Approximation by q-parametric operators

By ZOLTÁN FINTA (Cluj-Napoca)

Abstract

We establish sufficient conditions to insure the convergence of a sequence of positive linear operators defined on $C[0,1]$. As applications we obtain quantitative estimates for some q-parametric operators.

1. Introduction

The development of the q-calculus has led to the discovery of q-parametric operators. The first example in this direction was given by A. Lupaş in 1987. He introduced a q-analogue of the well-known Bernstein operators (see [10]), denoted by $R_{n, q}(f, x)$, where $n=1,2, \ldots, q \in(0,1), f \in C[0,1]$ and $x \in[0,1]$. In [14], Ostrovska defined the limit Lupaş operator $\tilde{R}_{\infty, q}(f, x)$ and proved the convergence of the sequence $\left\{R_{n, q}(f, x)\right\}$ to $\tilde{R}_{\infty, q}(f, x)$ as $n \rightarrow \infty$, uniformly for $x \in[0,1]$. The case $q \in(1, \infty)$ was also considered in [10] (resp. in [14]).

In 1992, L. Lupaş [11] and independently, in 2000, Trif [17] considered the q-Meyer-König and Zeller operators $M_{n, q}(f, x)$, where $n=1,2, \ldots, q \in(0,1)$, $f \in C[0,1]$ and $x \in[0,1]$. Wang proved in [19], among others, that the sequence $\left\{M_{n, q}(f, x)\right\}$ converges to the limit q-Bernstein operator $B_{\infty, q}(f, x)$ as $n \rightarrow \infty$, uniformly for $x \in[0,1]$.

Later, in 1997, Phillips introduced a new generalization of the classical Bernstein operators, based on q-integers (see [15] and [16]). He defined the socalled q-Bernstein operators $B_{n, q}(f, x)$, where $n=1,2, \ldots, q \in(0,1), f \in C[0,1]$
and $x \in[0,1]$. From the properties of q-Bernstein operators, we mention the following one established by IL'inskil and Ostrovska [8]: the sequence $\left\{B_{n, q}(f, x)\right\}$ converges to $B_{\infty, q}(f, x)$ as $n \rightarrow \infty$, uniformly for $x \in[0,1]$.

Further important q-parametric operators were introduced and studied by S. Lewanowicz and P. Woz̆ny [9], M.-M. Derriennic [3], V. Gupta [6], A. Aral [1], V. Gupta and H. Wang [7], A. Aral and V. Gupta [2], and G. Nowak [12], respectively.

Let $\left(L_{n}\right)$ be a sequence of positive linear operators such that $L_{n}: C[0,1] \rightarrow$ $C[0,1], n=1,2, \ldots$. Motivated by the above convergence results, we propose to obtain sufficient conditions to insure the convergence of the sequence $\left(L_{n}\right)$ to its limit operator denoted by L_{∞}. Moreover, the rate of approximation $\left\|L_{n} f-L_{\infty} f\right\|$ will be estimated by the second order Ditzian-Totik modulus of smoothness of $f \in C[0,1]$, defined by

$$
\begin{equation*}
\omega_{\varphi}^{2}(f, t)=\sup _{0<h \leq t} \sup _{x \pm h \varphi(x) \in[0,1]}|f(x+h \varphi(x))-2 f(x)+f(x-h \varphi(x))|, \tag{1}
\end{equation*}
$$

where $\|\cdot\|$ denotes the uniform norm on $C[0,1]$ and φ is an admissible step-weight function on $[0,1]$ (for details see [5]). The corresponding K-functional to (1) is defined for $f \in C[0,1]$ and $t>0$ as follows:

$$
K_{2, \varphi}(f, t)=\inf \left\{\|f-g\|+t\left\|\varphi^{2} g^{\prime \prime}\right\|: g \in W^{2}(\varphi)\right\}
$$

where $W^{2}(\varphi)=\left\{g \in C[0,1]: g^{\prime} \in A C_{l o c}[0,1], \varphi^{2} g^{\prime \prime} \in C[0,1]\right\}$ and $g^{\prime} \in A C_{l o c}[0,1]$ means that g is differentiable and g^{\prime} is absolutely continuous on every interval $[a, b] \subset[0,1]$. In view of [5, Theorem 2.1.1] there exists $C>0$ such that

$$
\begin{equation*}
C^{-1} \omega_{\varphi}^{2}(f, \sqrt{t}) \leq K_{2, \varphi}(f, t) \leq C \omega_{\varphi}^{2}(f, \sqrt{t}) \tag{2}
\end{equation*}
$$

Here we mention that C will denote throughout this paper a positive constant which can be different at each occurrence, and it is independent of n, f and x. Further, we use the notations $e_{0}(x)=1, x \in[0,1]$ and $e_{2}(x)=x^{2}, x \in[0,1]$.

