## Euclidean algorithm in different norms

By IMRE Z. RUZSA (Budapest) and PÉTER P. VARJÚ (Szeged)


#### Abstract

We describe those norm-like functions on the integers which admit a Euclidean algorithm.


## 1. Introduction

A norm on the ring of integers of an algebraic number field is a nonnegative integer-valued completely multiplicative function $f$. A useful (and quite rare) property it may have is the possibility of a Euclidean algorithm, which means that for any integers $a, b, b \neq 0$ we can find integers $q, r$ such that $a=q b+r$ and $f(r)<f(b)$. A familiar example is $N(n)=|n|$ in $\mathbb{Z}$. Inspired by a question of Attila Pethő and Sándor Turjányi we explore which other norms on $\mathbb{Z}$ have this property.

First we describe a class of functions that can be used as such a norm. Let $p$ be a prime and let $\gamma$ and $w$ be positive integers such that $w \geq p^{\gamma}$. If $x=p^{k} x^{\prime}>0$ where $p \nmid x^{\prime}$ then set

$$
f_{\gamma, p, w}(x)=f_{\gamma, p, w}(-x)=w^{k} x^{\prime \gamma}
$$

and set $f_{\gamma, p, w}(0)=0$. (In particular, if $w=p^{\gamma}$, we recover the powers of the absolute value.)

[^0]The complete multiplicativity of these functions is clear. We check that they also satisfy the division property. Indeed, let $b=p^{k} b^{\prime}$ where $p \nmid b^{\prime}$. If $b \mid a$ then the statement is clear. Assume $b \nmid a$. There is a $q$ such that

$$
|b|>a-q|b|>a-(q+1)|b|>-|b| .
$$

Set $r=a-q|b|$ or $r=a-(q+1)|b|$ such that $p^{k+1} \nmid r$. Then $r=p^{l} r^{\prime}$ where $p \nmid r^{\prime}$ and $l \leq k$. By definition, using $w \geq p^{\gamma}$ we get

$$
f_{\gamma, p, w}(r)=w^{l}\left|\frac{r}{p^{l}}\right|^{\gamma} \leq w^{k}\left|\frac{r}{p^{k}}\right|^{\gamma}<w^{k}\left|\frac{b}{p^{k}}\right|^{\gamma}=f_{\gamma, p, w}(b)
$$

which was to be proven.
Our aim is to show that the above list contains all functions for which there is a Euclidean algorithm.

Theorem. Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be a nonnegative completely multiplicative function. If $f$ has the property that for all integers $a, b, b \neq 0$ we can find integers $q, r$ such that $a=q b+r$ and $f(r)<f(b)$, then there is a prime $p$ and positive integers $\gamma$ and $w$ with $w \geq p^{\gamma}$ such that $f=f_{\gamma, p, w}$.

The first author posed this as a problem in the 2004 Schweitzer competition, and the proof below is based on the solution by the second author.

## 2. Proof

In the proof we shall use the following lemma.
Lemma. Let $n, m, l$ be integers such that $0<n<m<l$, and $n$ and $m$ are coprime. If $l^{k}>k m^{k+1}$ with some positive integer $k$, then there exist nonnegative integers $\alpha_{0}, \ldots, \alpha_{k}$ such that

$$
l^{k}=\alpha_{0} m^{k}+\alpha_{1} m^{k-1} n+\cdots+\alpha_{k} n^{k}
$$

Proof. Note that such a representation obviously exists if the coefficients are allowed to be negative.

Let

$$
l^{k}=\alpha_{0}^{\prime} m^{k}+\alpha_{1}^{\prime} m^{k-1} n+\cdots+\alpha_{k}^{\prime} n^{k}
$$

with some possibly negative integers $\alpha_{j}^{\prime}$. Let $i$ be the least index for which $0<$ $\alpha_{i}^{\prime} \leq n$ fails. If $i<k$, then we have $\alpha_{i}^{\prime}=\alpha_{i}^{\prime \prime}+n q$ and $0<\alpha_{i}^{\prime \prime} \leq n$ with some
integer $q$. Set $\alpha_{i+1}^{\prime \prime}=\alpha_{i+1}^{\prime}+m q$, and $\alpha_{j}^{\prime \prime}=\alpha_{j}^{\prime}$ for $j \neq i, i+1$. Continue this process until we get a representation

$$
l^{k}=\alpha_{0} m^{k}+\alpha_{1} m^{k-1} n+\cdots+\alpha_{k} n^{k}
$$

with integers $0<\alpha_{j} \leq n$ for all $j<k$. Then by assumption, we have $\alpha_{k} \geq$ $l^{k}-k n m^{k} \geq 0$, and the claim follows.

