E(a∗);

(3) H∗ ∩ δ = l.

For any quasi-adequate semigroup S, the result in Lemma 1.3 can be gene-

ralized.

Lemma 1.5 ([12]). Let S be a quasi-adequate semigroup with the band

of idempotents E and x, y ∈ S. If there exist e, f ∈ E such that x = eyf and

e ∈ E(y+), f ∈ E(y∗) for some y+, y∗ ∈ E, then eR∗x and fL∗x.

Let S be an abundant semigroup and U an abundant subsemigroup of S,

U is called a ∗-subsemigroup of S if for any a ∈ U , there exist an idempotent

e ∈ L∗
a(S) ∩ U and an idempotent f ∈ R∗

a(S) ∩ U . As pointed out in [5], an

abundant subsemigroup U of an abundant semigroup S is a ∗-subsemigroup of S

if and only if L∗(U) = L∗(S) ∩ (U × U) and R∗(U) = R∗(S) ∩ (U × U).

Let So be an abundant ∗-subsemigroup of S and Eo be the set of idempotents

of So. So is called an abundant transversal [12] of S if for any x ∈ S, there
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exist xo ∈ So, i, λ ∈ E such that x = ixoλ, where iL∗xo+, λR∗xo∗ for some

xo+, xo∗ ∈ Eo. In this case, let

CSo(x) = {xo ∈ So | x = ixoλ, iLxo+, λRxo∗ for some xo+, xo∗ ∈ Eo},
Ix = {i ∈ E | (∃xo ∈ CSo(x)) x = ixoλ, iLxo+, λRxo∗ for some xo+, xo∗ ∈ Eo},
Λx = {λ ∈ E | (∃xo ∈ CSo(x)) x = ixoλ, iLxo+, λRxo∗ for some xo+, xo∗ ∈ Eo},

I =
⋃

x∈S

Ix, Λ =
⋃

x∈S

Λx.

Let S be an abundant semigroup with the set of idempotents E and So a

quasi-adequate ∗-subsemigroup of S with the set of idempotents Eo. So is called

a quasi− adequate transversal of S if

(QA1) (∀x ∈ S) CSo(x) 6= ∅,
(QA2) (∀e ∈ E) (∀g ∈ Eo),

CSo(e)CSo(g) ⊆ CSo(ge) and CSo(g)CSo(e) ⊆ CSo(eg).

A quasi-adequate transversal So is called a multiplicative quasi-adequate

transversal of S if the following condition is satisfied

(M) (∀x, y ∈ S) ΛxIy ⊆ Eo.

A subsemigroup So of S is called a quasi-ideal of S if SoSSo ⊆ So.

Lemma 1.6. [12] Let S be an abundant semigroup with a multiplicative

quasi-adequate transversal So. Then

(1) IEo ⊆ I and EoΛ ⊆ Λ;

(2) I and Λ are subbands of S;

(3) EoI ⊆ Eo and ΛEo ⊆ Eo;

(4) If x ∈ E, then CSo(x) ⊆ Eo.

The following theorem will be used without further mention.

Lemma 1.7. (1) Let e and f be D-equivalent idempotents of a semigroup S.

Then each element a of Re ∩ Lf has a unique inverse a′ in Rf ∩ Le, such that

aa′ = e and a′a = f ;

(2) Let a, b be elements of a semigroup S. Then ab ∈ Ra ∩ Lb if and only if

La ∩Rb contains an idempotent.
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2. Some properties

The objective in this section is to introduce and investigate some elementary

properties of the sets R and L and their sets of idempotents. It is known that

R and L play an important role in the study of regular semigroups with both

inverse transversals and orthodox transversals. For any result concerning R there

is a dual result for L which we list but omit its proof.

Lemma 2.1. Let S be an abundant semigroup with a quasi-adequate trans-

versal So. Then

(1) I = {e ∈ E : (∃e∗ ∈ Eo) eLe∗} and Λ = {f ∈ E : (∃f+ ∈ Eo) fRf+};
(2) I ∩ Λ = Eo.

Proof. (1). If e ∈ I, then there exists x ∈ S such that ix = e and ixLxo+

for some xo+ ∈ Eo. Conversely, if e ∈ E and there exists e∗ ∈ Eo such that eLe∗,
then e = ee∗e∗ and this implies that e = ie ∈ I. The result for Λ can be proved

dually.

(2). It follows from (1) that Eo ⊆ I ∩ Λ. Let e ∈ I ∩ Λ, then there exist

e+, e∗ ∈ Eo such that e+ReLe∗. So e+e∗, e∗e+ ∈ Eo since So is quasi-adequate.

It follows from Lemma 1.7 that e = e+e∗ ∈ Eo. ¤

Proposition 2.2. Let So be a quasi-adequate transversal of an abundant

semigroup S. Then D∗So

= D∗S ∩ (So × So).

Proof. Let a, b ∈ So and aD∗Sb, then R∗
a ∩ L∗

b 6= ∅. Take c ∈ R∗
a ∩ L∗

b .

