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Sopdes and nonlinear connections

By NARCISO ROMÁN-ROY (Barcelona), MODESTO SALGADO (Santiago de Compostela)

and SILVIA VILARIÑO (A Coruña)

Abstract. The canonical k-tangent structure on T 1
kQ = TQ⊕ k. . . ⊕TQ allows us

to characterize nonlinear connections on T 1
kQ and to develop Günther’s (k-symplectic)

Lagrangian formalism. We study the relationship between nonlinear connections and

second-order partial differential equations (sopdes), which appear in Günther’s Lagran-

gian formalism.

1. Introduction

Lagrangian mechanics have been entirely geometrized in terms of symplec-

tic geometry. In this approach there exists certain dynamical vector field on the

tangent bundle of a manifold whose integral curves are the solutions of the Euler-

Lagrange equations. This vector field is usually called second-order differential

equation (sode to short) or spray (sometimes it is called semispray and the term

spray is reserved to homogeneous second-order differential equations, see for ins-

tance, [1], [8]). Let us remember that a sode on TQ is a vector field on TQ such

that JS = C, where J is the almost tangent structure or vertical endomorphism

and C is the canonical field or Liouville field.

In [1], [2], [3], Grifone studies the relationship among sodes, nonlinear

connections and the autonomous Lagrangian formalism. This study was extended

to the non-autonomous case by M. de León and P. Rodrigues [8].

The natural generalization to Classical Field Theory of the concept of sode

is called second order partial differential equation (sopde to short). This concept
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was introduced by Günther in [5] in order to develop his Lagrangian polysymp-

lectic (k-symplectic) formalism. The “phase space” of this formalism is the tan-

gent bundle of k1-velocities T 1
kQ, that is, the Whitney sum of k-copies of the

bundle TQ,

T 1
kQ := TQ⊕ k. . . ⊕TQ.

In this paper we study the relationship between nonlinear connections and

arbitrary sopdes on T 1
kQ.

The structure of the paper is the following:

In Section 2 we describe briefly the bundle of k1-velocities T 1
kQ of a manifold

Q (see [9], [10]). After, following to Grifone [1], [2], [3] and Szilasi [14] we

define a canonical short exact sequence

0 // T 1
kQ×Q T 1

kQ
i // T (T 1

kQ)
j // T 1

kQ×Q TQ // 0

which allows us to introduce in an alternative way the canonical geometric ele-

ments on T 1
kQ: the Liouville vector field and the canonical k-tangent structure,

(see also [9]). The usual definition of these geometric elements can be found in

[11], [12], [13].

In Section 3 we give two characterizations of the nonlinear connections on τkQ :

T 1
kQ → Q. In the first one we use the canonical short exact sequence constructed

in Section 2 in an analogous way to that one in Szilasi’s Handbook study [14]

for the case k = 1; in this first characterization our theory is similar to the

theory developed in [9]. In the second one we characterize nonlinear connections

on τkQ : T 1
kQ → Q using the canonical k-tangent structure (J1, . . . , Jk). In the

particular case k = 1 we reobtain some results given by Grifone in [1], [2], [3].

Finally in Section 4 we recall the notion of sopdes (second order partial dif-

ferential equations) and we study the relationship between sopdes and nonlinear

connections on T 1
kQ.

Along the paper we have used the Szilasi’s Handbook study [14] and Gri-

fone’s papers [1], [3] as principal reference.

All manifolds are real, paracompact, connected and C∞. All maps are C∞.

Sum over crossed repeated indices is understood.

2. The canonical short exact sequence

In this section we describe briefly the bundle of k1-velocities T 1
kQ of a mani-

fold Q (see [9], [10]), that is, the Whitney sum of k-copies of the tangent bundle
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TQ, which is the phase space where the k-symplectic Lagrangian formalism of

classical field theories (Günther’s formalism [5]) is developed. After, following

Grifone [1], [2], [3] and Szilasi [14] we define a canonical short exact sequence

which allows us to introduce the canonical geometric elements on T 1
kQ, which are

necessary to develop the k-symplectic Lagrangian formalism: the Liouville vector

field and the canonical k-tangent structure.

Moreover, the canonical short exact sequence introduced in this section will

be used, in the following section, to characterize nonlinear connections on T 1
kQ.

The tangent bundle of k1-velocities of a manifold

Let Q be a n-dimensional differential manifold, and let τQ : TQ → Q be the

tangent bundle of Q. Denote by T 1
kQ the Whitney sum TQ⊕ k. . . ⊕TQ of k copies

of TQ, with projection τkQ : T 1
kQ → Q, τkQ(v1q, . . . , vkq) = q. The fibre over q ∈ Q

is the nk-dimensional vector space (T 1
kQ)q = TqQ⊕ k. . . ⊕TqQ . Along this paper

an element of T 1
kQ will be denoted by vq = (v1q, . . . , vkq).

