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Euclidean algorithm in different norms

By IMRE Z. RUZSA (Budapest) and PÉTER P. VARJÚ (Szeged)

Abstract. We describe those norm-like functions on the integers which admit a

Euclidean algorithm.

1. Introduction

A norm on the ring of integers of an algebraic number field is a nonnegative

integer-valued completely multiplicative function f . A useful (and quite rare)

property it may have is the possibility of a Euclidean algorithm, which means

that for any integers a, b, b 6= 0 we can find integers q, r such that a = qb + r

and f(r) < f(b). A familiar example is N(n) = |n| in Z. Inspired by a question

of Attila Pethő and Sándor Turjányi we explore which other norms on Z
have this property.

First we describe a class of functions that can be used as such a norm. Let p

be a prime and let γ and w be positive integers such that w ≥ pγ . If x = pkx′ > 0

where p - x′ then set

fγ,p,w(x) = fγ,p,w(−x) = wkx′γ ,

and set fγ,p,w(0) = 0. (In particular, if w = pγ , we recover the powers of the

absolute value.)
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The complete multiplicativity of these functions is clear. We check that they

also satisfy the division property. Indeed, let b = pkb′ where p - b′. If b|a then the

statement is clear. Assume b - a. There is a q such that

|b| > a− q|b| > a− (q + 1)|b| > −|b|.

Set r = a− q|b| or r = a− (q+1)|b| such that pk+1 - r. Then r = plr′ where p - r′

and l ≤ k. By definition, using w ≥ pγ we get

fγ,p,w(r) = wl

∣∣∣∣
r

pl

∣∣∣∣
γ

≤ wk

∣∣∣∣
r

pk

∣∣∣∣
γ

< wk

∣∣∣∣
b

pk

∣∣∣∣
γ

= fγ,p,w(b),

which was to be proven.

Our aim is to show that the above list contains all functions for which there

is a Euclidean algorithm.

Theorem. Let f : Z→ Z be a nonnegative completely multiplicative func-

tion. If f has the property that for all integers a, b, b 6= 0 we can find integers

q, r such that a = qb + r and f(r) < f(b), then there is a prime p and positive

integers γ and w with w ≥ pγ such that f = fγ,p,w.

The first author posed this as a problem in the 2004 Schweitzer competition,

and the proof below is based on the solution by the second author.

2. Proof

In the proof we shall use the following lemma.

Lemma. Let n, m, l be integers such that 0 < n < m < l, and n and m are

coprime. If lk > kmk+1 with some positive integer k, then there exist nonnegative

integers α0, . . . , αk such that

lk = α0m
k + α1m

k−1n+ · · ·+ αkn
k.

Proof. Note that such a representation obviously exists if the coefficients

are allowed to be negative.

Let

lk = α′
0m

k + α′
1m

k−1n+ · · ·+ α′
kn

k

with some possibly negative integers α′
j . Let i be the least index for which 0 <

α′
i ≤ n fails. If i < k, then we have α′

i = α′′
i + nq and 0 < α′′

i ≤ n with some
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integer q. Set α′′
i+1 = α′

i+1 + mq, and α′′
j = α′

j for j 6= i, i + 1. Continue this

process until we get a representation

lk = α0m
k + α1m

k−1n+ · · ·+ αkn
k

with integers 0 < αj ≤ n for all j < k. Then by assumption, we have αk ≥
lk − knmk ≥ 0, and the claim follows. ¤

Now we prove the main result.

Proof of the Theorem. Let f be a function satisfying the assumptions

of the theorem. First note that f(0) = f(0 · n) = f(0)f(n) for each n, hence

f(0) = 0 or f ≡ 1. In the second case, the condition fails with a = b = 1, so

f(0) = 0.

For each n we have f(n) = f(1 · n) = f(1)f(n) which yields f(1) = 1 or

f ≡ 0. The second case is impossible again. By

1 = f(1) = f((−1) · (−1)) = f(−1)f(−1)

we have f(−1) = 1 or f(−1) = −1. By nonnegativity, only the first is possible.