Now we prove the main result.
Proof of the Theorem. Let $f$ be a function satisfying the assumptions of the theorem. First note that $f(0)=f(0 \cdot n)=f(0) f(n)$ for each $n$, hence $f(0)=0$ or $f \equiv 1$. In the second case, the condition fails with $a=b=1$, so $f(0)=0$.

For each $n$ we have $f(n)=f(1 \cdot n)=f(1) f(n)$ which yields $f(1)=1$ or $f \equiv 0$. The second case is impossible again. By

$$
1=f(1)=f((-1) \cdot(-1))=f(-1) f(-1)
$$

we have $f(-1)=1$ or $f(-1)=-1$. By nonnegativity, only the first is possible. Consequently $f(-n)=f(-1) f(n)=f(n)$ in general.

Claim 1. If $x, y>0$ then $f(x+y)>f(x)$ or $f(x+y)>f(y)$.
Indeed, assume the contrary and consider a counterexample for which $f(x+y)$ is minimal. We apply the division assumption with $b=x+y$ and $a=y$ to get an integer $q$ with

$$
f(y-q(x+y))<f(x+y)
$$

There may be several such values of $q$; select one for which $|q|$ is minimal. By assumption $q \neq 0$ and $q \neq 1$. Assume first that $q>1$; the other case, namely $q<0$, can be handled similarly. Then we have

$$
f(q x+(q-1) y)<f(x+y) \leq f((q-1) x+(q-2) y)
$$

where the second inequality follows from the minimality of $q$. But then we can replace $x$ and $y$ by $x^{\prime}=x+y$ and $y^{\prime}=(q-1) x+(q-2) y$, and this is a counterexample for the claim with $f\left(x^{\prime}+y^{\prime}\right)<f(x+y)$, a contradiction.

Claim 2. If $x_{1}, x_{2}, \ldots, x_{k}>0$ then at least one of the inequalities $f\left(x_{1}+\cdots+x_{k}\right)>f\left(x_{i}\right)$ holds $(1 \leq i \leq k)$.

For $k=2$ this is the statement of the previous claim. For higher values of $k$ we use induction. Assume that $k>2$ and the claim holds for $k-1$. Then

$$
\begin{aligned}
f\left(x_{1}+\cdots+x_{k-1}+x_{k}\right) & >\min \left\{f\left(x_{1}+\cdots+x_{k-1}\right), f\left(x_{k}\right)\right\} \\
& >\min \left\{f\left(x_{1}\right), \ldots, f\left(x_{k-1}\right), f\left(x_{k}\right)\right\}
\end{aligned}
$$

by the previous claim and by the induction hypothesis.
Claim 3. If $0<n<m<l$, and $n$ and $m$ are coprime, then $f(n)<f(l)$ or $f(m)<f(l)$.

Assume to the contrary that $f(l) \leq f(n)$ and $f(l) \leq f(m)$. For large enough $k$ we have $l^{k}>k m^{k+1}$. Applying the Lemma we get a representation

$$
l^{k}=\alpha_{0} m^{k}+\alpha_{1} m^{k-1} n+\cdots+\alpha_{k} n^{k}
$$

with nonnegative integers $\alpha_{j}$. For arbitrary $i$ we have

$$
f\left(l^{k}\right)=f(l)^{k} \leq f(m)^{k-i} f(n)^{i}=f\left(m^{k-i} n^{i}\right) \leq f\left(\alpha_{i} m^{k-i} n^{i}\right),
$$

which contradicts the previous claim.
We resume the proof of the Theorem. There may or may not be positive prime powers $p, q$ such that $p<q$ and $f(p) \geq f(q)$. Assume first that such prime powers do exist.