Since a, b ∈ So and So is quasi-adequate, there exist a+, b∗ ∈ Eo such that

a+R∗aR∗cL∗bL∗b∗. From the definition of a quasi-adequate transversal, c =

icc
oλc, where icLco+, λcRco∗ for some co+, co∗ ∈ Eo and icR∗cL∗λc. Thus

a+R∗cR∗icLco+ and so by Lemma 2.1, ic ∈ I∩Λ = Eo. Similarly, co∗RλcL∗cL∗b
and so λc ∈ Eo. Consequently,

c = icc
oλc ∈ Eo · So · Eo ⊆ So.

So aD∗So

b, and hence D∗So ⊇ D∗S ∩ (So × So). The reverse inclusion is obvious.

¤

Proposition 2.3. Let So be a quasi-adequate transversal of an abundant

semigroup S. Then for every regular element x of S, x has an inverse xo in So.

In this case, VSo(xo) ⊆ CSo(x).

Proof. For every regular element x, x= ixx
oλx for some ix∈ Ix, x

o∈CSo(x),

λx ∈ Λx, where ixLxo+, λxRxo∗ for some xo+, xo∗ ∈ Eo. Since x, ix and λx are
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all regular, from ixR∗xL∗λx we deduce that ixRxLλx, so by Lemma 1.7 x has

an inverse x′ in Rλx ∩Lix . Thus x
o∗RλxRx′LixLxo+ and so by Proposition 2.2,

x′ ∈ So. ¤
Proposition 2.4. Suppose that S is an abundant semigroup with a quasi-

adequate transversal So. Let

R = {x ∈ S : (∃λx ∈ Λx) λx ∈ Eo} and L = {a ∈ S : (∃ia ∈ Ia) ia ∈ Eo}.
Then

R = {x ∈ S : (∃l ∈ Eo) xL∗l} and L = {a ∈ S : (∃h ∈ Eo) aR∗h}.
Consequently, R ∩ L = So, E(R) = I and E(L) = Λ.

Proof. It is clear that if x ∈ R, there exists l = λx ∈ Eo such that xL∗λx.

Conversely, for x ∈ S if there exists l ∈ Eo such that xL∗l, then λxL∗xL∗l.
Hence by Lemma 2.1, λx ∈ I. Therefore λx ∈ I ∩ Λ = Eo.

It is evident that if there exists λx ∈ Λx such that λx ∈ Eo (ia ∈ Ia such

that ia ∈ Eo), then Λx ⊆ Eo (Ia ⊆ Eo). ¤
Proposition 2.5. Let S be an abundant semigroup with a quasi-adequate

transversal So. If So is a right ideal of S, then Λx ⊆ Eo for every x ∈ S and

E = I.

Dually, if So is a left ideal of S, then Ia ⊆ Eo for every a ∈ S and E = Λ.

Proof. By the definition of a quasi-adequate transversal, for every x ∈ S,

λx ∈ Λx, x = ixx
oλx for some ix ∈ Ix, xo ∈ CSo(x) and ixLxo+, λxRxo∗ for some

xo+, xo∗ ∈ Eo. Since So is a right ideal of S, λx = xo∗λx ∈ So and consequently

Λx ⊆ So ∩ E = Eo.

Let h ∈ E, then h ∈ ihh
oλh for some ih ∈ Ih, h

o ∈ CSo(h), λh ∈ Λh where

λh ∈ Eo and λhLh. Thus h ∈ R ∩ E = E(R) = I by Proposition 2.4. ¤
Proposition 2.6. Let So be a quasi-adequate transversal of an abundant

semigroup S. Then the following statements are equivalent:

(1) So is a quasi-ideal of S;

(2) ΛI ⊆ So;

(3) SSo ⊆ R,SoS ⊆ L;

(4) R is a left ideal and L is a right ideal of S.

Proof. (1) and (2) are equivalent can be proved similarly as in [3].

(1) =⇒ (3). If (1) holds, then for any y ∈ S, xo ∈ So, we have

yxo = iy · yoλy · xoL∗yo+yoλyx
o = yoλyx

oL∗(yoλyx
o)∗ ∈ Eo,

since yoλyx
o ∈ SoSSo ⊆ So. Hence SSo ⊆ R. Dually SoS ⊆ L.
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(3) =⇒ (4). If (3) holds, then for any x ∈ S and y ∈ R, there exists h ∈ Eo

such that yL∗h, thus we have xy = xyh ∈ SSo ⊆ R, whence SR ⊆ R; and dually

LS ⊆ L.

(4) =⇒ (2). If (4) holds, then for any f ∈ Λ and e ∈ I, there exist h, l ∈ Eo

such that hRf and lLe. So we have

fe = fel ∈ SSo ⊆ SR ⊆ R and fe = hfe ∈ SoS ⊆ LS ⊆ L.

Consequently fe ∈ R ∩ L = So and we have (2). ¤

Remark 1. Since both a left ideal and a right ideal are subsemigroups, if one

of the conditions in Proposition 2.6 is satisfied, then R and L are subsemigroups.

