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The influence of SNS-permutability of some subgroups
on the structure of finite groups

By ZHENCAI SHEN (Suzhou)and WUJIE SHI (Suzhou)

Abstract. The following concept is introduced: a subgroup H of the group G is

said to be SNS-permutable (Subnormal-Sylow-permutable) in G if there is a subnormal

subgroup B of G such that HB = G and H permutes with every Sylow subgroup of B.

Groups with certain SNS-permutable subgroups of prime power order are studied.

1. Introduction

All groups considered in this paper will be finite; the notation and termino-

logy used in this paper are standard, as in [8]–[10 or [16]. Given a group G, two

subgroups H and K of G are said to permute if HK = KH, that is, HK is a

subgroup of G. A subgroup H of G is said to be S-permutable in G if H per-

mutes with every Sylow subgroup of G. This concept was introduced by Kegel

and Deskins in 1962 and has been investigated by many authors, for example,

see [1]–[7], [11]–[15], [17]–[25]. In 1998, Ballester-Bolinches and Pedraza-

Aguilera extended this concept to S-quasinormally embedded subgroups. A

subgroup H of G is S-quasinormally embedded in G if for every Sylow subgroup

P of H, there is a S-quasinormal subgroup K in G such that P is also a Sy-

low subgroup of K. Recently, in [21], Skiba introduced the concept of weakly
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S-permutable subgroup. In [12]–[13], Li, Shen, and other other authors gave the

following definition:

Definition 1.1. Let G be a group. A subgroup H of G is said to be an SS-

quasinormal subgroup (supplement-Sylow-quasinormal subgroup) of G if there is

a supplement B of H in G such that H permutes with every Sylow subgroup

of B.

In this paper, we consider another generalization of S-permutable subgroup

and give the following definition:

Definition 1.2. Let G be a group. A subgroup H of G is said to be an SNS-

permutable subgroup (Subnormal-Sylow-permutable subgroup) of G if there is a

subnormal subgroup B such that HB = G and H permutes with every Sylow

subgroup of B.

Obviously, every S-permutable subgroup of G is SNS-permutable and every

SNS-permutable subgroup is SS-quasinormal. In general, an SNS-permutable

subgroup need not be S-permutable. For instance, S3 is an SNS-permutable

subgroup of the symmetric group S4, but S3 is not S-permutable. Moreover, an

SS-quasinormal subgroup need not be SNS-permutable. For instance, S4 is an SS-

quasinormal subgroup of PSL(2, 7), but S4 is not SNS-permutable in PSL(2, 7).

Recall that a formation is a class F of groups satisfying the following condi-

tions: (i) if G ∈ F and N E G, then G/N ∈ F , and (ii) if N1, N2 E G are such

that G/N1, G/N2 ∈ F , then G/(N1 ∩ N2) ∈ F . A formation F is said to be

saturated if G/Φ(G) ∈ F implies that G ∈ F .

We study the influence of the SNS-permutable subgroups on the structure of

group G. The main results are as follows:

Theorem 1.1. Let p be the smallest prime dividing the order of a group G

and P a Sylow p-subgroup of G. If P has a subgroup D such that 1 < |D| < |P |
and all subgroups H of P with order |H| = |D| and with order 2|D| (if P is a

non-abelian 2-group and |P : D| > 2) not having a supersolvable supplement in

G are SNS-permutable in G, then G is p-nilpotent.

Theorem 1.2. Let F be a saturated formation containing all supersolvable

groups and G a group with a normal subgroup E such that G/E ∈ F . Suppose

that every non-cyclic Sylow subgroup P of F ∗(E) has a subgroup D such that

1 < |D| < |P | and all subgroups H of P with order |H| = |D| and with order

2|D| (if P is a non-abelian 2-group and |P : D| > 2) are SNS-permutable in G.

Then G ∈ F .
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2. Preliminaries

Our first result is very useful in proofs using induction arguments. Its proof

is a routine checking.

