Nonaliquot numbers

By YONG-GAO CHEN (Nanjing) and QING-QING ZHAO (Maanshan)

Abstract

For any positive integer n, let $\sigma(n)$ be the sum of the positive divisors of n. It is known that almost all odd numbers can be represented in the form $\sigma(m)-m$ for some natural number m. In this paper, we prove that the number of even numbers which are less than x and not of the form $\sigma(m)-m$ is at least $0.06 x+o(x)$. This improves the lower bound $\frac{1}{48} x+o(x)$ obtained by Banks and Luca.

1. Introduction

For any positive integer n, let $\sigma(n)$ be the sum of divisors function, and let $\phi(n)$ be the Euler totient function. A positive integer n is called an aliquot number if $n=\sigma(m)-m$ for some positive integer m, otherwise it is called a nonaliquot number. Nonaliquot numbers are also known as untouchable numbers (see [3, B10]). In this paper we study the set of nonaliquot numbers defined by

$$
N_{a}(x)=\{1 \leq n \leq x: n \text { is a nonaliquot number }\} .
$$

It is easy to see that almost all odd numbers are aliquot numbers, and thus $\left|N_{a}(x)\right| \leq \frac{1}{2} x+o(x)$. Indeed, it is well known that almost all even numbers can be represented as the sum of two distinct primes (for example, see Vaughan [5]). If $2 n=p+q$ for distinct primes p and q, then $2 n+1=\sigma(p q)-p q$. Hence $2 n+1$ is an aliquot number.

Concerning lower bounds, Erdős [2] showed that $\left|N_{a}(x)\right| \geq c x$ for some positive constant c and all sufficiently large x. Banks and Luca [1] proved that

$$
\left|N_{a}(x)\right| \geq \frac{x}{48}(1+o(1))=0.020833 \cdots x, \quad x \rightarrow \infty
$$

P. G. Walsh commented in this review [MR2148946] on the paper [1] that it would be interesting to know if this is indeed the correct constant.

The main result of this paper is the following.
Theorem 1. For any positive integer M, we have

$$
\left|N_{a}(x)\right| \geq g_{M} x+o_{M}(x),
$$

where

$$
g_{M}=\sum_{d \mid M} \frac{\phi(M / d)}{M / d} \max \left\{0, \frac{1}{2 d}-\frac{1}{\sigma(2 d)-2 d}\right\}
$$

Taking $M=2^{6} \times 3^{5} \times 5^{4} \times 7^{3} \times 11^{2} \times 13 \times 17 \times 19 \times 23 \times 29 \times 31 \times 37 \times 41$, we have $g_{M}>0.0602757$. Let $g=\sup g_{M}$. One can prove that $g_{M}<g$ for any positive integer M. We conjecture that $g<0.07$.

Question 1. Is it true that $\left|N_{a}(x)\right|=g x+o(x)$?
Question 2. Are there a positive proportion even numbers which are aliquot numbers?

Question 3. What is an approximate numerical value for the constant g ?
Question 4. Is the constant g irrational?

2. Proof of Theorem 1

For a set U of positive integers and $x>0$, let

$$
U(x)=\{a \leq x: a \in U\} .
$$

First we state the following lemma.
Lemma 1. Let k be a positive integer. Then $|\{n \leq x: k \mid \sigma(n)\}|=x+o_{k}(x)$.

Lemma 1 is a weak form of [4, Lemma 4]. Erdős [2] proved that for any fixed prime $p,|\{n \leq x: p \mid \sigma(n)\}|=x+o_{p}(x)$.

Now we return to the proof of Theorem 1.
Let M be a given integer. Let $2 n$ be an even number such that $2 n \leq x$ and $2 n=\sigma(m)-m$ for some positive integer m. If m is odd, then $\sigma(m)$ is odd, and in this case Banks and LUCA [1] proved that the number of such $2 n \leq x$ is $o(x)$. Now we assume that m is even. Then $\sigma(m)-m \geq m / 2$. So $m \leq 2 x$ since $2 n \leq x$. By Lemma 1, the number of $m \leq 2 x$ with $2 M \nmid \sigma(m)$ is $o(x)$. Next, we assume that $2 M \mid \sigma(m)$. Let
$H_{M}(x)=\{2 n \leq x: 2 n=\sigma(m)-m$ for some integer m with $2 M \mid \sigma(m)\}$.
For $d \mid M$ let

$$
A_{d}(x)=\{2 n \leq x:(n, M)=d\}
$$

and $B_{d}(x)=A_{d}(x) \cap H_{M}(x)$. For $2 n \in A_{d}(x)$, let $n=d n_{1}$. Then $n_{1} \leq x /(2 d)$ and $\left(n_{1}, M / d\right)=1$. So

$$
\begin{equation*}
\frac{\phi(M / d)}{M / d} \frac{x}{2 d}-\phi(M / d) \leq\left|A_{d}(x)\right| \leq \frac{\phi(M / d)}{M / d} \frac{x}{2 d}+\phi(M / d) \tag{1}
\end{equation*}
$$