In Section 2 is established our main theorem, and in Section 3 is applied this theorem for some q-parametric operators.

2. Main result

The next result is our main theorem.
Theorem 2.1. Let $\left(L_{n}\right)_{n \geq 1}$ be a sequence of positive linear operators on $C[0,1]$ and let $\left(\alpha_{n}\right)_{n \geq 1}$ be a positive sequence such that $\alpha_{n} \rightarrow 0^{+}$as $n \rightarrow \infty$. If the positive sequence $\left(\beta_{n}\right)_{n \geq 1}$ satisfies the conditions:
(i) $\beta_{n}+\beta_{n+1}+\cdots+\beta_{n+p-1} \leq C \alpha_{n}$ for every $n, p=1,2, \ldots$,
(ii) $\left\|L_{n} g-L_{n+1} g\right\| \leq C \beta_{n}\left\|\varphi^{2} g^{\prime \prime}\right\|$ for every $g \in W^{2}(\varphi)$ and $n=1,2, \ldots$,
then there exists a positive linear operator L_{∞} on $C[0,1]$ such that $\| L_{n} f-$ $L_{\infty} f \| \rightarrow 0$ as $n \rightarrow \infty$, for every $f \in C[0,1]$. Furthermore,

$$
\begin{equation*}
\left\|L_{n} f-L_{\infty} f\right\| \leq C \omega_{\varphi}^{2}\left(f, \sqrt{\alpha_{n}}\right) \tag{3}
\end{equation*}
$$

where $f \in C[0,1]$ and $n=1,2, \ldots$ are arbitrary.
Proof of Theorem 2.1. We mention that $\left\|L_{n} f-L_{\infty} f\right\| \rightarrow 0$ as $n \rightarrow \infty$, is a consequence of (3), because $\alpha_{n} \rightarrow 0^{+}$as $n \rightarrow \infty$.

Furthermore, in view of (ii) and (i), we find for every $g \in W^{2}(\varphi)$ and $n, p=$ $1,2, \ldots$ that

$$
\begin{align*}
\left\|L_{n} g-L_{n+p} g\right\| & \leq\left\|L_{n} g-L_{n+1} g\right\|+\left\|L_{n+1} g-L_{n+2} g\right\|+\cdots+\left\|L_{n+p-1} g-L_{n+p} g\right\| \\
& \leq C\left(\beta_{n}+\beta_{n+1}+\cdots+\beta_{n+p-1}\right)\left\|\varphi^{2} g^{\prime \prime}\right\| \leq C \alpha_{n}\left\|\varphi^{2} g^{\prime \prime}\right\| . \tag{4}
\end{align*}
$$

Let $g=e_{0}$ in (4). Then $L_{n} e_{0}=L_{n+p} e_{0}$ for all $n, p=1,2, \ldots$ In this case the positivity of L_{n} implies that

$$
\begin{aligned}
\left|L_{n}(f, x)\right| & \leq L_{n}(|f|, x) \leq L_{n}\left(\|f\| e_{0}, x\right)=\|f\| L_{n}\left(e_{0}, x\right)=\|f\| L_{1}\left(e_{0}, x\right) \\
& \leq\|f\|\left\|L_{1} e_{0}\right\|
\end{aligned}
$$

for $x \in[0,1], f \in C[0,1]$ and $n=1,2, \ldots$ Hence $\left\|L_{n} f\right\| \leq\left\|L_{1} e_{0}\right\|\|f\|$ for $f \in$ $C[0,1]$ and $n=1,2, \ldots$ This means that

$$
\begin{equation*}
\left\|L_{n}\right\| \leq\left\|L_{1} e_{0}\right\|<\infty \tag{5}
\end{equation*}
$$

for all $n=1,2, \ldots$
On the other hand, $W^{2}(\varphi)$ is dense in $C[0,1]$. Then, by the well-known Banach-Steinhaus theorem (see [4]), it is sufficient to prove the convergence of the sequence $\left(L_{n} g\right)_{n \geq 1}$ in $C[0,1]$, for each $g \in W^{2}(\varphi)$. Because $\alpha_{n} \rightarrow 0^{+}$as $n \rightarrow \infty$, we get, in view of (4), that $\left(L_{n} g\right)_{n \geq 1}$ is a Cauchy-sequence and therefore
converges in $C[0,1]$. In conclusion there exists an operator L_{∞} on $C[0,1]$ such that $\left\|L_{n} f-L_{\infty} f\right\| \rightarrow 0$ as $n \rightarrow \infty$, for all $f \in C[0,1]$. This also implies that L_{∞} is a positive linear operator on $C[0,1]$, because L_{n} are positive linear operators for all $n=1,2, \ldots$