Lemma 2.1. Suppose that H is SNS-permutable in a group G, K ≤ G and

N a normal subgroup of G. We have:

(i) If H ≤ K, then H is SNS-permutable in K;

(ii) HN/N is SNS-permutable in G/N ;

(iiii) If N ≤ K and K/N is SNS-permutable in G/N , then K is SNS-

permutable in G.

Lemma 2.2. Suppose that H is a p-subgroup for some prime p and H is

not S-permutable in G. Assume that H is SNS-permutable in G. Then G has a

normal subgroup M such that |G : M | = p and G = HM .

Proof. By hypothesis G has a subnormal subgroup T such that HT = G

and T ∩ H < H. Hence G has a proper normal subgroup K such that T ≤ K.

Since G/K is a p-group, G has a normal maximal subgroupM such thatHM = G

and |G : M | = p. ¤

Lemma 2.3. Let H be a p-subgroup of G. Then the following statements

are equivalent:

(i) H is S-permutable in G;

(ii) H ≤ Op(G) and H is SNS-permutable in G;

(iii) H ≤ Op(G) and H is SS-quasinormal in G.

Proof. We only need to prove that (iii) implies (i). As H ≤ Op(G), it is

clear that H permutes with all Sylow p-subgroup of G. By the hypothesis, there

is a subgroup B ≤ G such that G = HB and HX = XH for all X ∈ Syl(B). In

particular, if X = Q ∈ Sylq(B), q 6= p, then HQ = QH. Notice that Q is a Sylow

q-subgroup of G. Assume T is another Sylow q-subgroup of G. Then T = Qg

with g ∈ G. Moreover, g = bh with b ∈ B; h ∈ H. Thus T = Qg = (Qb)h. As

Qb is another Sylow q-subgroup of B, by the hypothesis, HQb is a subgroup of

G and from here Hh(Qb)h = HT is a subgroup of G. Consequently H permutes

with all Sylow q-subgroups of G. Because this holds for all primes q 6= p, we have

H is S-permutable in G. ¤

Lemma 2.4. Let N be an elementary abelian normal subgroup of a group G.

Assume that N has a subgroup D such that 1 < |D| < |N | and every subgroup H
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of N satisfying |H| = |D| is SNS-permutable in G. Then some maximal subgroup

of N is normal in G.

Proof. It follows from Lemma 2.11 of [21] and Lemma 2.3. ¤

Lemma 2.5. Let F be a saturated formation containing all nilpotent groups

and let G be a group with solvable F-residual P = GF . Suppose that every

maximal subgroup of G not containing P belongs to F . Then P is a p-group

for some prime p. In addition, if every cyclic subgroup of P with prime order or

order 4 (if p = 2 and P is non-abelian) not having a supersolvable supplement in

G is SNS-permutable in G, then |P/Φ(P )| = p.

Proof. By Lemma 2.12 of [21] and Lemma 2.3. ¤

Lemma 2.6 ([10]). Let G be a group and M a subgroup of G.

(i) If M is normal in G, then F ∗(M) ≤ F ∗(G).

(ii) F ∗(G) 6= 1 ifG 6= 1; in fact, F ∗(G)/F (G) = soc(F (G)CG(F (G))/F (G)).

(iii) F ∗(F ∗(G)) = F ∗(G) ≥ F (G); if F ∗(G) is solvable, then F ∗(G) = F (G).

(iv) Suppose K is a subgroup of G contained in Z(G), then F ∗(G/K) =

F ∗(G)/K.

3. Proofs of the main Theorems

Proof of Theorem 1.1. Assume that the theorem is not true and let G

be a counterexample of minimal order. We prove the theorem by the following

steps.

(1) Op′(G) = 1.

In fact, if Op′(G) 6= 1, then we consider the quotient group G/Op′(G). By

Lemma 2.1, G/Op′(G) satisfies the hypotheses of the theorem. Thus it follows

that G/Op′(G) is p-nilpotent by the choice of G. Hence G is p-nilpotent, a

contradiction.