Let $r$ be an arbitrary prime, not dividing $p q$.
Now if for some positive integers $\alpha, \beta$ we have $q^{\alpha}>r^{\beta}$, then applying Claim 3 with $n=\min \left(p^{\alpha}, r^{\beta}\right), m=\max \left(p^{\alpha}, r^{\beta}\right)$ and $l=q^{\alpha}$, we get $f\left(q^{\alpha}\right)>f\left(r^{\beta}\right)$. Conversely, when $q^{\alpha}<r^{\beta}$, then setting $n=p^{\alpha}, m=q^{\alpha}$ and $l=r^{\beta}$ we get $f\left(q^{\alpha}\right)<f\left(r^{\beta}\right)$.

These observations together imply

$$
f\left(q^{\lfloor\beta \log r / \log q\rfloor}\right)<f\left(r^{\beta}\right)<f\left(q^{\lceil\beta \log r / \log q\rceil}\right) .
$$

By multiplicativity, we obtain

$$
\frac{\lfloor\beta \log r / \log q\rfloor}{\beta}<\frac{\log f(r)}{\log f(q)}<\frac{\lceil\beta \log r / \log q\rceil}{\beta}
$$

Letting $\beta \rightarrow \infty$, we get

$$
\log (f(r))=\log r \frac{\log f(q)}{\log q}
$$

whence

$$
\begin{equation*}
f(r)=r^{\gamma} \tag{2.1}
\end{equation*}
$$

with a positive real constant $\gamma=\log f(q) / \log q$ independent of $r$.
We have this equality for all primes $r$ not dividing $p$ or $q$. Notice that since $\gamma=\log f(q) / \log q$, (2.1) holds for the prime divisor of $q$ also. Let $p^{\prime}$ be the prime divisor of $p$, and set $w=f\left(p^{\prime}\right)$. Then $f=f_{\gamma, p^{\prime}, w}$, and

$$
\frac{\log w}{\log p^{\prime}}=\frac{\log (f(p))}{\log p}>\frac{\log (f(q))}{\log q}=\gamma
$$

which yields $w>p^{\prime \gamma}$.

If $p<q$ implies $f(p)<f(q)$ for all prime powers $p$ and $q$, then we get (2.1) for arbitrary primes in a similar (and somewhat easier) way.

Finally we show that $\gamma$ is an integer. Since $f(n)=n^{\gamma}$ whenever $n$ is not divisible by $p$, the function $g(x)=(p x+1)^{\gamma}$ is integer for positive integer values of $x$. Consider its $k$ 'th difference for an integer $k>\gamma$. This is integer as well, and we have

$$
\Delta^{k} g(n)=g^{(k)}(t)=\gamma(\gamma-1) \ldots(\gamma-k+1) p^{k}(p t+1)^{\gamma-k}
$$

for some real $t \in[n, n+k]$. Since the right hand side tends to 0 , it must vanish for large $n$, hence so does one of the factors $\gamma-j$.

IMRE Z. RUZSA
ALFRÉD RÉNYI INSTITUTE OF MATHEMATICS
H-1364 BUDAPEST, P.O. BOX 127
HUNGARY
E-mail: ruzsa@renyi.hu
PÉTER P. VARJÚ
DEPARTMENT OF MATHEMATICS
PRINCETON UNIVERSITY
PRINCETON, NJ 08544
USA
AND
ANALYSIS AND STOCHASTICS RESEARCH GROUP
OF THE HUNGARIAN ACADEMY OF SCIENCES
UNIVERSITY OF SZEGED
SZEGED
HUNGARY
E-mail: pvarju@princeton.edu
(Received January 4, 2010; revised May 18, 2010)


[^0]:    2000 Mathematics Subject Classification: 11A05, 11A25.
    Key words and phrases: norm, multiplicative function.
    Supported by Hungarian National Foundation for Scientific Research (OTKA), Grants No. K 61908, K 72731.
    Supported by Fulbright Science and Technology Award No. 15073240.