From Proposition 2.6, it is evident that if So is a multiplicative quasi-adequate

transversal of S, then So is a quasi-ideal of S. Obviously, if S is quasi-adequate

then the quasi-adequate transversal So is multiplicative if and only if So is a

quasi-ideal of S.

Proposition 2.7. Suppose that S is an abundant semigroup with a multip-

licative quasi-adequate transversal So. Let R and L be described as in Propo-

sition 2.4. Then R and L are quasi-adequate semigroups with a common quasi-

adequate transversal So which is a right ideal of R and a left ideal of L.

Proof. From Remark1 it is evident that R is a subsemigroup of S.

Since So is also a quasi-adequate transversal of R and R ⊆ S, So is a

multiplicative quasi-adequate transversal of R. Let x ∈ R and yo ∈ So, then

yox = yoxλx ∈ So for some λx ∈ Eo since So is a quasi-ideal of S. Thus So is

a right ideal of R. Consequently by Proposition 2.4 and Lemma 1.6, E(R) = I

is a band, and thus R is quasi-adequate. The dual results for L can be proved

similarly. ¤

3. The main theorem

The main objective in this section is to give a structure theorem for abundant

semigroups with multiplicative quasi-adequate transversals. In what follows R

denotes an abundant semigroup with a multiplicative quasi-adequate transversal

So which is a right ideal of R. Then by Proposition 2.5, Λx ⊆ Eo for every x ∈ S

and E(R) = I, it follows that R is a quasi-adequate semigroup with a right ideal

quasi-adequate transversal So. For a ∈ R, the R∗-class of R containing a will be

denoted by R∗
a and the δ-class containing a will be denoted by δ(a). We define



148 Xiangjun Kong and Pei Wang

K(a) = K(b) if R∗
a = R∗

b and δ(a) = δ(b) for a, b ∈ R and define a relation K on R

by (a, b) ∈ K if K(a) = K(b). Then K is an equivalence relation on R. L denotes

an abundant semigroup with a multiplicative quasi-adequate transversal So which

is a left ideal of L. Then L is quasi-adequate with Ia ⊆ Eo for every a ∈ S and

E(L) = Λ.

Theorem 3.1. Let R and L be quasi-adequate semigroups with a common

quasi-adequate transversal So. Suppose that So is a right ideal of R and a left

ideal of L. Let L × R −→ So described by (a, x) 7−→ a ∗ x be a mapping such

that for any x, y ∈ R and for any a, b ∈ L:

(1) if x ∈ E(R) and a ∈ E(L), then a ∗ x ∈ E(So) = Eo;

(2) (a ∗ x)y = a ∗ (xy) and b(a ∗ x) = (ba) ∗ x;
(3) if {x, a} ∩ Eo 6= ∅, then a ∗ x = ax;

(4) For any b1, b2 ∈ L1, y1, y2 ∈ R1, if x1R∗x2 in R, then y1(b1 ∗x1) = y2(b2 ∗x1)

if and only if y1(b1 ∗ x2) = y2(b2 ∗ x2); if a1L∗a2 in L, then (a1 ∗ y1)b1 =

(a1 ∗ y2)b2 if and only if (a2 ∗ y1)b1 = (a2 ∗ y2)b2.
Define a multiplication on the set

Γ ≡ R/K| × |L/L∗ = {(K(x), L∗
a) ∈ R/K × L/L∗ : CSo(x) ∩ CSo(a) 6= ∅}

by
(K(x), L∗

a)(K(y), L∗
b) = (K(ix(a ∗ y)), L∗

(a∗y)λb
).

Then Γ is an abundant semigroup with a multiplicative quasi-adequate transversal

which is isomorphic to So.

Conversely, every abundant semigroup with a multiplicative quasi-adequate

transversal can be constructed in this way.

Lemma 3.2. The multiplication on Γ is well-defined.

Proof. First it is easy to see that (K(ix(a ∗ y)), L∗
(a∗y)λb

) ∈ Γ, since

ix(a ∗ y) = ixx
o(λa ∗ iy)yoλy = ix[x

o(λa ∗ iy)]+ · xo(λa ∗ iy)yo · [(λa ∗ iy)yo]∗λy

and

(a ∗ y)λb = ia · xo(λa ∗ iy)yoλb = ia[x
o(λa ∗ iy)]+ · xo(λa ∗ iy)yo · [(λa ∗ iy)yo]∗λb.

Let ix, i
′
x ∈ Ix, where ixLxo+, i′xLxo+′

for some xo ∈ CSo(x)∩CSo(a). Then

R∗
ix(a∗y) = R∗

i′x(a∗y) and δ(ix(a ∗ y)) = δ(i′x(a ∗ y)), and hence the multiplication

on Γ is not dependent on the choice of ix. There is a dual result for λb.
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We then prove that if (K(x), L∗
a) ∈ Γ, then ix · a = x · λa. In fact, if

(K(x), L∗
a) ∈ Γ, then there exists xo ∈ CSo(x) ∩ CSo(a) such that x = ixx

oλx,

ixLxo+, λxRxo∗ for some xo+, xo∗ ∈ Eo and a = iax
oλa, iaLxo+′

, λaRxo∗′ for

some xo+′
, xo∗′ ∈ Eo. Thus ixa = ixiax

oλa = ixia · xo · xo∗λa and xλa =

ixx
oλxλa = ixx

o+′ · xo · λxλa. It is easy to check that ixia = ixx
o+′

and xo∗λa =

λxλa and so ixa = xλa.