Further, by (5),

$$
\begin{equation*}
\left\|L_{n} f\right\| \leq\left\|L_{n}\right\|\|f\| \leq\left\|L_{1} e_{0}\right\|\|f\| \tag{6}
\end{equation*}
$$

for each $f \in C[0,1]$. Because we have the convergence $L_{n} f \rightarrow L_{\infty} f$ in the uniform norm for all $f \in C[0,1]$, then (6) implies

$$
\begin{equation*}
\left\|L_{\infty} f\right\| \leq\left\|L_{1} e_{0}\right\|\|f\| \tag{7}
\end{equation*}
$$

for each $f \in C[0,1]$.
Now let $p \rightarrow \infty$ in (4). Then

$$
\begin{equation*}
\left\|L_{n} g-L_{\infty} g\right\| \leq C \alpha_{n}\left\|\varphi^{2} g^{\prime \prime}\right\| \tag{8}
\end{equation*}
$$

where $g \in W^{2}(\varphi)$ and $n=1,2, \ldots$ By combining (6), (7) and (8), we find for every $f \in C[0,1]$, that

$$
\begin{aligned}
\left\|L_{n} f-L_{\infty} f\right\| & \leq\left\|L_{n} f-L_{n} g\right\|+\left\|L_{n} g-L_{\infty} g\right\|+\left\|L_{\infty} g-L_{\infty} f\right\| \\
& \leq 2\left\|L_{1} e_{0}\right\|\|f-g\|+C \alpha_{n}\left\|\varphi^{2} g^{\prime \prime}\right\| \leq C\left\{\|f-g\|+\alpha_{n}\left\|\varphi^{2} g^{\prime \prime}\right\|\right\}
\end{aligned}
$$

Taking the infimum on the right-hand side over all $g \in W^{2}(\varphi)$, we get

$$
\left\|L_{n} f-L_{\infty} f\right\| \leq C K_{2, \varphi}\left(f, \alpha_{n}\right)
$$

Hence, by (2), we obtain the estimate (3). This completes the proof of our theorem.

We mention that WANG established in [18] a Korovkin-type theorem, which insures for a sequence $\left(L_{n}\right)$ of positive linear operators on $C[0,1]$ that there exists an operator L_{∞} on $C[0,1]$ such that $\left\|L_{n} f-L_{\infty}\right\| \rightarrow 0$ as $n \rightarrow \infty$, for each $f \in C[0,1]$. Our theorem is different from Wang's result.

3. Applications

In this section we shall apply Theorem 2.1 for some q-parametric operators, namely for the q-Bernstein operator defined by Phillips [15], for the q-MeyerKönig and Zeller operator introduced by Trif [17] (see also [11]) and for a q analogue of the Bernstein operator considered by Lupaş in [10].
$\mathbf{1}^{\circ}$ Let $0<q \leq 1$. For each non-negative integer k, the q-integers $[k]$ and the q-factorials $[k]$! are defined by

$$
[k]= \begin{cases}1+q+\cdots+q^{k-1}, & \text { if } k \geq 1 \\ 0, & \text { if } k=0\end{cases}
$$

and

$$
[k]!= \begin{cases}{[1][2] \ldots[k],} & \text { if } k \geq 1 \\ 1, & \text { if } k=0\end{cases}
$$

For integers $0 \leq k \leq n$, the q-binomial coefficients are defined by

$$
\left[\begin{array}{c}
n \\
k
\end{array}\right]=\frac{[n]!}{[k]![n-k]!} .
$$

In [15], Phillips defined the following generalization of the classical Bernstein operators, based on q-integers. For each $n=1,2, \ldots$ and $f \in C[0,1]$, we define the q-Bernstein operators as

$$
\left(B_{n, q} f\right)(x) \equiv B_{n, q}(f, x)=\sum_{k=0}^{n} f\left(\frac{[k]}{[n]}\right) p_{n, k}(q, x),
$$

where $x \in[0,1]$ and

$$
p_{n, k}(q, x)= \begin{cases}{\left[\begin{array}{l}
n \\
k
\end{array}\right] x^{k}(1-x)(1-x q) \ldots\left(1-x q^{n-k-1}\right),} & \text { if } 0 \leq k \leq n-1 \\
x^{n}, & \text { if } k=n\end{cases}
$$