(2) |D| > p.

If |D| = p, then by Lemma 2.1, G is a minimal non-p-nilpotent group, so

G = [P ]Q, where P , Q are the Sylow p-subgroup and a Sylow q-subgroup of G,

respectively. Set Φ = Φ(P ) and let X/Φ be a subgroup of P/Φ of order p,

x ∈ X \ Φ and L = 〈x〉. Then L is order p or 4. By the hypotheses, L has a

supersolvable supplement inG or is SNS-permutable inG. If L has a supersolvable

supplement T in G, then T 6= G. So |G/Φ : TΦ/Φ| = p. Hence TΦ/Φ E G/Φ
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and P/Φ ∩ TΦ/Φ = 1, it follows that |P/Φ| = p. Therefore P is cyclic and G is

p-nilpotent, a contradiction. So L is SNS-permutable in G. By Lemma 2.3, L is

S-permutable in G. Moreover, Lemma 2.5 implies that |P/Φ| = p. Consequently,

it follows that G is p-nilpotent.

(3) |P : D| > p.

If |P : D| = p, then by [14. Theorem 1.1], we have that G is p-nilpotent, a

contradiction.

(4) All subgroups of P of order |D| and 2|D| (if P is a non-abelian 2-group and

|P : D| > 2) have supersolvable supplement subgroups in G or are S-permutable

in G.

Let H ≤ P with |H| = |D| or 2|D|. Assume H has not a supersolvable

supplement, therefore it is SNS-permutable in G and it is not S-permutable in G,

by Lemma 2.2, there is a normal subgroup M of G such that |G : M | = p and

G = HM . By (3) and the minimality of G, M is p-nilpotent, and it follows that

G is p-nilpotent, a contradiction.

(5) If N ≤ P and N is a minimal normal subgroup of G, then |N | ≤ |D|.
Suppose |N | > |D|. Since N ≤ Op(G), N is an elementary abelian group.

If a subgroup H of N of order |D| has a supersolvable supplement T in G, then

G = HT = NT . Hence N∩TEG. By minimality of N , we have that N∩T = 1 or

N ∩ T = N . If N ∩ T = 1, then N = N ∩HT = H(N ∩ T ) = H, a contradiction.

Thus N ∩ T = N and G = NT = T , this is also a contradiction. Hence all

subgroups of N of order |D| are SNS-permutable. By Lemma 2.2, some maximal

subgroup N1 of N is normal in G. It follows from the minimality of N that

N1 = 1, thus |N | = |D| = p, a contradiction.

(6) If N ≤ P and N is a minimal normal subgroup of G, then G/N is

p-nilpotent.

Suppose |N | < |D|. By Lemma 2.1 and the minimality of G, G/N is p-

nilpotent. By (5), we have |N | = |D|. Let N ≤ K ≤ P with |K/N | = p. By (2),

N is non-cyclic, so K is also non-cyclic, it follows that K has a maximal subgroup

L 6= N and K = LN . If L has a supersolvable supplement in G, then K has a

supersolvable supplement in G and G/N would be p-nilpotent. So we may assume

that L is S-permutable in G, and then K/N = LN/N is S-permutable in G/N . If

P/N is abelian, then G/N satisfies the hypothesis. Next suppose that that P/N

is a non-abelian 2-group. Hence every subgroup of P of order 2|D| not having a

supersolvable supplement in G is S-permutable in G. In this case one can show

as above that every subgroup X of P containing N and such that |X : N | = 4
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either has a supersolvable supplement in G or is S-permutable in G. Therefore

G/N also satisfies the hypothesis.

(7) Op(G) = 1.

If Op(G) 6= 1, then we can find a minimal normal subgroup N of G contained

in Op(G). By (6), there exists a unique minimal normal subgroup of G, N say

(notice that p-nilpotent groups are a saturated formation). Moreover N is not

contained in Φ(G). Therefore N = Op(G) and there is a maximal subgroup M

of G such that G = NM , M ∩N = 1.