The manifold J1
0(Rk, Q) of 1-jets of maps with source at 0 ∈ Rk and projec-

tion map τkQ : J1
0(Rk, Q) → Q, τkQ(j

1
0,qσ) = σ(0) = q, can be identified with T 1

kQ

as follows:

J1
0(Rk, Q) ≡ TQ⊕ k. . . ⊕TQ, j10,qσ ≡ (v1q, . . . , vkq),

where q = σ(0), and vAq = σ∗(0)
(

∂
∂tA

(0)
)
. T 1

kQ is called the bundle of k1-

velocities of Q, see [10].

If (qi) are local coordinates on U ⊂ Q, then the induced local coordinates

(qi, viA) on T 1
kU = (τkQ)

−1(U) are given by

qi(vq) = qi(v1q, . . . , vkq) = qi(q), viA(vq) = viA(v1q, . . . , vkq) = vAq(q
i).

The vector bundle (T 1
kQ×Q T 1

kQ, (τkQ)
∗τkQ, T

1
kQ)

Let us consider the fibre bundle τkQ : T 1
kQ → Q and the pull-back bundle

of τkQ by τkQ, that is,

(T 1
kQ×Q T 1

kQ, (τkQ)
∗τkQ, T

1
kQ),

where the total space is the fibre product

T 1
kQ×Q T 1

kQ = {(vq,wq) ∈ T 1
kQ× T 1

kQ | τkQ(vq) = τkQ(wq)},

and (τkQ)
∗τkQ : T 1

kQ×Q T 1
kQ → T 1

kQ is the canonical projection on the first factor,

that is, (τkQ)
∗τkQ(vq,wq) = vq.
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The map i : T 1
kQ×Q T 1

kQ −→ T (T 1
kQ)

Let V (T 1
kQ) =

〈
∂

∂vi
A

〉
1≤i≤n, 1≤A≤k

be denote the vertical subbundle of

τkQ : T 1
kQ → Q and define the map

i : T 1
kQ×Q T 1

kQ −→ V (T 1
kQ) ⊂ T (T 1

kQ)

by

i(vq,wq) =

k∑

A=1

d

ds

∣∣∣
0
(v1q, . . . , vAq + swAq, . . . , vkq).

In coordinates, this map is given by

i(vq,wq) =

k∑

A=1

wi
A

∂

∂viA

∣∣∣
vq

. (1)

Canonical vector fields on T 1
kQ

The canonical vector field (or Liouville vector field) ∆ ∈ X(T 1
kQ) is defined

by ∆(vq) = i(vq,vq). This vector field is used (among others) to introduce

the energy Lagrangian function in the k-symplectic Lagrangian formalism, see

Section 4.2.

From (1) we obtain that its coordinate expression is

∆ =

k∑

A=1

n∑

i=1

viA
∂

∂viA
. (2)

The canonical vector fields ∆A ∈ X(T 1
kQ) are defined by

∆A(vq) = i(vq, (0, . . . ,
A
vAq, . . . , 0))

for all A ∈ {1, . . . , k}, and they are given in coordinates by

∆A =

n∑

i=1

viA
∂

∂viA
. (3)

The vector bundle (T 1
kQ×Q TQ, (τkQ)

∗τQ, T 1
kQ)

Let us consider now the fibre bundle (τkQ)
∗τQ, which is the pull-back of the

tangent bundle TQ by τkQ. This fibre is also called the transverse fibre to τkQ. Its

total bundle space is

T 1
kQ×Q TQ = {(vq, uq) ∈ T 1

kQ× TQ | τkQ(vq) = τQ(uq)},
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and (τkQ)
∗τQ : T 1

kQ×Q TQ → T 1
kQ is the canonical projection

(τkQ)
∗τQ(vq, uq) = vq.

The map j : T (T 1
kQ) −→ T 1

kQ×Q TQ

Let τT 1
kQ

: T (T 1
kQ) → T 1

kQ be the tangent bundle of T 1
kQ and TτkQ :

T (T 1
kQ) → TQ the tangent map of τkQ. We define the map

j := (τT 1
kQ

, T τkQ) : T (T
1
kQ) → T 1

kQ×Q TQ,

Zvq → (vq, Tvqτ
k
Q(Zvq )).

In coordinates,

j(Zvq ) = j

(
Zi ∂

∂qi

∣∣∣
vq

+ Zi
A

∂

∂viA

∣∣∣
vq

)
=

(
vq, Z

i ∂

∂qi

∣∣∣
q

)
. (4)

The map j is a surjective bundle homomorphism and the induced maps jvq :

Tvq (T
1
kQ) → {vq} × TqQ are linear, for all vq ∈ T 1

kQ.

In Szilasi’s Handbook study [14], page 1239, one can be found the definition

of j for an arbitrary vector bundle (E, π,M). In our case E = T 1
kQ, M = Q and

π = τkQ.