For $q=1$, we recover the well-known Bernstein operators.
By $[15,(15)]$, we have $B_{n, q}\left(e_{2}, x\right)=x^{2}+[n]^{-1} x(1-x), x \in[0,1]$. Hence

$$
\begin{equation*}
B_{n, q}\left(e_{2}, x\right)-x^{2}=\frac{1}{[n]} \varphi^{2}(x), \tag{9}
\end{equation*}
$$

where $\varphi(x)=\sqrt{x(1-x)}, x \in[0,1]$ and $n=1,2, \ldots$
Using [13, (3.2)], we have for $g \in W^{2}(\varphi), x \in[0,1]$ and $n=1,2, \ldots$,

$$
\begin{equation*}
B_{n, q}(g, x)-B_{n+1, q}(g, x)=\sum_{k=1}^{n} a_{n, k}(g) p_{n+1, k}(q, x), \tag{10}
\end{equation*}
$$

where
$a_{n, k}(g)=\frac{[n+1-k]}{[n+1]} g\left(\frac{[k]}{[n]}\right)+q^{n+1-k} \frac{[k]}{[n+1]} g\left(\frac{[k-1]}{[n]}\right)-g\left(\frac{[k]}{[n+1]}\right)$.
By Taylor's formula, we find

$$
\begin{aligned}
g\left(\frac{[k]}{[n]}\right)= & g\left(\frac{[k]}{[n+1]}\right)+\left(\frac{[k]}{[n]}-\frac{[k]}{[n+1]}\right) g^{\prime}\left(\frac{[k]}{[n+1]}\right) \\
& +\int_{[k] /[n+1]}^{[k] /[n]}\left(\frac{[k]}{[n]}-u\right) g^{\prime \prime}(u)
\end{aligned}
$$

and

$$
\begin{aligned}
g\left(\frac{[k-1]}{[n]}\right)= & g\left(\frac{[k]}{[n+1]}\right)+\left(\frac{[k-1]}{[n]}-\frac{[k]}{[n+1]}\right) g^{\prime}\left(\frac{[k]}{[n+1]}\right) \\
& +\int_{[k] /[n+1]}^{[k-1] /[n]}\left(\frac{[k-1]}{[n]}-u\right) g^{\prime \prime}(u) d u
\end{aligned}
$$

Then, in view of (11), we obtain

$$
\begin{align*}
a_{n, k}(g)= & \frac{[n+1-k]}{[n+1]} g\left(\frac{[k]}{[n]}\right)+q^{n+1-k} \frac{[k]}{[n+1]} g\left(\frac{[k-1]}{[n]}\right) \\
& -\frac{[n+1-k]+q^{n+1-k}[k]}{[n+1]} g\left(\frac{[k]}{[n+1]}\right) \\
= & \frac{[n+1-k]}{[n+1]}\left(\frac{[k]}{[n]}-\frac{[k]}{[n+1]}\right) g^{\prime}\left(\frac{[k]}{[n+1]}\right) \\
& +\frac{[n+1-k]}{[n+1]} \int_{[k] /[n+1]}^{[k] /[n]}\left(\frac{[k]}{[n]}-u\right) g^{\prime \prime}(u) d u \\
& +\frac{q^{n+1-k}[k]}{[n+1]}\left(\frac{[k-1]}{[n]}-\frac{[k]}{[n+1]}\right) g^{\prime}\left(\frac{[k]}{[n+1]}\right) \\
& +\frac{q^{n+1-k}[k]}{[n+1]} \int_{[k] /[n+1]}^{[k-1] /[n]}\left(\frac{[k-1]}{[n]}-u\right) g^{\prime \prime}(u) d u \\
= & \frac{[n+1-k]}{[n+1]} \int_{[k] /[n]}^{[k] /[n]}\left(\frac{[k]}{[n]}-u\right) g^{\prime \prime}(u) d u \\
& +\frac{q^{n+1-k}[k]}{[n+1]} \int_{[k] /[n+1]}^{[k-1] /[n]}\left(\frac{[k-1]}{[n]}-u\right) g^{\prime \prime}(u) d u, \tag{12}
\end{align*}
$$