Then by (4) every subgroup H of P satisfying |H| = |D| and not having a

supersolvable supplement in G is S-permutable. Since every S-permutable subg-

roup of G is contained in Op(G) = N , it follows that every subgroup H of P

different from N satisfying |H| = |D| has a supersolvable supplement in G. The-

refore every maximal subgroup of P has a supersolvable supplement in G, which

contradicts Lemma 2.2 of [21]. Thus we have (7).

(8) The final contradiction.

Let H be a subgroup of P of order |D|. If H is S-permutable, then H ≤
Op(G) = 1, a contradiction. Therefore all subgroups of P of order |D| have

supersolvable supplement in G and by Lemma 2.2 of [21], G is p-nilpotent, a

contradiction. ¤

Corollary 3.1. Let G be a group. If, for every prime p dividing the order

of G and P ∈ Sylp(G), P has a subgroup D such that 1 < |D| < |P | and all

subgroups H of P with order |H| = |D| and with order 2|D| (if P is a non-

abelian 2-group and |P : D| > 2) not having a supersolvable supplement in G

are SNS-permutable in G, then G has the Sylow tower property of supersolvable

type.

Corollary 3.2. Let p be the smallest prime dividing the order of a group G

and P a Sylow p-subgroup of G. If P has a subgroup D such that 1 < |D| < |P |
and all subgroups H of P with order |H| = |D| and with order 2|D| (if P is a

non-abelian 2-group and |P : D| > 2) not having a supersolvable supplement in

G are S-permutable in G, then G is p-nilpotent.

Theorem 3.3. Let F be a saturated formation containing all supersolvable

groups and G a group with a normal subgroup E such that G/E ∈ F . Suppose

that every non-cyclic Sylow subgroup P of E has a subgroup D such that 1 <

|D| < |P | and all subgroupsH of P with order |H| = |D| and with order 2|D| (if P
is a non-abelian 2-group and |P : D| > 2) not having a supersolvable supplement

in G are SNS-permutable in G. Then G ∈ F .
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Proof. Suppose that the theorem is not true and let G be a counterexample

of the smallest order. We have the following claims:

(1) G/Q ∈ F , where Q is a Sylow q-subgroup of E and q is the largest prime

dividing |E|.
By Lemma 2.1 and Corollary 3.1, E has the Sylow Tower property. Let q be

the largest prime dividing |E| and Q a Sylow q-subgroup of E. The fact that E

possesses an order Sylow Tower property implies that Q is normal in E. Now Q is

characteristic in E and EEG, so QEG. Furthermore, (G/Q)/(E/Q) ∼= G/E ∈ F
and Lemma 2.1 shows that G/Q satisfies the conditions of the theorem, thus by

the choice of G, G/Q ∈ F .

(2) Every subgroup H of Q with order |H| = |D| not having a supersolvable

supplement in G is S-permutable in G.

By Lemma 2.3, we have (2).

(3) If N ≤ Q and N is minimal normal subgroup of G, then G/N ∈ F .

If either |N | < |D| or |Q : D| = q, it is clear. So let |N | = |D| and |Q : D| > q.

Let N ≤ K ≤ Q where |K/N | = q. By Lemma 2.5, |D| > q, it follows that N is

non-cyclic, so K is also non-cyclic. Hence K has a maximal subgroup L 6= N and

K = LN . If L has a supersolvable supplement in G then K has a supersolvable

supplement in G and G/N would be supersolvable, therefore it would be an F-

group. So L is S-permutable in G. Therefore K/N = LN/N is S-permutable in

G/N . Consequently, G/N satisfies the hypothesis, as desired.

(4) Final contradiction.

Let N be a minimal normal subgroup of G contained in Q. Applying (3) and

the fact that F is a saturated formation, we obtain that N is the only minimal

normal subgroup of G contained in Q and Φ(Q) = 1. Moreover, N * Φ(G).