Next we prove that if (K(x), L∗
a) and (K(x′), L∗

a′) in Γ are such that

(K(x), L∗
a) = (K(x′), L∗

a′), then ixa = ix′a′. From xR∗x′ and xδx′ we deduce that
there exists h ∈ E(x∗) such that x′ = xh. Moreover, hL∗x′. Thus xλa = ixx

oλxλa

and x′λa′ = xhλa′ = ixx
oλxhλa′ . Since x ∈ R we have λx ∈ Eo and consequently

λxhλa′ ∈ EoIΛ ⊆ EoΛ ⊆ Λ and λxλa ∈ EoΛ ⊆ Λ. It is easy to check that

λxhλa′ and λxλa are in the same H∗− class and hence λxhλa′ = λxλa. Therefore

xλa = x′λa′ and consequently ixa = ix′a′.
Finally we prove that the multiplication on Γ is not dependent on the choice

of x, a, y and b. Let

(K(x), L∗
a) = (K(x′), L∗

a′) and (K(y), L∗
b) = (K(y′), L∗

b′).

We have

(K(x), L∗
a)(K(y), L∗

b) = (K(ix(a ∗ y)), L∗
(a∗y)λb

)

and

(K(x′), L∗
a′)(K(y′), L∗

b′) = (K(ix′(a′ ∗ y′)), L∗
(a′∗y′)λb′

).

We now prove that δ(ix(a ∗ y)) = δ(ix′(a′ ∗ y′)). Since δ(x) = δ(x′) and

δ(y) = δ(y′), from Lemma 1.4, we have x = kx′l for some k ∈ E(x′+), l ∈ E(x′∗)
and y = py′q for some p ∈ E(y′+), q ∈ E(y′∗). Again by Lemma 1.4, kR∗x and

pR∗y and so kR∗x′ and pR∗y. Thus x = x′l and y = y′q. Consequently, similar

as the above proof, we can show that

ix(a ∗ y) = ix′(a′ ∗ y) = ix′(a′ ∗ y′)q = ix′(a′ ∗ y′)[ix′(a′∗y′)]
∗q

and

[ix′(a′ ∗ y′)]∗q ∈ E((ix′(a′ ∗ y′))∗)

It follows from Lemma 1.4 that δ(ix(a ∗ y)) = δ(ix′(a′ ∗ y′)).
We then show that ix(a ∗ y)R∗ix′(a′ ∗ y′). From the proof of δ(ix(a ∗ y)) =

δ(ix′(a′ ∗ y′)) we have ix(a ∗ y) = ix′(a′ ∗ y′)q. Similarly, we have ix′(a′ ∗ y′) =

ix(a ∗ y)q′ from some q′ ∈ E(y∗). Thus ix(a ∗ y)R∗ix′(a′ ∗ y′). Dually, we can

show that (a ∗ y)λbL∗(a′ ∗ y′)λb′ . ¤

Lemma 3.3. The set Γ is a semigroup.
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Proof. Let e, f, g ∈ Γ, where e = (K(x), L∗
a), f = (K(x1), L

∗
a1
), g =

(K(x2), L
∗
a2
). Then

(ef)g = (K(ix(a ∗ x1)), L
∗
(a∗x1)λa1

)(K(x2), L
∗
a2
)

= (K(iix(a∗x1)(((a ∗ x1)λa1
) ∗ x2)), L

∗
(((a∗x1)λa1 )∗x2)λa2

)

= (K(ix(a ∗ x1)
+(a ∗ x1)(λa1

∗ x2)), L
∗
(a∗x1)(λa1

∗x2)λa2
)

= (K(ix(a ∗ x1)(λa1
∗ x2)), L

∗
(a∗x1)(λa1

∗x2)λa2
).

On the other hand,

e(fg) = (K(x), L∗
a) (K(ix1

(a1 ∗ x2)), L
∗
(a1∗x2)λa2

)

= (K(ix(a ∗ (ix1(a1 ∗ x2))), L
∗
(a∗(ix1 (a1∗x2)))λa2

)

= (K(ix(a ∗ (x1(λa1 ∗ x2))), L
∗
(a∗(x1(λa1∗x2)))λa2

) (ix1a1 = x1λa1)

= (K(ix(a ∗ x1)(λa1 ∗ x2)), L
∗
(a∗x1)(λa1∗x2)λa2

).

Therefore (ef)g = e(fg). ¤

Lemma 3.4. Let (K(x), L∗
a) ∈ Γ. Then (K(x), L∗

a) ∈ E(Γ) if and only if

a ∗ x = iax(= aλx).

Proof. Since (K(x), L∗
a)(K(x), L∗

a) = (K(ix(a ∗ x)), L∗
(a∗x)λa

), it is easy to

check that if a ∗ x = ia · x = a · λx, then

(K(ix(a ∗ x)), L∗
(a∗x)λa

) = (K(ix · ia · x), L∗
aλxλa

) = (K(x), L∗
a).