The short exact sequence arising from τkQ

Lemma 2.1. The sequence

0 // T 1
kQ×Q T 1

kQ
i //

&&NN
NNN

NNN
NNN

T (T 1
kQ)

j //

²²

T 1
kQ×Q TQ //

xxqqq
qqq

qqq
qq

0

T 1
kQ

(5)

is a short exact sequence of vector bundle maps, that we will be called the cano-

nical short exact sequence arising from τkQ.

Proof. This result can be proved for a general vector bundle (E, π,M), see

[14]. In any case the principal point of the proof is that j ◦ i = 0, which is an

immediate consequence of (1) and (4). ¤
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Canonical k-tangent structure on T 1
kQ

The canonical k-tangent structure is a certain family of k tensor fields of

type (1, 1). This structure was introduced in [6], [9]. Next we will describe an

alternative definition of this structure.

We introduce the maps kA from T 1
kQ×Q TQ to T 1

kQ×Q T 1
kQ as follows

kA : T 1
kQ×Q TQ −→ T 1

kQ×Q T 1
kQ

(vq, uq) → (vq, (0, . . . , 0,
A
uq, 0, . . . , 0)

1 ≤ A ≤ k.

The composition JA = i ◦ kA ◦ j is a tensor field on T 1
kQ of type (1, 1)

displayed by the following diagram:

T (T 1
kQ)

j //

JA

''
T 1
kQ×Q TQ

kA // T 1
kQ×Q T 1

kQ
i // T (T 1

kQ).

In coordinates,

Zi ∂
∂qi

∣∣
vq
+Zi

A
∂

∂vi
A

∣∣
vq

Â // (vq, Z
i ∂
∂qi

∣∣
q

) Â // (vq, (0, . . . ,
A

Zi ∂
∂qi

∣∣
q
, . . . , 0)

) Â // Zi ∂
∂vi

A

∣∣
vq

,

or equivalently

JA =
∂

∂viA
⊗ dqi. (6)

The set (J1, . . . , Jk) is called the canonical k-tangent structure on T 1
kQ, see [6],

[11], [13]. Along this paper we will use this structure to characterize nonlinear

connections on τkQ : T 1
kQ → Q.

3. Nonlinear connections on τk
Q : T 1

kQ → Q

Let us remember that an Ehresmann connection or nonlinear connection

on τkQ : T 1
kQ → Q is a differentiable subbundle H(T 1

kQ) of T (T 1
kQ), called the

horizontal subbundle of the connection, which is complementary to the vertical

subbundle V (T 1
kQ), that is, T (T 1

kQ) = H(T 1
kQ)⊕ V (T 1

kQ).

In this section we give two characterizations of the nonlinear connections

on τkQ : T 1
kQ → Q. In the first one we use the canonical short exact sequence

constructed in the above section in an analogous way to that one in Szilasi’s

Handbook study [14] for the case k = 1. This first characterization also appears

in [9]. After we characterize nonlinear connections on τkQ : T 1
kQ → Q using the

k-tangent structure (J1, . . . , Jk). In the particular case k = 1 this second result

was obtained by Grifone [1], [2], [3].
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3.1. The horizontal maps.

Definition 3.1. A right splitting of the short exact sequence

0 // T 1
kQ×Q T 1

kQ
i // T (T 1

kQ)
j // T 1

kQ×Q TQ // 0 ,

is called a horizontal map for τkQ. This map is a T 1
kQ-morphism H : T 1

kQ ×Q

TQ −→ T (T 1
kQ) of vector bundles (i.e.q the morphism over the base is idT 1

kQ
)

satisfying

j ◦H = 1T 1
kQ×QTQ.

Next it will be shown that to give a horizontal map for τkQ is equivalent to

give a nonlinear connection on τkQ : T 1
kQ → Q.

Proposition 1. The horizontal map H : T 1
kQ ×Q TQ −→ T (T 1

kQ) is locally

given by

H(vq, uq) = ui

(
∂

∂qi

∣∣∣
vq

−N j
Ai(vq)

∂

∂vjA

∣∣∣
vq

)
(7)

where vq ∈ T 1
kQ, uq ∈ TQ and the functions N j

Ai are called the components of

the connection defined by H.

Proof. We write

H(vq, uq) = Hi(vq, uq)
∂

∂qi

∣∣∣
vq

−N i
A(vq, uq)

∂

∂viA

∣∣∣
vq

for some functions on Hi, N i
A defined only locally on T 1

kQ×Q TQ.