Consequently f(−n) = f(−1)f(n) = f(n) in general.

Claim 1. If x, y > 0 then f(x+ y) > f(x) or f(x+ y) > f(y).

Indeed, assume the contrary and consider a counterexample for which f(x+y)

is minimal. We apply the division assumption with b = x + y and a = y to get

an integer q with

f(y − q(x+ y)) < f(x+ y).

There may be several such values of q; select one for which |q| is minimal. By

assumption q 6= 0 and q 6= 1. Assume first that q > 1; the other case, namely

q < 0, can be handled similarly. Then we have

f(qx+ (q − 1)y) < f(x+ y) ≤ f((q − 1)x+ (q − 2)y),

where the second inequality follows from the minimality of q. But then we can

replace x and y by x′ = x + y and y′ = (q − 1)x + (q − 2)y, and this is a

counterexample for the claim with f(x′ + y′) < f(x+ y), a contradiction.

Claim 2. If x1, x2, . . . , xk > 0 then at least one of the inequalities

f(x1 + · · ·+ xk) > f(xi) holds (1 ≤ i ≤ k).

For k = 2 this is the statement of the previous claim. For higher values of k

we use induction. Assume that k > 2 and the claim holds for k − 1. Then

f(x1 + · · ·+ xk−1 + xk) > min{f(x1 + · · ·+ xk−1), f(xk)}
> min{f(x1), . . . , f(xk−1), f(xk)},
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by the previous claim and by the induction hypothesis.

Claim 3. If 0 < n < m < l, and n and m are coprime, then f(n) < f(l) or

f(m) < f(l).

Assume to the contrary that f(l) ≤ f(n) and f(l) ≤ f(m). For large enough k

we have lk > kmk+1. Applying the Lemma we get a representation

lk = α0m
k + α1m

k−1n+ · · ·+ αkn
k,

with nonnegative integers αj . For arbitrary i we have

f(lk) = f(l)k ≤ f(m)k−if(n)i = f(mk−ini) ≤ f(αim
k−ini),

which contradicts the previous claim.

We resume the proof of the Theorem. There may or may not be positive

prime powers p, q such that p < q and f(p) ≥ f(q). Assume first that such prime

powers do exist.

Let r be an arbitrary prime, not dividing pq.

Now if for some positive integers α, β we have qα > rβ , then applying Claim 3

with n = min(pα, rβ), m = max(pα, rβ) and l = qα, we get f(qα) > f(rβ).

Conversely, when qα < rβ , then setting n = pα, m = qα and l = rβ we get

f(qα) < f(rβ).

These observations together imply

f
(
qbβ log r/ log qc

)
< f(rβ) < f

(
qdβ log r/ log qe

)
.

By multiplicativity, we obtain

bβ log r/ log qc
β

<
log f(r)

log f(q)
<

dβ log r/ log qe
β

.

Letting β → ∞, we get

log(f(r)) = log r
log f(q)

log q
,

whence

f(r) = rγ (2.1)

with a positive real constant γ = log f(q)/ log q independent of r.

We have this equality for all primes r not dividing p or q. Notice that since

γ = log f(q)/ log q, (2.1) holds for the prime divisor of q also. Let p′ be the prime

divisor of p, and set w = f(p′). Then f = fγ,p′,w, and

logw

log p′
=

log(f(p))

log p
>

log(f(q))

log q
= γ,

which yields w > p′γ .
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If p < q implies f(p) < f(q) for all prime powers p and q, then we get (2.1)

for arbitrary primes in a similar (and somewhat easier) way.

Finally we show that γ is an integer. Since f(n) = nγ whenever n is not

divisible by p, the function g(x) = (px+ 1)γ is integer for positive integer values

of x. Consider its k’th difference for an integer k > γ. This is integer as well, and

we have

∆kg(n) = g(k)(t) = γ(γ − 1) . . . (γ − k + 1)pk(pt+ 1)γ−k

for some real t ∈ [n, n + k]. Since the right hand side tends to 0, it must vanish

for large n, hence so does one of the factors γ − j. ¤
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