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On the regularity of group-valued
additive arithmetical functions

By JEAN-LOUP MAUCLAIRE (Paris)

1. Introduction

a) Notations

N is the set of positive integers, R (resp. T) is the set of real numbers
(resp. complex numbers of modulus 1).

If G is a locally compact abelian group, G∗ will denote the dual group
of G, i.e. the locally compact abelian group of the continuous characters
on G, and dm a Haar measure on G∗.

b) Position of the problem

Definition. Let G be an abelian group, and denote by + the group
operation. A function f is a G–valued additive arithmetical function if f
is a N→ G function such that f(m · n) = f(m) + f(n) when (m, n) = 1.

Throughout this article, we shall assume that G is an abelian topo-
logical group. Then, it is a classical problem to give a characterization
of the G–valued additive arithmetical functions satisfying the following
condition (C);

(C) lim
n→+∞

(f(n + 1)− f(n)) = 0 .

This problem has been considered by P. Erdős in 1946 in the case
G = R, and he proved that a real valued additive arithmetical function f
satisfies the condition (C) if and only if there exists a constant c such that
f(n) = c·log n for all n in N [2]. If G = R/Z, the solution has been provided
by E. Wirsing in 1984: in this case, we have f(n) = c · log n modulo 1 [7].
More recently, Z. Daróczy and I. Kátai solved this problem for metrical
compactly generated locally compact abelian groups, and proved that a
G–valued additive arithmetical function f satisfies the condition (C) if
and only if there exists a continuous homomorphism ϕ : R→ G such that
f(n) = ϕ(log n) [1]. This cannot be extended to all groups: I. Z. Ruzsa
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and R. Tijdeman proved that there exists a topology on the group of
integers (whith no continuous characters), and an integer-valued function
f satisfying the condition (C) [5], and I. Z. Ruzsa has an example in which
f is real-valued function, and the group of the reals has a topology such
that the continuous characters separate the elements of this group [4]. In
this situation, it seems interesting to refine on the results obtained, and
treat the case of a general abelian locally compact group, in which case
the continuous characters separate the group.
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2. The result

The result presented in this article is the following:

Theorem. Let G be an additive locally compact abelian group, G∗ its
dual, f an additive arithmetical function with values in G. The following
statements are equivalent:

i) f satisfies the condition lim(f(n + 1)− f(n)) = 0, n → +∞.
ii) there exists a continuous homomorphism ϕ : R→ G such that for any

n in N, f(n) = ϕ(log n) .
iii) for any X in G∗, there exists a real number τ(X) such that for any n

in N, X(f(n)) = exp{i · τ(X) · log n}

Some remarks. 1. We denote by G∗ the dual group of G, i.e. the
group of the continuous characters on G. In the proof of the theorem, the
Pontryagin duality principle will be essential, which says that in a locally
compact abelian group G, the bidual group of G, i.e. the dual group of the
dual group of G, is topologically and algebraically isomorphic to G. The
abovementioned pathological example due to I. Z. Ruzsa shows that the
separability of G by its continuous characters is not sufficient to obtain
the same result.

2. Equivalence of the statements i) and ii) has been announced with-
out proof in my note “Distribution des valeurs d’une fonction arithmétique
additive à valeurs dans un groupe abélien localement compact métrisable”,
(see C. R. Acad. Sci., Paris, Sér. I T. 313, (1991), 345–348).

3. We shall need the following result:
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Proposition. If h is a function: R→ G and if for all χ in G∗, χ(h(a))
tends to 1 when a tends to 0, then h is continuous at 0.

Proof. Let V be a compact neighborhood of the origin of G, with
characteristic function IV . Since G is a topological abelian group, we
can select W , a symmetric compact neighborhood of the origin of G with
characteristic function IW , such that W +W ⊂ V . Let |W | be the measure
of W , which is > 0, and LW be defined by

LW =
1
|W | × IW

∗IW ,

where ∗ denotes the convolution. It is immediate that 0≤LW≤1, LW (0)=1,
and LW is continuous, has its support in V and satisfies LW ≤ IV . More-
over, its Fourier transform LW is continuous, non-negative, integrable by
Plancherel theorem, hence invertible ([6], p.113 §30). Now, we remark that
we have by inversion:

LW (0)− LW (u) =
∫

G∗
LW (χ) · (χ̄(0)− χ̄(u)) · dm(χ)

=
∫

G∗
LW (χ) · (1− χ̄(u)) · dm(χ)

for every u in G.

Using the inequality 1−IV (u) ≤ 1−LW (u), which we write as IV (0)−
IV (u) ≤ LW (0)− LW (u), we get that

IV (0)− IV (u) ≤
∫

G∗
LW (χ) · (1− χ̄(u)) · dm(χ) ,

i.e.