Since j ◦H = 1T 1
kQ×QTQ, from (4), we obtain

H(vq, uq) = ui ∂

∂qi

∣∣∣
vq

−N i
A(vq, uq)

∂

∂viA

∣∣∣
vq

. (8)

On the other hand, the induced maps

Hvq : (T 1
kQ×Q TQ)vq

∼= {vq} × TqQ → Tvq (T
1
kQ)

are linear for all vq ∈ T 1
kQ, so from (8) we obtain that

H(vq, uq) = H

(
vq, u

i ∂

∂qi

∣∣∣
q

)
= uiH

(
vq,

∂

∂qi

∣∣∣
vq

)

= ui

(
∂

∂qi

∣∣∣
vq

−N j
A(vq,

∂

∂qi

∣∣∣
q
)

∂

∂vjA

∣∣∣
vq

)
. (9)
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Now defining the functions N j
Ai on the domain of an induced chart of T 1

kQ by

N j
Ai(vq) = N j

A

(
vq,

∂

∂qi

∣∣∣
q

)
, 1 ≤ i, j ≤ n, 1 ≤ A ≤ k

we obtain (7). ¤

To each horizontal map H : T 1
kQ×QTQ → T (T 1

kQ) we associate a horizontal

and a vertical projector as follows:

(1) The horizontal projector is given by h := H ◦ j : T (T 1
kQ) → T (T 1

kQ).

From (4) we deduce that the local expression of h is

h =

(
∂

∂qi
−N j

Ai

∂

∂vjA

)
⊗ dqi, (10)

and we have h2 = h,Kerh = V (T 1
kQ) and

Imh =

〈
∂

∂qi
−N j

Ai

∂

∂vjA

〉

i=1,...,n

.

(2) The vertical projector is given by v := 1T (T 1
kQ) − h and it satisfies

v2 = v, Kerv = Imh, Imv = V (T 1
kQ).

From (10) we obtain

v =
∂

∂vjA
⊗ (dvjA +N j

Aidq
i). (11)

Since v := 1T (T 1
kQ) − h and h2 = h we obtain that vh = hv = 0.

The following Lemma is well known.

Lemma 3.1. Let M be an arbitrary manifold and Γ an almost product structure,

i.e., Γ is a tensor field of type (1, 1) such that Γ2 = 1TM . If we put

h =
1

2
(1TM + Γ), v =

1

2
(1TM − Γ)

then

h2 = h hv = vh = 0 v2 = v. (12)

Conversely if h and v are two tensor fields of type (1, 1) and they satisfy (12)

then Γ = h− v is an almost product structure, and we have TM = Imh⊕ Imv.
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Then, in our case M = T 1
kQ we have

T (T 1
kQ) = Imh⊕ Imv = Imh⊕ V (T 1

kQ)

Thus Imh is the nonlinear connection associated to H.

We have seen that to each horizontal map H corresponds a horizontal pro-

jector h which defines a nonlinear connection on T 1
kQ. The converse of this is

given in Lemma 1, page 1249 Szilasi [14], for an arbitrary vector bundle; in our

case one obtains.

Lemma 3.2. If h ∈ T1
1(T

1
kQ) is a horizontal projector for τkQ, that is h

2 = h and

Kerh = V (T 1
kQ), then there exists an unique horizontal map H : T 1

kQ×QTQ −→
T (T 1

kQ) such that H ◦ j = h. ¤

Let X ∈ X(Q) be a vector field on Q. Then the horizontal lift Xh of X to

X(T 1
kQ) is defined by

Xh(vq) := H(vq, X(q)) = Xi

(
∂

∂qi

∣∣∣
vq

−N j
Ai(vq)

∂

∂vjA

∣∣∣
vq

)
, (13)

where X = Xi ∂
∂qi .

The curvature Ω : X(T 1
kQ)×X(T 1

kQ) → X(T 1
kQ) of the horizontal map H is

defined as Ω = − 1
2 [h,h] and it is locally given by

Ω =
1

2

(
∂N j

Ak

∂qi
− ∂N j

Ai

∂qk
+Nm

Bk

∂N j
Ai

∂vmB
−Nm

Bi

∂N j
Ak

∂vmB

)
∂

∂vjA
⊗ dqi ∧ dqk. (14)

3.2. Nonlinear connections and canonical k-tangent structure on T 1
kQ.

In this section we characterize nonlinear connections on T 1
kQ using the canonical

k-tangent structure (J1, . . . , Jk).

Proposition 2. Let Γ be a tensor field of type (1, 1) on T 1
kQ satisfying

JA ◦ Γ = JA and Γ ◦ JA = −JA, 1 ≤ A ≤ k. (15)

Then Γ is an almost product structure, that is, Γ2 = 1T (T 1
kQ).

Proof. For each vector field Z on T 1
kQ we have JA(ΓZ)= JA(Z), 1≤A≤ k.

Then JA(Γ(Z) − Z) = 0, that is, the vector field Γ(Z) − Z is vertical, hence it

can be written as follows:

Γ(Z)− Z =

k∑

B=1

JB(WB),
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where W1, . . . ,Wk are vector fields on T 1
kQ. Finally we obtain

Γ2(Z) = Γ(Γ(Z)) = Γ(Z +

k∑

B=1

JB(WB)) = Γ(Z) +

k∑

B=1

Γ(JB(WB))

= Γ(Z)−
k∑

B=1

JB(WB) = Z. ¤

From (15) we deduce that Γ is locally given by

Γ =

(
∂

∂qi
+ Γj

Ai

∂

∂vjA

)
⊗ dqi − ∂

∂viA
⊗ dviA, (16)

where Γj
Ai are functions defined in a neighbourhood of T 1

kQ called the components

of Γ.