Thus (K(x), L∗
a) ∈ E(Γ). Conversely, if (K(x), L∗

a) ∈ E(Γ), then K(ix(a ∗ x)) =
K(x) and so ix(a ∗ x)δx. Consequently, ix(a ∗ x) = kxl for some k ∈ E(x+) and

l ∈ E(x∗). It follows that

x = x+ · ix(a ∗ x) · x∗ = ix(a ∗ xx∗) = ix(a ∗ x).
Hence a ∗ x = iax. ¤

Lemma 3.5. Suppose that (K(x), L∗
a) ∈ Γ, denote u = (K(ix), L

∗
xo+) and

v = (K(xo∗), L∗
λa
), where x = ixx

oλx, a = iax
oλa and ixLxo+, λaRxo∗ for some

xo+, xo∗ ∈ Eo. Then u, v ∈ E(Γ) and uR∗(K(x), L∗
a)L∗v.

Proof. By Lemma 3.4, u, v ∈ E(Γ) is clear. Computing

(K(ix), L
∗
xo+)(K(x), L∗

a) = (K(ix(x
o+ ∗ x)), L∗

(xo+∗x)λa
)

= (K(ixx
o+x), L∗

xo+xλa
) (since xo+ ∈ Eo)

= (K(x), L∗
xoλa

)

= (K(x), L∗
a). (since xoλaL∗iaxoλa = a).
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Suppose that (K(y), L∗
b), (K(z), L∗

c) ∈ Γ1 are such that

(K(y), L∗
b)(K(x), L∗

a) = (K(z), L∗
c)(K(x), L∗

a).

This implies that

(K(iy(b ∗ x)), L∗
(b∗x)λa

) = (K(iz(c ∗ x)), L∗
(c∗x)λa

).

That is

iy(b ∗ x)R∗iz(c ∗ x), iy(b ∗ x)δiz(c ∗ x) and (b ∗ x)λaL∗(c ∗ x)λa.

From (b∗x)λaL∗(c∗x)λa, we have (b∗x)λaλxL∗(c∗x)λaλx and thus (b∗x)L∗(c∗x).
Consequently, iy(b ∗ x)L∗iz(c ∗ x) since ibiyib = ib and icizic = ic. Hence

(iy(b ∗ x), iz(c ∗ x)) ∈ R∗ ∩ L∗ ∩ δ = H∗ ∩ δ = l.

That is iy(b ∗ x) = iz(c ∗ x). From xR∗ix and (4) we deduce that iy(b ∗ ix) =

iz(c ∗ ix). Thus
b ∗ ix = ib(b ∗ ix)L∗iyib(b ∗ ix) = izic(c ∗ ix)L∗ic(c ∗ ix) = c ∗ ix.

Therefore

(K(y), L∗
b)(K(ix), L

∗
xo+) = (K(iy(b ∗ ix)), L∗

(b∗ix)xo+) = (K(iz(c ∗ ix)), L∗
(c∗ix)xo+)

= (K(z), L∗
c)(K(ix), L

∗
xo+).

By Corollary 1.2, uR∗(K(x), L∗
a). ¤

Dually, we may show that vL∗(K(x), L∗
a).

Lemma 3.6. Γ is an abundant semigroup.

Proof. It follows from Lemma 3.5 immediately. ¤

Lemma 3.7. Let W = {(K(s), L∗
s) : s ∈ So}. Then W is isomorphic to So

andW is a quasi-adequate ∗-subsemigroup of Γ with E(W )={(K(s), L∗
s) : s∈Eo}.

Proof. Clearly W ⊆ Γ. Let (K(s), L∗
s), (K(t), L∗

t ) ∈ W . It is easy to see

that

(K(s), L∗
s)(K(t), L∗

t ) = (K(isst), L
∗
stλt

) = (K(st), L∗
st) ∈ W.

Therefore W is a subsemigroup. For any s ∈ So, define sϕ = (K(s), L∗
s), it is

evident that ϕ is an isomorphism. Thus So ∼= W .

To show that W is a ∗-subsemigroup, let (K(s), L∗
s) ∈ W . By Lemma 3.4

and Lemma 3.5, u = (K(s+), L∗
s+) ∈ E(W ) and uR∗(K(s), L∗

s). Similarly, v =

(K(s∗), L∗
s∗) ∈ E(W ) and vL∗(K(s), L∗

s). That E(W ) = {(K(s), L∗
s) : s ∈ Eo} is

obvious. ¤
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Lemma 3.8. Let (K(x1), L
∗
a1
), (K(x2), L

∗
a2
) ∈ Γ. Then

(1) (K(x1), L
∗
a1
)R∗(K(x2), L

∗
a2
) if and only if x1R∗x2.

(2) (K(x1), L
∗
a1
)L∗(K(x2), L

∗
a2
) if and only if a1L∗a2.

Proof. To prove (1), by Lemma 3.5, it is equivalent to show that

(K(ix1), L
∗
x1

o+)R∗(K(ix2
), L∗

x2
o+) if and only if x1R∗x2.