because

$$
\frac{[n+1-k]}{[n+1]}\left(\frac{[k]}{[n]}-\frac{[k]}{[n+1]}\right)+\frac{q^{n+1-k}[k]}{[n+1]}\left(\frac{[k-1]}{[n]}-\frac{[k]}{[n+1]}\right)
$$

$$
\begin{aligned}
& =\frac{[k]}{[n][n+1]^{2}}\left\{[n+1-k]([n+1]-[n])+q^{n+1-k}([k-1][n+1]-[k][n])\right\} \\
& =\frac{[k]}{[n][n+1]^{2}}\left\{[n+1-k] q^{n}+q^{n+1-k}\left(-q^{k-1}[n+1-k]\right)\right\}=0 .
\end{aligned}
$$

Taking into account (12), (9) and the estimate

$$
\begin{equation*}
\left|\int_{x}^{t}(t-u) g^{\prime \prime}(u) d u\right| \leq(t-x)^{2} \varphi^{-2}(x)\left\|\varphi^{2} g^{\prime \prime}\right\|, \tag{13}
\end{equation*}
$$

(see [5, Lemma 9.6.1]), we have

$$
\begin{align*}
\left|a_{n, k}(g)\right| \leq & \frac{[n+1-k]}{[n+1]}\left|\int_{[k] /[n+1]}^{[k] /[n]}\left(\frac{[k]}{[n]}-u\right) g^{\prime \prime}(u) d u\right| \\
& +\frac{q^{n+1-k}[k]}{[n+1]}\left|\int_{[k] /[n+1]}^{[k-1] /[n]}\left(\frac{[k-1]}{[n]}-u\right) g^{\prime \prime}(u) d u\right| \\
\leq & \frac{[n+1-k]}{[n+1]}\left(\frac{[k]}{[n]}-\frac{[k]}{[n+1]}\right)^{2} \varphi^{-2}\left(\frac{[k]}{[n+1]}\right)\left\|\varphi^{2} g^{\prime \prime}\right\| \\
& +\frac{q^{n+1-k}[k]}{[n+1]}\left(\frac{[k-1]}{[n]}-\frac{[k]}{[n+1]}\right)^{2} \varphi^{-2}\left(\frac{[k]}{[n+1]}\right)\left\|\varphi^{2} g^{\prime \prime}\right\| \\
= & \left\{\frac{[n+1-k][k]([n+1]-[n])^{2}}{[n]^{2}[n+1]([n+1]-[k])}\right. \\
& \left.+\frac{q^{n+1-k}([k-1][n+1]-[k][n])^{2}}{[n]^{2}[n+1]([n+1]-[k])}\right\}\left\|\varphi^{2} g^{\prime \prime}\right\| \\
= & \left\{\frac{[n+1-k][k] q^{2 n}}{[n]^{2}[n+1] q^{k}[n+1-k]}\right. \\
& \left.+\frac{q^{n+1-k}\left(-q^{k-1}[n+1-k]\right)^{2}}{[n]^{2}[n+1] q^{k}[n+1-k]}\right\}\left\|\varphi^{2} g^{\prime \prime}\right\| \\
= & \frac{q^{n-1}}{[n]^{2}[n+1]}\left\{q^{n+1-k}[k]+[n+1-k]\right\}\left\|\varphi^{2} g^{\prime \prime}\right\|=\frac{q^{n-1}}{[n]^{2}}\left\|\varphi^{2} g^{\prime \prime}\right\| . \tag{14}
\end{align*}
$$

Then, by (10), (14) and $B_{n+1, q}\left(e_{0}, x\right)=1$ (see $[15,(13)]$), we have

$$
\begin{align*}
\left|B_{n, q}(g, x)-B_{n+1, q}(g, x)\right| & \leq \sum_{k=1}^{n}\left|a_{n, k}(g)\right| p_{n+1, k}(q, x) \\
& \leq \sum_{k=1}^{n} \frac{q^{n-1}}{[n]^{2}}\left\|\varphi^{2} g^{\prime \prime}\right\| p_{n+1, k}(q, x) \\
& \leq \frac{q^{n-1}}{[n]^{2}} B_{n+1, q}\left(e_{0}, x\right)\left\|\varphi^{2} g^{\prime \prime}\right\|=\frac{q^{n-1}}{[n]^{2}}\left\|\varphi^{2} g^{\prime \prime}\right\| \tag{15}
\end{align*}
$$