Proposition 3. To give a nonlinear connection N on τkQ : T 1
kQ → Q is equivalent

to give a tensor field Γ of type (1, 1) satisfying (15).

Proof. Let N be a nonlinear connection on τkQ : T 1
kQ → Q with horizontal

projector h. Then Γ = 2h− 1T (T 1
kQ) satisfies (15). In fact, one obtains:

JA ◦ Γ = 2(JA ◦ h)− JA = 2JA − JA = JA

where we have used that JA ◦ h = JA. On the other hand, since h ◦ JA = 0 we

Γ ◦ JA = 2(h ◦ JA)− JA = −JA.

Conversely, given Γ satisfying (15) from the above proposition we obtain

that Γ2 = 1T (T 1
kQ), then from Lemma 3.1 we deduce that there exists a horizontal

projector h = 1
2 (1T (T 1

kQ) + Γ), with local expression

h =
1

2
(1T (T 1

kQ) + Γ) =

(
∂

∂qi
+

1

2
Γj
Ai

∂

∂vjA

)
⊗ dqi,

which defines a nonlinear connection NΓ. Moreover the components of the non-

linear connection NΓ are given by

(NΓ)
j
Ai = −1

2
Γj
Ai. ¤
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4. k-vector fields. Second order partial differential

equations (SOPDEs)

Second order differential equations, usually called sodes play an important

role in the geometric description of Lagrangian mechanics.

In this section we introduce sopdes (second order partial differential equa-

tions) which are a generalization of the concept of sode. We study the relati-

onship between sopdes and nonlinear connections on T 1
kQ and we also indicate

the role of sopdes in Lagrangian classical field theories. Let us note that the role

of sopde’s in the k-symplectic [5], [11], [13] and k-cosymplectic [7] Lagrangian

formalisms of classical field theories is very important and similar to the role of

second-order differential equations, sode’s, in Lagrangian mechanics.

Definition 4.1. Let M be a manifold and τkM : T 1
kM −→ M the bundle of k1-

velocities. A k-vector field on M is a section ξ : M −→ T 1
kM of the projection τkM .

Since T 1
kM is the Whitney sum TM⊕ k. . . ⊕TM of k copies of TM , we

deduce that a k-vector field ξ defines a family of k vector fields {ξ1, . . . , ξk} on M

by projecting ξ onto every factor. For this reason we will denote a k-vector field

ξ by (ξ1, . . . , ξk).

Definition 4.2. An integral section of a k-vector field ξ = (ξ1, . . . , ξk) passing th-

rough a point x ∈ M is a map φ : U0 ⊂ Rk → M , defined on some neighbourhood

U0 of 0 ∈ Rk, such that

φ(0) = x, φ∗(t)
(

∂

∂tA

∣∣∣
t

)
= ξA(φ(t)) for every t ∈ U0, (17)

or equivalently, φ satisfies ξ ◦ φ = φ(1), where φ(1) is the first prolongation of φ

defined by

φ(1) : U0 ⊂ Rk −→ T 1
kM

t −→ φ(1)(t) = j10φt, φt(t) = φ(t̄+ t),

for every t, t̄ ∈ Rk such that t̄+ t ∈ U0.

A k-vector field ξ = (ξ1, . . . , ξk) on M is said to be integrable if there is an

integral section passing through each point of M .

In local coordinates one obtains

φ(1)(t1, . . . , tk) =

(
φi(t1, . . . , tk),

∂φi

∂tA
(t1, . . . , tk)

)
. (18)
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Let us observe that in the case k = 1, an integral section is an integral curve

and the first prolongation is the tangent lift from a curve on M to TM .

Next we will introduce the notion of sopde, which is a class of k-vector fields

on T 1
kQ. We shall see that the integral sections of sopdes are first prolongations

φ(1) of maps φ : Rk → Q.

If F : M → N is a differentiable map between the manifolds M and N , then

T 1
kF : T 1

kM → T 1
kN is defined by T 1

kF (v1q, . . . , vkq) = (F∗(q)(v1q), . . . , F∗(q)vkq),
or equivalently T 1

kF (j10σ) = j10(F ◦ σ).
Definition 4.3. A k-vector field ξ = (ξ1, . . . , ξk) on T 1

kQ is a second order partial

differential equation (sopde) if it is also a section of the projection T 1
k (τ

k
Q) :

T 1
k (T

1
kQ) → T 1

kQ; that is,

T 1
k (τ

k
Q) ◦ ξ = 1T 1

kQ
. (19)

Let us observe that ξA ∈ X(T 1
kQ) and (19) means

(τkQ)∗(vq)(ξA(vq)) = vAq A = 1, . . . , k.

where vq = (v1q, . . . , vkq).