For $2 n \in B_{d}(x)$, we have $2 n=\sigma(m)-m$ with $(m, 2 M)=2 d$ since $2 M \mid \sigma(m)$. Let $m=2 d m_{1}$. Then $\left(m_{1}, M / d\right)=1$ and

$$
2 n=\sigma(m)-m=\sigma\left(2 d m_{1}\right)-2 d m_{1} \geq \sigma(2 d) m_{1}-2 d m_{1}
$$

As $2 n \leq x$ we have

$$
m_{1} \leq \frac{x}{\sigma(2 d)-2 d}
$$

Since $\left(m_{1}, M / d\right)=1$, the number of m with $\sigma(m)-m=2 n \in B_{d}(x)$ is less than

$$
\frac{\phi(M / d)}{M / d} \frac{x}{\sigma(2 d)-2 d}+\phi(M / d)
$$

Then

$$
\left|B_{d}(x)\right| \leq \frac{\phi(M / d)}{M / d} \frac{x}{\sigma(2 d)-2 d}+\phi(M / d)
$$

It is also clear that

$$
\left|B_{d}(x)\right| \leq\left|A_{d}(x)\right| \leq \frac{\phi(M / d)}{M / d} \frac{x}{2 d}+\phi(M / d)
$$

Hence

$$
\begin{equation*}
\left|B_{d}(x)\right| \leq \frac{\phi(M / d)}{M / d} \min \left\{\frac{1}{2 d}, \frac{1}{\sigma(2 d)-2 d}\right\} x+\phi(M / d) \tag{2}
\end{equation*}
$$

By (1) and (2) we have

$$
\begin{aligned}
& \qquad \begin{aligned}
\left|A_{d}(x) \backslash B_{d}(x)\right| & \geq \frac{\phi(M / d)}{M / d}\left(\frac{1}{2 d}-\min \left\{\frac{1}{2 d}, \frac{1}{\sigma(2 d)-2 d}\right\}\right) x-2 \phi(M / d) \\
\text { aus } & =x \frac{\phi(M / d)}{M / d} \max \left\{0, \frac{1}{2 d}-\frac{1}{\sigma(2 d)-2 d}\right\}-2 \phi(M / d)
\end{aligned} \\
& \begin{aligned}
\left|N_{a}(x)\right| & =\sum_{d \mid M}\left|A_{d}(x) \backslash B_{d}(x)\right|+o(x)
\end{aligned} \\
& \geq x \sum_{d \mid M} \frac{\phi(M / d)}{M / d} \max \left\{0, \frac{1}{2 d}-\frac{1}{\sigma(2 d)-2 d}\right\}-2 \sum_{d \mid M} \phi(M / d)+o(x) .
\end{aligned}
$$

Thus

Since $\sum_{d \mid M} \phi(M / d)=M=o(x)$, this completes the proof.
Acknowledgement. We would like to thank the referees for giving us useful suggestions.

References

[1] W. D. Banks and F. Luca, Nonaliquots and Robbins numbers, Colloq. Math. 103 (2005), 27-32.
[2] P. Erdős, Über die Zahlen der Form $\sigma(n)-n$ and $n-\phi(n)$, Elem. Math. 28 (1973), 83-86.
[3] R. K. Guy, Unsolved Problems in Number Theory, 3rd, Springer-Verlag, Berlin, New York, 2004.
[4] J. M. De Koninck and F. Luca, On the composition of the Euler function and the sum of divisors function, Colloq. Math. 108, no. 1 (2007), 31-51.
[5] R. C. Vaughan, On Goldbach's problem, Acta Arith. 22 (1972), 21-48.

```
YONG-GAO CHEN
SCHOOL OF MATHEMATICAL SCIENCES
NANJING NORMAL UNIVERSITY
NANJING 210046
P.R. CHINA
E-mail: ygchen@njnu.edu.cn
QING-QING ZHAO
WENTIAN COLLEGE
HOHAI UNIVERSITY
MAANSHAN 243031, ANHUI
P.R. CHINA
E-mail: zhaoqingqing116@163.com
```

(Received January 18, 2010; revised July 10, 2010)