Let $\beta_{n}=q^{n-1} /[n]^{2}, n=1,2, \ldots$, where $0<q<1$. Then

$$
\begin{aligned}
\beta_{n}+\beta_{n+1}+\cdots+\beta_{n+p-1} & \leq \frac{q^{n-1}}{[n]^{2}}\left(1+q+\cdots+q^{p-1}\right) \\
& \leq \frac{1}{[n]^{2}} \frac{q^{n-1}}{1-q} \leq \frac{q^{n-1}}{\left(1-q^{n}\right)^{2}}
\end{aligned}
$$

for all $n, p=1,2, \ldots$, i.e. we obtain the condition (i) of Theorem 2.1 with $\alpha_{n}=$ $q^{n-1} /\left(1-q^{n}\right)^{2}, n=1,2, \ldots$. Obviously $\alpha_{n} \rightarrow 0^{+}$as $n \rightarrow \infty$.

Due to (15), we get $\left\|B_{n, q} g-B_{n+1, q} g\right\| \leq \frac{q^{n-1}}{[n]^{2}}\left\|\varphi^{2} g^{\prime \prime}\right\|$, which is the condition (ii) of Theorem 2.1 for the q-Bernstein operator. Applying Theorem 2.1, we have the following statement.

Let $q \in(0,1)$ be given. Then there exists a positive linear operator $L_{\infty, q}$ on $C[0,1]$ such that

$$
\left\|B_{n, q} f-L_{\infty, q} f\right\| \leq C \omega_{\varphi}^{2}\left(f, \sqrt{q^{n-1}} /\left(1-q^{n}\right)\right)
$$

for all $f \in C[0,1]$ and $n=1,2, \ldots$. The operator $L_{\infty, q}$ coincides with the limit q-Bernstein operator $B_{\infty, q}$, because in [8] it is proved that $\left\{B_{n, q} f\right\}$ converges to $B_{\infty, q} f$ as $n \rightarrow \infty$, uniformly on $[0,1]$.
$\mathbf{2}^{\circ}$ Let $0<q \leq 1$. For each $n=1,2, \ldots$ and $f \in C[0,1]$, we define the q-MeyerKönig and Zeller operators [17] as follows.

$$
\begin{aligned}
& \left(M_{n, q} f\right)(x) \equiv M_{n, q}(f, x) \\
& \quad= \begin{cases}\prod_{s=0}^{n}\left(1-x q^{s}\right) \sum_{k=0}^{\infty} f\left(\frac{[k]}{[n+k]}\right)\left[\begin{array}{c}
n+k \\
k
\end{array}\right] x^{k}, & \text { if } 0 \leq x<1 \\
f(1), & \text { if } x=1\end{cases}
\end{aligned}
$$

For $q=1$, we recover the well-known Meyer-König and Zeller operators.
By [17, (2.3)-(2.4)], we have

$$
\begin{align*}
\left|M_{n, q}\left(e_{2}, x\right)-x^{2}\right| \leq & \frac{1}{[n-1]} x(1-x)\left(1-x q^{n}\right) \\
& +\frac{[2] q^{n-1}}{[n-1][n-2]} x(1-x)(1-x q)\left(1-x q^{n}\right) \\
\leq & \frac{1}{[n-1]} \varphi^{2}(x)+\frac{1}{[n-1]} \varphi^{2}(x) \leq \frac{4}{[n]} \varphi^{2}(x) \tag{16}
\end{align*}
$$

where $n \geq 4$ and $\varphi(x)=\sqrt{x(1-x)}, x \in[0,1]$.

On the other hand, by [17, Theorem 3.3], we have for $x \in[0,1], n=1,2, \ldots$ and $g \in W^{2}(\varphi)$,

$$
\begin{align*}
& M_{n, q}(g, x)-M_{n+1, q}(g, x) \\
& = \\
& \quad x \prod_{s=0}^{n}\left(1-x q^{s}\right) \sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k \\
k
\end{array}\right] x^{k}\left\{q^{n+1} \frac{[n+k+1]}{[n+1]} g\left(\frac{[k]}{[n+k+1]}\right)\right. \\
& \tag{17}\\
& \quad-q^{n+1} \frac{[n+k+1]}{[n+1]} g\left(\frac{[k+1]}{[n+k+2]}\right)-\frac{[n+k+1]}{[k+1]} g\left(\frac{[k+1]}{[n+k+2]}\right) \\
& \\
& \left.\quad+\frac{[n+k+1]}{[k+1]} g\left(\frac{[k+1]}{[n+k+1]}\right)\right\} .
\end{align*}
$$