Let (qi) be a local coordinate system on U ⊂ Q and (qi, viA) the induced local

coordinate system on T 1
kU . From (19), a direct computation shows that the local

expression of a sopde ξ = (ξ1, . . . , ξk) is

ξA(q
i, viA) = viA

∂

∂qi
+ (ξA)

i
B

∂

∂viB
, 1 ≤ A ≤ k. (20)

where (ξA)
i
B ∈ C∞(T 1

kU).

If ϕ : Rk → T 1
kQ is an integral section of a sopde (ξ1, . . . , ξk) locally given

by ϕ(t) =
(
ϕi(t), ϕi

B(t)
)
then ξA(ϕ(t)) = ϕ∗(t)[∂/∂tA(t)] and thus

∂ϕi

∂tA
(t) = viA(ϕ(t)) = ϕi

A(t),
∂ϕi

B

∂tA
(t) = (ξA)

i
B(ϕ(t)). (21)

From (18) and (21) we obtain:

Proposition 4. Let ξ = (ξ1, . . . , ξk) be an integrable sopde on T 1
kQ. If ϕ is an

integral section of ξ then ϕ = φ(1), where φ(1) is the first prolongation of the map

φ = τkQ ◦ ϕ : Rk ϕ→ T 1
kQ

τk
Q→ Q and it is a solution to the system

∂2φi

∂tA∂tB
(t) = (ξA)

i
B(φ

(1)(t)) = (ξA)
i
B(φ

i(t),
∂φi

∂tC
(t)). (22)

Conversely, if φ : Rk → Q is any map satisfying (22), then φ(1) is an integral

section of ξ = (ξ1, . . . , ξk). ¤
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For an integrable sopde we have (ξA)
i
B = (ξB)

i
A.

The following characterization of sopdes can be given using the canonical

k-tangent structure of T 1
kQ (see (3), (6) and (20)):

Proposition 5. A k-vector field ξ = (ξ1, . . . , ξk) on T 1
kQ is a sopde if, and only

if, SA(ΓA) = ∆A, for all A ∈ {1, . . . , k} . ¤

Example 1. Let us consider the following sopde (ξ1, ξ2) on T 1
2R , with coordinates

(q, v1, v2), given by

ξ1 = v1
∂

∂q
− k

λ2
v1

∂

∂v1
− k

λ2
v2

∂

∂v2

ξ2 = v2
∂

∂q
− k

λ2
v2

∂

∂v1
+

1

k
v1

∂

∂v2
(23)

Let φ : (t, x) ∈ R2 → R be a map. If φ(1) : R2 → T 1
2R is an integral section of

(ξ1, ξ2) then from (22) we obtain

− k

λ2

∂φ

∂t
=

∂2φ

∂t2
(24)

− k

λ2

∂φ

∂x
=

∂2φ

∂t∂x
(25)

1

k

∂φ

∂t
=

∂2φ

∂x2
(26)

Equation (26) is the one-dimensional heat equation where k is the thermal diffu-

sivity and the solutions φ(t, x) represents the temperature at the point x of a rod

at time t.

Any integral section of this sopde is the first prolongation of a solution of

the heat equation. The general solution of (26) is

φ(t, x) = e−
κ
λ2 t

[
C cos

(x
λ

)
+D sin

(x
λ

)]
= Ae−

κ
λ2 t sin

(x
λ
+ δ

)

where λ, C and D are arbitrary constants and A =
√
C2 +D2, tan δ = C

D . Thus

any solution of (26) is solution of (24) and (25).

4.1. Relationship between SOPDEs and nonlinear connections. In this

section we prove that each nonlinear connection defines a second order partial

differential equation (sopde) on T 1
kQ and conversely, given a sopde ξ on T 1

kQ a

nonlinear connection Nξ on τkQ : T 1
kQ → Q can be defined.

SOPDE associated to a nonlinear connection

Let us consider a nonlinear connection on τkQ : T 1
kQ → Q with horizontal

map H : T 1
kQ×Q TQ → T (T 1

kQ). For each A = 1, . . . , k we define ξAH ∈ X(T 1
kQ)
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as follows

ξAH(vq) = H(vq, vAq) where vq = (v1q, . . . , vkq) ∈ T 1
kQ.

From (7) we obtain that the sopde ξH = (ξ1H, . . . , ξkH) associated to H is

ξAH(vq) = viA

(
∂

∂qi

∣∣∣
vq

−Nk
Bi

∂

∂vkB

∣∣∣
vq

)
. (27)

Nonlinear connection associated to a SOPDE

Theorem 4.1. To each sopde ξ on T 1
kQ a nonlinear connection Nξ may be

associated, with horizontal projector

hξ =
1

k + 1

(
1T (T 1

kQ) −
k∑

A=1

LξAJ
A

)
. (28)

Proof. Let ξ = (ξ1, . . . , ξk) be a sopde on T 1
kQ locally given by

ξA = viA
∂

∂qi
+ (ξA)

j
B

∂

∂vjB
, A = 1, . . . , k.