Now u1 = (K(ix1
), L∗

x1
o+)R∗(K(ix2

), L∗
x2

o+) = u2

⇐⇒ u1u2 = u2 and u2u1 = u1, that is (K(ix1
x1

o+ix2
), L∗

x1
o+ix2x2

o+) =

(K(ix2
), L∗

x2
o+) and (K(ix2x2

o+ix1), L
∗
x2

o+ix1
x1

o+) = (K(ix1), L
∗
x1

o+)

⇐⇒ (K(ix1ix2), L
∗
x1

o+ix2
) = (K(ix2), L

∗
x2

o+) and (K(ix2ix1), L
∗
x2

o+ix1
) =

(K(ix1), L
∗
x1

o+) since ix1Lx1
o+, ix2Lx2

o+ and x1
o+ix2 , x2

o+ix1 ∈ Eo.

⇐⇒ ix1ix2R∗ix2 , ix2ix1R∗ix1

⇐⇒ x1R∗x2 since x1R∗ix1 , x2R∗ix2 .

(2) can be proved similarly. ¤

Lemma 3.9. Let g = (K(x), L∗
a) ∈ Γ. Then

CW (g) = {(K(y), L∗
y) ∈ W : y ∈ CSo(x) ∩ CSo(a)}.

Proof. Let V ={(K(y), L∗
y)∈W : y ∈CSo(x)∩CSo(a)} and (K(y), L∗

y) ∈ V .

Since y ∈ CSo(x) ∩ CSo(a), there exist e, f ∈ E(R) and ia, λa ∈ E(R) such that

x = eyf and a = iayλa, where eLy+, fRy∗ for some y+, y∗ ∈ Eo. It follows that

(K(x), L∗
a) = (K(e), L∗

y+)(K(y), L∗
y)(K(y∗), L∗

λa
).

Furthermore, by Lemma 3.8 we have

(K(e), L∗
y+)L(K(y+), L∗

y+)R∗(K(y), L∗
y)

and

(K(y∗), L∗
λa
)R(K(y∗), L∗

y∗)L∗(K(y), L∗
y).

Hence (K(y), L∗
y) ∈ CW (g) and so V ⊆ CW (g).

Conversely, let (K(y), L∗
y) ∈ CW (g). Then there exist

(K(y1), L
∗
b1
), (K(y2), L

∗
b2
) ∈ E(Γ) such that

(K(x), L∗
a) = (K(y1), L

∗
b1)(K(y), L∗

y)(K(y2), L
∗
b2)

and

(K(y1), L
∗
b1)L(K(y), L∗

y)
+ for some (K(y), L∗

y)
+ ∈ E(W ),
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(K(y2), L
∗
b2)R(K(y), L∗

y)
∗ for some (K(y), L∗

y)
∗ ∈ E(W ).

By Lemma 1.3, (K(y1), L
∗
b1
)R∗gL∗(K(y2), L

∗
b2
). Hence by Lemma 3.7, y1R∗x

and aL∗b2.
On the other hand, by Lemma 3.7 there exist x′, x′′ ∈ Eo such that

(K(y), L∗
y)

+ = (K(x′), L∗
x′) with x′R∗y

and

(K(y), L∗
y)

∗ = (K(x′′), L∗
x′′) with x′′L∗y.

It follows that

(K(x′), L∗
x′)(K(x), L∗

a)(K(x′′), L∗
x′′) = (K(y), L∗

y),

and consequently, x′xλax
′′(R∗∩ δ)y and x′xλax

′′L∗y. Thus y = x′ ·x ·λax
′′ since

R∗ ∩ L∗ ∩ δ = l.

First since (K(y1), L
∗
b1
)L(K(y), L∗

y)
+ = (K(x′), L∗

x′), we have b1L∗x′. Hence

(K(y1), L
∗
x′) = (K(y1), L

∗
b1
) ∈ E(Γ) and so there exists z ∈ CSo(y1) ∩ CSo(x′).

And from (K(y1), L
∗
x′) ∈ E(Γ) by Lemma 3.4, x′ ∗ y1 = x′y1 = x′λy1 ∈ Eo, and

so y1x
′y1 = y1 since y1L∗x′y1 = x′λy1R∗x′. Thus y1 is regular. It is evident that

y1 = iy1x
′ · x′λy1 ∈ IEoEo ⊆ I = E(R) and x′Liy1x

′Ry1R∗x.
Next since (K(y2), L

∗
b2
)R(K(y), L∗

y)
∗ = (K(x′′), L∗

x′′), we have y2R∗x′′ and

(K(x′′), L∗
x′′)(K(y2), L

∗
b2) = (K(y2), L

∗
b2).

That is
(K(x′′y2), L∗

x′′y2λb2
) = (K(y2), L

∗
b2).

From y2R∗x′′ we have y2 = x′′y2 ∈ So and so b2L∗x′′y2λb2 = y2λb2 . Consequ-

ently,

y2λb2y2 = (y2λb2) ∗ y2 = y2λb2λy2 = y2.