By Taylor's formula, we obtain

$$
\left.\begin{array}{rl}
g\left(\frac{[k]}{[n+}+k+1\right]
\end{array}\right)
$$

and

$$
\begin{align*}
& g\left(\frac{[k+1]}{[n+k+1]}\right) \\
&= g\left(\frac{[k+1]}{[n+k+2]}\right)+\left(\frac{[k+1]}{[n+k+1]}-\frac{[k+1]}{[n+k+2]}\right) g^{\prime}\left(\frac{[k+1]}{[n+k+2]}\right) \\
&+\int_{[k+1] /[n+k+2]}^{[k+1] /[n+k+1]}\left(\frac{[k+1]}{[n+k+1]}-u\right) g^{\prime \prime}(u) d u \\
&= g\left(\frac{[k+1]}{[n+k+2]}\right)+\frac{q^{k}[n+1]}{[n+k+1][n+k+2]} g^{\prime}\left(\frac{[k+1]}{[n+k+2]}\right) \\
&+\int_{[k+1] /[n+k+2]}^{[k+1] /[n+k+1]}\left(\frac{[k+1]}{[n+k+1]}-u\right) g^{\prime \prime}(u) d u, \tag{19}
\end{align*}
$$

respectively. Then, in view of (17), (18), (19), (16), (13) and $M_{n, q}\left(e_{0}, x\right)=1$, $x \in[0,1]$ (see $[17,(2.1)])$, we have

$$
\begin{aligned}
& \left|M_{n, q}(g, x)-M_{n+1, q}(g, x)\right| \leq x \prod_{s=0}^{n}\left(1-x q^{s}\right) \sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k \\
k
\end{array}\right] x^{k} \\
& \times \left\lvert\, q^{n+1} \frac{[n+k+1]}{[n+1]}\left(\frac{[k]}{[n+k+1]}-\frac{[k+1]}{[n+k+2]}\right)+\frac{[n+k+1]}{[k+1]}\right. \\
& \left.\times\left(\frac{[k+1]}{[n+k+1]}-\frac{[k+1]}{[n+k+2]}\right)| | g^{\prime}\left(\frac{[k+1]}{[n+k+2]}\right) \right\rvert\, \\
& +x \prod_{s=0}^{n}\left(1-x q^{s}\right) \sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k \\
k
\end{array}\right] x^{k} \\
& \times\left\{q^{n+1} \frac{[n+k+1]}{[n+1]}\left|\int_{[k+1] /[n+k+2]}^{[k] /[n+k+1]}\left(\frac{[k]}{[n+k+1]}-u\right) g^{\prime \prime}(u) d u\right|\right. \\
& \left.+\frac{[n+k+1]}{[k+1]}\left|\int_{[k+1] /[n+k+2]}^{[k+1] /[n+k+1]}\left(\frac{[k+1]}{[n+k+1]}-u\right) g^{\prime \prime}(u) d u\right|\right\} \\
& =x \prod_{s=0}^{n}\left(1-x q^{s}\right) \sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k \\
k
\end{array}\right] x^{k} \\
& \times\left\{q^{n+1} \frac{[n+k+1]}{[n+1]}\left|\int_{[k+1] /[n+k+2]}^{[k] /[n+k+1]}\left(\frac{[k]}{[n+k+1]}-u\right) g^{\prime \prime}(u) d u\right|\right. \\
& \left.+\frac{[n+k+1]}{[k+1]}\left|\int_{[k+1] /[n+k+2]}^{[k+1] /[n+k+1]}\left(\frac{[k+1]}{[n+k+1]}-u\right) g^{\prime \prime}(u) d u\right|\right\} \\
& \leq x \prod_{s=0}^{n}\left(1-x q^{s}\right) \sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k \\
k
\end{array}\right] x^{k} \\
& \times\left\{q^{n+1} \frac{[n+k+1]}{[n+1]}\left(\frac{[k]}{[n+k+1]}-\frac{[k+1]}{[n+k+2]}\right)^{2}+\frac{[n+k+1]}{[k+1]}\right. \\
& \left.\times\left(\frac{[k+1]}{[n+k+1]}-\frac{[k+1]}{[n+k+2]}\right)^{2}\right\} \varphi^{-2}\left(\frac{[k+1]}{[n+k+2]}\right)\left\|\varphi^{2} g^{\prime \prime}\right\| \\
& =x \prod_{s=0}^{n}\left(1-x q^{s}\right) \sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k \\
k
\end{array}\right] x^{k} \\
& \times\left\{q^{n+1} \frac{[n+k+1]}{[n+1]} \frac{q^{2 k}[n+1]^{2}}{[n+k+1]^{2}[n+k+2]^{2}} \frac{[n+k+2]}{[k+1]}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \times \frac{[n+k+2]}{[n+k+2]-[k+1]}+\frac{[n+k+1]}{[k+1]} \frac{q^{2 n+2 k+2}[k+1]^{2}}{[n+k+1]^{2}[n+k+2]^{2}} \\
& \left.\times \frac{[n+k+2]}{[k+1]} \frac{[n+k+2]}{[n+k+2]-[k+1]}\right\}\left\|\varphi^{2} g^{\prime \prime}\right\| \\
= & x \prod_{s=0}^{n}\left(1-x q^{s}\right) \sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k \\
k
\end{array}\right] x^{k} \frac{q^{n}}{[n+1]} \frac{q^{k}}{[k+1]} \frac{[n+k+2]}{[n+k+1]}\left\|\varphi^{2} g^{\prime \prime}\right\| \\
\leq & \frac{2 q^{n}}{[n+1]} x \prod_{s=0}^{n}\left(1-x q^{s}\right) \sum_{k=0}^{\infty}\left[\begin{array}{c}
n+k \\
k
\end{array}\right] x^{k}\left\|\varphi^{2} g^{\prime \prime}\right\| \\
\leq & \frac{2 q^{n}}{[n+1]} M_{n, q}\left(e_{0}, x\right)\left\|\varphi^{2} g^{\prime \prime}\right\|=\frac{2 q^{n}}{[n+1]}\left\|\varphi^{2} g^{\prime \prime}\right\| .
\end{aligned}
$$