Since LξAJ
A(Z) = [ξA, J

AZ] − JA[ξA, Z] for all vector field Z on T 1
kQ, we

obtain

k∑

A=1

LξAS
A = −

(
k

∂

∂qi
+

k∑

A=1

∂(ξA)
j
B

∂viA

∂

∂vjB

)
⊗ dqi +

∂

∂viB
⊗ dviB .

Then a straightforward computation in local coordinates shows that hξ is

locally given by

hξ =

(
∂

∂qj
+

1

k + 1

k∑

A=1

∂(ξA)
i
B

∂vjA

∂

∂viB

)
⊗ dqj , (29)

and satisfies

h2
ξ = hξ and Kerhξ = V (T 1

kQ).

So defining vξ = 1T (T 1
kQ) − hξ we obtain, see Lemma 3.1, that T (T 1

kQ) =

Imhξ ⊕ V (T 1
kQ). ¤
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In the case k = 1, the horizontal projector hξ given in (28), coincides with

the projector given by Grifone [1], [3] and by Szilasi [14]. From (10) and (29)

we deduce that the components of the connection Nξ are given by

(Nξ)
ı
Bj = − 1

k + 1

k∑

A=1

∂(ξA)
ı
B

∂vjA
. (30)

We can associate to each sopde ξ the almost product structure Γξ = 2hξ −
1T (T 1

kQ), locally given by

Γξ =
1

k + 1

(
(1− k)1T (T 1

kQ) − 2

k∑

A=1

LξAJ
A)

)

In the case k = 1, this tensor field is Γξ = −LξJ , where J is the canonical

tangent structure on TQ. The nonlinear connection associated to this structure

was introduced by Grifone in Proposition I.41 of [1] and Proposition 1.3 of [3].

A turned out that there is a correspondence such that to each nonlinear

connection on T 1
kQ a sopde ξ is associated and conversely, given a sopde on

T 1
kQ there exists a nonlinear connection associated to this sopde. Is this cor-

respondence a bijection? In general the answer to this question is negative. In

fact:

(1) Let ξ be a sopde and Nξ be the nonlinear connection associated to ξ. We

denote by Hξ the horizontal map associated to Nξ. From (27) and (30) we

deduce that ξ = ξHξ
if and only if

(ξA)
j
B =

1

k + 1

k∑

C=1

∂(ξC)
j
B

∂viC
viA, 1 ≤ A,B ≤ k, 1 ≤ i ≤ n.

When k = 1 we obtain ξHξ
= ξ if and only if 1

2
∂ξk

∂vi vi = ξk which means

that the functions ξk are positive-homogeneous of degree 2 (see [3]).

(2) Let us consider now a nonlinear connection N defined from a horizontal

map H, the sopde ξH associated to this connection and the connection NξH

associated to the sopde ξH.

From (27) and (30) we obtain that N = NξH if and only if

N j
B i = vlA

∂N j
Bl

∂viA
, 1 ≤ i, j ≤ n, 1 ≤ B ≤ k.
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4.2. SOPDEs in Classical Field Theory. In this subsection, we recall the

Lagrangian formalism developed by Günther [5], see also [11]. Here we show

the role of sopdes and its integral sections in the Lagrangian Field Theory.

Let L : T 1
kQ → R be a Lagrangian, that is a function L(φi, ∂φi/∂tA) that

depend on the components of the field and on its first partial derivatives. This

Lagrangian is called autonomous in the sense that not depends on the time-space

variables (tA).

The generalized Euler-Lagrange equations for L are:

k∑

A=1

∂

∂tA

∣∣∣
t

(
∂L

∂viA

∣∣∣
ψ(t)

)
=

∂L

∂qi

∣∣∣
ψ(t)

, viA(ψ(t)) =
∂ψi

∂tA
(31)

whose solutions are maps ψ : Rk → T 1
kQ with ψ(t) = (ψi(t), ψi

A(t)). Let us

observe that ψ(t) = φ(1)(t), for φ = τkQ ◦ ψ. Using the canonical k-tangent

structure, one introduces a family of 1-forms θAL on T 1
kQ, and a family of 2-forms

ωA
L on T 1

kQ , as follows

θAL = dL ◦ JA, ωA
L = −dθAL , 1 ≤ A ≤ k. (32)

In natural local coordinates we have

θAL =
∂L

∂viA
dqi, ωA

L =
∂2L

∂qj∂viA
dqi ∧ dqj +

∂2L

∂vjB∂v
i
A

dqi ∧ dvjB . (33)

We also introduce the energy function EL = ∆(L) − L ∈ C∞(T 1
kQ), whose

local expression is

EL = viA
∂L

∂viA
− L. (34)

Definition 4.4. The Lagrangian L : T 1
kQ −→ R is said to be regular if the matrix(

∂2L

∂vi
A∂vj

B

)
is not singular at every point of T 1

kQ.