Therefore, G has a maximal subgroup M such that G = MN and M ∩ N = 1.

On the other hand, Φ(Q) = 1 implies that Q ∩ M is normalized by N and M ,

hence the uniqueness of N yields N = Q. But by Lemma 2.4 it is impossible,

because Q is a minimal normal subgroup of G. This contradiction completes the

proof of this theorem. ¤

By Theorem 1.3 of [21] and Lemma 2.3, we have:

Corollary 3.4. Let F be a saturated formation containing all supersoluble

groups and G a group with a solvable normal subgroup E such that G/E ∈ F
Suppose that every non-cyclic Sylow subgroup P of F (E) has a subgroup D such

that 1 < |D| < |P | and all subgroups H of P with order |H| = |D| and with order

2|D| (if P is a non-abelian 2-group and |P : D| > 2) are SNS-permutable in G.

Then G ∈ F .
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Theorem 3.5. Let G be a group with a normal subgroup E such that G/E

is supersolvable, Suppose that every non-cyclic Sylow subgroup P of F ∗(E) has

a subgroup D such that 1 < |D| < |P | and all subgroups H of P with order

|H| = |D| and with order 2|D| (if P is a non-abelian 2-group and |P : D| > 2)

are SNS-permutable in G. Then G is supersolvable.

Proof. Suppose that the theorem is false and let G be a counterexample of

smallest order, then we have:

(1) Every proper normal subgroup of G containing F ∗(E) is supersolvable.

If N is a proper normal subgroup of G containing F ∗(E), we have that

N/N ∩ E ∼= NE/E is supersolvable. By Lemma 2.6, F ∗(E) = F ∗(F ∗(E)) ≤
F ∗(E ∩N) ≤ F ∗(E), so F ∗(E ∩N) = F ∗(E). By Lemma 2.1, (N,N ∩E) satisfy

the hypotheses of the theorem, thus the minimal choice of G implies that N is

supersolvable.

(2) E = G, and F ∗(E) = F (G) < G.

If E < G, then E is supersolvable by (1). In particular, E is solvable, so G

is solvable and F ∗(E) = F (E). It follows that G is supersolvable by applying

Corollary 3.4, a contradiction. If F ∗(G) = G, then G is supersolvable by The-

orem 3.3, a contradiction. Thus F ∗(G) < G and F ∗(G) is supersolvable by (1),

it follows that F ∗(E) = F ∗(G) = F (G) by Lemma 2.6.

(3) Final contradiction.

Let P be a Sylow p-subgroup of F (G), for some prime p, and let P1 be an

arbitrary subgroup of P of order |D|. Then P1EEPEF (G)EG. By the hypothe-

ses, P1 is SNS-permutable in G. So P1 is S-permutable in G by Lemma 2.3. Thus

all subgroups of P of order |D| are S-permutable in G. Applying Corollary 3.4,

G is supersolvable, the final contradiction. ¤

Proof of Theorem 1.2. By Lemma 2.1, we have that all subgroups of any

Sylow subgroup of order |D| of F ∗(E) are SNS-permutable in E, so Theorem 3.5

implies that E is supersolvable. Hence F ∗(E) = F (E). Let P be a Sylow p-

subgroup of F (E), for some prime p, and let H be an arbitrary subgroup of order

|D| of P . Since P is normal in G, it follows that H is subnormal in G. By the

hypotheses, H is SNS-permutable in G. So H is S-permutable in G by Lemma

2.3. Thus all subgroups of P of order |D| are S-permutable in G. Applying

Corollary 3.4, G belongs to F . ¤

In connection with Theorem 1.1 and 1.2 the following natural questions arise:

Remark. Whether Theorem 1.1 and Theorem 1.2 remain true if we replace

SNS-permutable by SS-quasinormal or S-quasinormally embedded.
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