1− IV (u) ≤
∫

G∗
LW (χ) · (1− χ̄(u)) · dm(χ) ,

and a fortiori, we have, for every real a

1− IV (h(a)) ≤
∫

G∗
LW (χ) · (1− χ̄(h(a))) · dm(χ) .

Now, since LW is integrable and for all χ in G∗, χ(h(a)) tends to 1 when
a tends to 0, the Lebesgue bounded convergence theorem gives that

lim
a→0

(1− IV (h(a))) = 0, and this implies that lim
a→0

h(a) = 0 .
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3. Proof of the theorem

I. First, we remark that ii) implies i).
It is clear that if there exists a continuous homomorphism ϕ : R→ G

such that for any n in N, f(n) = ϕ(log n), by continuity, the additive
function f(n) will satisfy the condition (C).

II. We prove that i) implies iii).
1) By hypothesis, we have lim(f(n+1)−f(n)) = 0, n → +∞, and if X

is any element of G∗, by continuity, we get that lim X(f(n+1))−f(n))=1,
n → +∞, which in fact means that lim{X(f(n + 1))−X(f(n))}=0, n →
+∞. Now, since the function defined on N by X(f(n)) is a T–valued
additive function, by Wirsing’s result, there exists a real number τ(X)
such that for any n in N, X(f(n)) = exp{i · τ(X) · log n}. This gives that
i) implies iii).

III. We prove that iii) implies ii). We assume that iii) holds.
a) The correspondence τ : G∗ → R is a well-defined function. More-

over, given X and X ′ in G∗, since for any n in N we have by definition
(X ·X ′)(f(n)) = X(f(n)) ·X ′(f(n)), we have

exp{i · τ(X ·X ′) · log n} = exp{i · τ(X) · log n} · exp{i · τ(X ′) · log n} =

= exp{i · (τ(X) + τ(X ′)) · log n} ,

and we get that τ(X · X ′) = τ(X) + τ(X ′), which means that τ is a
group homomorphism G∗ → R. Now, for any fixed n in N, the function
X → exp{i·τ(X)·log n} is continuous, since X(f(n)) = exp{i·τ(X)·log n}.

Let K be a fixed compact neighborhood of the origin in G∗. We
denote by m a Haar measure on G∗, and by m∗ its restriction to K. Since
K is a compact neighborhood of the origin in G∗,m∗ is a regular positive
bounded measure on K. Now, let a be a real number, an and bn two
sequences in N such that

lim
n→+∞

log
(

an

bn

)
= a .

We define a function ψa : K → T by ψa(X) = exp{i · a · τ(X)}. We have

ψa(X) = exp{i · a · τ(X)} = lim
n→+∞

exp{i · log
(

an

bn

)
· τ(X)} =

= lim
n→+∞

exp{i · log an · τ(X)} · exp{i · log bn · τ(X)} =

lim
n→+∞

X(f(an)) ·X(f(bn)) .
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This limit ψa(X) is independent of the approximating sequence, and
for a fixed a, ψa(X) is a limit of a sequence of continuous functions, and
as a consequence, ψa(X) is m∗–measurable on K.

It is a classical fact the m∗–measurability of the homomorphism ψa(X)
implies its continuity on G∗ (see [6] p.66 §18)

b) We now use the Pontryagin duality theorem. First of all, we recall
the duality principle:

Let A be a locally compact abelian group, A∗ its dual. The Pontryagin
duality theorem says that for every character π of A∗, there exists an
element g of A such that π(X) = X(g) for all X of A∗ (see, for instance,
[3. Ch. 11 §1.2 p.172]).

We now remark that for any given real a, the function ψa(X) is in
the dual of G∗, since it is a continuous group homomorphism G∗ → T.
Hence we get that there exists some element ϕ(a) in G such that ψa(X) =
X(ϕ(a)). Moreover, ϕ is a group homomorphism R → G, since we have
X(ϕ(a + b)) = X(ϕ(a) + ϕ(b)), as it can be seen from the equalities

X(ϕ(a + b)) = ψa+b(X) = exp{i · (a + b) · τ(X)} =

= exp{i · a · τ(X)} · exp{i · b · τ(X)} = ψa(X) · ψb(X) =

= X(ϕ(a)) ·X(ϕ(b)) = X(ϕ(a) + ϕ(b)) .

But we have ψa(X) = exp{i · a · τ(X)} by definition, which implies that,
for any X in G∗, X(ϕ(a)) tends to 1 when a tends to 0, and the Propo-
sition gives that ϕ is continuous in 0. Since ϕ is an homomorphism, ϕ is
continuous on R.

Now, since for any X in G∗ and any real a we have X(ϕ(a)) = ψa(X),
a fortiori, if a = log n with n in N, we shall have X(f(n)) = exp{i · log n ·
τ(X)} = ψlog n(X) = X(ϕ(log n)), which gives X(f(n)) = X(ϕ(log n)),
and so, we obtain that for any n in N, we have f(n) = ϕ(log n) and this
ends the proof of the theorem.
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