Let (ξ1, . . . , ξk) be a k-vector field on T 1
kQ locally given by

ξA = (ξA)
i ∂

∂qi
+ (ξA)

i
B

∂

∂viB
.

Then from (33) and (34) we deduce that (ξ1, . . . , ξk) is a solution to the equation

k∑

A=1

iξA ωA
L = dEL (35)
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if, and only if, (ξA)
i and (ξA)

i
B satisfy the system of equations

(
∂2L

∂qi∂vjA
− ∂2L

∂qj∂viA

)
(ξA)

j − ∂2L

∂viA∂v
j
B

(ξA)
j
B = vjA

∂2L

∂qi∂vjA
− ∂L

∂qi
,

∂2L

∂vjB∂v
i
A

(ξA)
i =

∂2L

∂vjB∂v
i
A

viA.

If the Lagrangian is regular, the above equations are equivalent to the equa-

tions

∂2L

∂qj∂viA
vjA +

∂2L

∂viA∂v
j
B

(ξA)
j
B =

∂L

∂qi
(36)

(ξA)
i = viA, 1 ≤ i ≤ n, 1 ≤ A ≤ k. (37)

Thus, if L is a regular Lagrangian, we deduce:

• If (ξ1, . . . , ξk) is a solution of (35) then it is a sopde, (see (37)).

• Since (ξ1, . . . , ξk) is a sopde, from Proposition 4 we know that, if it is in-

tegrable, then its integral sections are first prolongations φ(1) : Rk → T 1
kQ

of maps φ : Rk → Q, and from (36) we deduce that φ is a solution to the

Euler–Lagrange equations (31).

• Equation (36) leads us to define local solutions to (35) in a neighbourhood

of each point of T 1
kQ and, using a partition of unity, global solutions to (35).

• In the case k = 1, equation (35) reduces to ıξωL = dEL, which is the Euler-

Lagrange equation in mechanics.

Example 2. Let L : T 1
3R→ R be a Lagrangian given by

L : T 1
3R→ R, L(q, v1, v2, v3) =

1

2

(
v21 − c2(v22 + v23)

)
. (38)

Let us suppose that (ξ1, ξ2, ξ3) is a solution of the equation (35):

3∑

A=1

iξA ωA
L = dEL.

Since L is regular we know that (ξ1, ξ2, ξ3) is a sopde satisfying (36). Then each

ξA is locally given by

ξA = vA
∂

∂q
+ (ξA)1

∂

∂v1
+ (ξA)2

∂

∂v2
+ (ξA)3

∂

∂v3
, 1 ≤ A ≤ 3.
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From (36) we have

0 =
∂2L

∂vA∂vB
(ξA)B = (ξ1)1 − c2[(ξ2)2 + (ξ3)3]. (39)

From (22) and (39) we obtain that if φ(1)(t) is an integral section of the

3-vector field (ξ1, ξ2, ξ3) then φ : Rk → Q satisfies the equation

0 =
∂2φ

∂(t1)2
− c2

(
∂2φ

∂(t2)2
+

∂2φ

∂(t3)2

)

which is the 2-dimensional wave equation.

4.3. Linearizable SOPDEs. In this section we introduce the definition of li-

nearizable sopde and we establish a necessary condition so that a sopde is li-

nearizable.

Definition 4.5. A sopde ξ = (ξ1, . . . , ξk) on T 1
kQ is said to be linearizable if in

a neighbourhood of each point on T 1
kQ, its components (ξA)

j
B can be written as

follows

(ξA)
j
B =

(
A

j
AB

)C
m
vmC +

(
B

j
AB

)
m
qm + C

j
AB (40)

with
(
A

j
AB

)C
m
,
(
B

j
AB

)
m
, C

j
AB ∈ R.

Proposition 6. If ξ is linearizable then the curvature of the nonlinear connection

Hξ vanishes.

Proof. Since ξ is linearizable, from (30) and (40) we obtain that the com-

ponents of the nonlinear connection Hξ are

(Nξ)
ı
Bj = − 1

k + 1

k∑

A=1

(
Aı

AB

)A
j
.

Now from (14) we deduce that the curvature Ω vanishes. ¤

In the particular case of a linearizable sopde, Proposition 4 can be formula-

ted as follows.

Proposition 7. Let ξ = (ξ1, . . . , ξk) be a linearizable and integrable sopde. If

the first prolongation of φ : Rk → Q is an integral section of ξ = (ξ1, . . . , ξk) then

we have

∂2φj

∂tA∂tB
(t) = (ξA)

j
B(φ

(1)(t)) =
(
A

j
AB

)C
m

∂φm

∂tC
+
(
B

j
AB

)
m
φm(t) + C

j
AB (41)

Conversely, if φ : Rk → Q is a map satisfying (41), then φ(1) is an integral section

of ξ.
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Example 3. From (23) and (40) we deduce that the sopde (23) is linearizable.
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