Thus y2 is regular and y2 = y2λb2 · yo∗2 λy2 ∈ ΛEo ⊆ Eo, where yo2 ∈ CSo(y2) ∩
CSo(b2), y2 = iy2y

o
2λy2 and λy2Ryo∗2 for some yo∗2 ∈ Eo. Therefore λaRλax

′′Lx′′

since λa and x′′ are in the same rectangular band and λax
′′ ∈ ΛEo ⊆ Eo.

Finally, since (K(x), L∗
a) ∈ Γ, there exists xo ∈ CSo(x) ∩ CSo(a) such that

x = ixx
oλx, a = iax

oλa and iaLxo+, λaRxo∗ for some xo+, xo∗ ∈ Eo. Thus

xL∗λxLxo∗λxRxo∗RλaRλax
′′Lx′′L∗y.

Consequently,

iy1x
′ · y · xo∗λx = iy1x

′ · x′ · x · λax
′′ · xo∗λx = iy1x

′ · x · xo∗λx = x,

moreover, iy1x
′Lx′R∗y and xo∗λxRλax

′′L∗y. Therefore y ∈ CSo(x). Similarly,

we have y ∈ CSo(a) and hence CW (g) ⊆ V . ¤
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Corollary 3.10. W is an abundant transversal of Γ.

Proof. It follows from Lemma 3.7 and Lemma 3.9 immediately. ¤

Lemma 3.11. For any g ∈ E(Γ) and h ∈ E(W ),

CW (h)CW (g) ⊆ CW (gh) and CW (g)CW (h) ⊆ CW (hg).

Proof. Let g = (K(x), L∗
a) ∈ E(Γ) and h = (K(p), L∗

p) ∈ E(W ) with

p ∈ Eo. Then

gh = (K(ixap), L
∗
apλp

) = (K(ixap), L
∗
ap).

By Lemma 3.9, for any go ∈ CW (g), ho ∈ CW (h), there exist y ∈ CSo(x) ∩
CSo(a), q ∈ CSo(p) such that go = (K(y), L∗

y) and ho = (K(q), L∗
q), furthermore,

it is obvious that q ∈ Eo. Thus

hogo = (K(q), L∗
q)(K(y), L∗

y) = (K(qy), L∗
qy).

Since y ∈ CSo(x) ∩ CSo(a), there exist ix, λx ∈ E(R) and ia, λa ∈ E(R) such

that x = ixyλx, a = iayλa, where ixLy+, λxRy∗ and iaLy+′
, λaRy∗′ for some

y+, y∗, y+′
, y∗′ ∈ Eo.

Also, g = (K(x), L∗
a) ∈ E(Γ) gives

a ∗ x = ia · x
=⇒ a ∗ ux = iaix (since xR∗ix and (4))

=⇒ ix(a ∗ ix) = ixiaix

=⇒ ixiay(λa ∗ ex) = ix

=⇒ ixy(λa ∗ ix) = ix (since ixiay = ixiay
+y and ixLiay+ ∈ I)

=⇒ y+y(λa ∗ ix) = y+ (since ixLy+)
=⇒ y(λa ∗ ix)y = y+y = y.

From y(λa ∗ ix)y = y we deduce that y∗′(λa ∗ ix)y = y∗′. Hence (λa ∗ ix)y = y∗′

since y∗′Rλa and consequently

(λa ∗ ix)y(λa ∗ ix) = y∗′(λa ∗ ix) = λa ∗ ix.

It follows that y is an inverse in So of (λa ∗ ix) and thus y ∈ Eo since λa ∗
ix ∈ Eo and So is quasi-adequate. Therefore a = iayλa ∈ EoEoΛ ⊆ Λ. From

condition (QA2) we have qy ∈ CSo(p)CSo(a) ⊆ CSo(ap). Since ixiay ∈ IEoEo ⊆
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I,, ixiayLy∗′ and λa ∗ ix ∈ Eo, λa ∗ ixRy∗′, from ix = ixiax
o · y∗′ · (λa ∗ ix) we

deduce that y∗′ ∈ CSo(ix). Thus

qy = qyy∗′ ∈ CSo(ap)CSo(ix) ⊆ CSo(ixap)

and consequently qy ∈ CSo(ap) ∩ CSo(ixap). Hence from Lemma 3.9 we have

hogo ∈ CW (gh). Dually we may show that goho ∈ CW (hg). ¤

Lemma 3.12. W is a multiplicative quasi-adequate transversal of Γ.

Proof. Let g = (K(x), L∗
a), h = (K(y), L∗

b) ∈ Γ. For any (K(x1), L
∗
a1
) ∈ Ig

and (K(y1), L
∗
b1
) ∈ Λh, by the proof of Lemma 3.9 we have x1 ∈ E(R) = I and

y1 ∈ Eo. Consequently from the proof of Lemma 3.11 we have a1, b1 ∈ E(L) = Λ.

Furthermore, there exists go ∈ CW (g) such that (K(x1), L
∗
a1
)Lgo+ = (K(eo), L∗

eo)

for some eo ∈ Eo with a1Leo. Thus λa1La1Leo and λa1 ∈ Eo. It follows that

(K(y1), L
∗
b1)(K(x1), L

∗
a1
) = (K(iy1(b1 ∗ x1), L

∗
(b1∗x1)λa1

).

Since b1 ∈ E(L) and x1 ∈ E(R), by Theorem 3.1(1) b1 ∗ x1 ∈ Eo and thus

iy1(b1 ∗ x1) ∈ Eo and (b1 ∗ x1)λa1 ∈ Eo.

For any xo, yo ∈ Eo, if (K(xo), L∗
yo) ∈ Γ, it is readily to see that

(K(xo), L∗
yo) = (K(xoyo), L∗

xoyo) ∈ E(W ).

Therefore ΛhIg ∈ E(W ). Combining with Corollary 3.10 and Lemma 3.11 implies

that W is a multiplicative quasi-adequate transversal of Γ. ¤

Now we turn to prove the converse part of Theorem 3.1. Let S be an abun-

dant semigroup with a multiplicative quasi-adequate transversal So. Let

R = {x ∈ S : (∃λx ∈ Λx)λx ∈ Eo} and L = {a ∈ S : (∃ia ∈ Ia) ia ∈ Eo}.

Then by Proposition 2.7, R and L are quasi-adequate semigroups with a common

quasi-adequate transversal So which is a right ideal of R and a left ideal of L.

For every (a, x) ∈ L×R, put a ∗ x = ax. Then a ∗ x = ax = iaaxλx ∈ So for

some ia, λx ∈ Eo, and if x ∈ E(R) = I, a ∈ E(L) = Λ, then a∗x = ax ∈ ΛI ⊆ Eo,

since So is a multiplicative quasi-adequate transversal of S. Thus the mapping

∗ satisfies (1) and clearly it also satisfies (2), (3) and (4). Therefore we get an

abundant semigroup Γ in the way of the direct part of Theorem 3.1. Finally we

shall prove that Γ is isomorphic to S.
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Let (K(x), L∗
a) ∈ Γ. Define θ : Γ −→ S by (K(x), L∗

a)θ = ixa, where ix ∈ Ix
and ixLxo+ for some xo ∈ CSo(x) ∩ CSo(a) and some xo+ ∈ Eo. It is easy to see

that the definition of θ is not dependent on the choice of ix.

We first have to show that θ is well-defined. From the proof of Lemma 3.2, we

have if (K(x), L∗
a) ∈ Γ, then ixa = xλa. If (K(x), L∗

a) = (K(y), L∗
b), then R∗

x =

R∗
y, δ(x) = δ(y) and L∗

a = L∗
b . From xR∗y and xδy we deduce that there exists

h ∈ E(y∗) such that x = yh, moreover, hL∗x. Thus xλa = yhλa = iyy
oλyhλa

and yλb = iyy
oλyλb. Since y ∈ R we have λy ∈ Eo and consequently

λy · h · λa ∈ EoI · Λ ⊆ EoΛ ⊆ Λ and λyλb ∈ EoΛ ⊆ Λ.

It is easy to check that λyhλa and λyλb in the sameH∗-class and so λyhλa = λyλb.

Hence xλa = yλb and therefore θ is well-defined.

For any (K(x), L∗
a), (K(y), L∗

b) ∈ Γ. Then

[(K(x), L∗
a)(K(y), L∗

b)]θ = (K(ixay), L
∗
ayλb

)θ = iixay · ayλb = ix · iay · ayλb

= ixayλb = ixaiyb (since yλb = iyb)

= (K(x), L∗
a)θ · (K(y), L∗

b)θ,

and so θ is a homomorphism.

For every x ∈ S, it is easy to check that xxo∗ ∈ R and xo+x ∈ L, where

x = ixx
oλx, ixLxo+, λxRxo∗ for some xo+, xo∗ ∈ Eo. Moreover, from

xxo∗ = ixx
oλxx

o∗ = ixx
oxo∗ and xo+x = xo+ixx

oλx = xo+xoλx

we deduce that xo ∈ CSo(xxo∗) ∩ CSo(xo+x). Thus (K(xxo∗), L∗
xo+x) ∈ Γ and

(K(xxo∗), L∗
xo+x)θ = ixxo∗ · xo+x = ixx

o+x = ixx = x.

Hence θ is surjective.

Now let (K(x), L∗
a), (K(y), L∗

b) ∈ Γ be such that (K(x), L∗
a)θ = (K(y), L∗

b)θ,

that is ixa = iyb. Then xR∗ixR∗ixa = iybR∗iyR∗y and aL∗ixa = iybL∗b.
Thus R∗

x = R∗
y and L∗

a = L∗
b . From ixa = iyb we deduce that xλa = yλb,

and consequently

y = yλbλy = xλaλy = x+ · x · x∗λaλy.

Since x∗λaλy is idempotent in R and x∗λaλy · λaλx = x∗, this implies that

x∗λaλy ∈ E(x∗) and so xδy. Hence K(x) = K(y) and L∗
a = L∗

b . Therefore θ is

injective and θ is an isomorphism.
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