Hence

$$
\begin{equation*}
\left\|M_{n, q} g-M_{n+1, q} g\right\| \leq \frac{2 q^{n}}{[n+1]}\left\|\varphi^{2} g^{\prime \prime}\right\| \tag{20}
\end{equation*}
$$

for all $n=1,2, \ldots$ and $g \in W^{2}(\varphi)$.
In this case we consider $\beta_{n}=q^{n} /[n+1], n=1,2, \ldots$ and $0<q<1$. Then

$$
\beta_{n}+\beta_{n+1}+\cdots+\beta_{n+p-1} \leq \frac{q^{n}}{[n+1]}\left(1+q+\cdots+q^{p-1}\right) \leq \frac{q^{n}}{1-q^{n+1}}
$$

for all $n, p=1,2, \ldots$ We set $\alpha_{n}=q^{n} /\left(1-q^{n+1}\right), n=1,2, \ldots$ Then $\alpha_{n} \rightarrow 0^{+}$as $n \rightarrow \infty$. In conclusion, in view of (20), we can apply Theorem 2.1.

Let $q \in(0,1)$ be given. Then there exists a positive linear operator $L_{\infty, q}$ on $C[0,1]$ such that

$$
\left\|M_{n, q} f-L_{\infty, q} f\right\| \leq C \omega_{\varphi}^{2}\left(f, \sqrt{q^{n} /\left(1-q^{n+1}\right)}\right)
$$

for all $f \in C[0,1]$ and $n=4,5, \ldots$
In this case $L_{\infty, q}$ is identical with $B_{\infty, q}$, because in [19] it is proved that $\left\{M_{n, q} f\right\}$ converges to $B_{\infty, q} f$ as $n \rightarrow \infty$, uniformly on $[0,1]$.
3° Let $0<q \leq 1$. Following [10], the positive linear operators $R_{n, q}: C[0,1] \rightarrow$ $C[0,1]$, defined by

$$
\left(R_{n, q} f\right)(x) \equiv R_{n, q}(f, x)=\sum_{k=0}^{n} f\left(\frac{[k]}{[n]}\right)\left[\begin{array}{l}
n \\
k
\end{array}\right] \frac{q^{k(k-1) / 2} x^{k}(1-x)^{n-k}}{(1-x+x q) \ldots\left(1-x+x q^{n-1}\right)}
$$

are called the q-analogue of the Bernstein operators. For $q=1$, we recover the well-known Bernstein operators. Due to [14, Lemma 1], we have

$$
\begin{equation*}
R_{n, q}\left(e_{0}, x\right)=1 \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|R_{n, q}\left(e_{2}, x\right)-x^{2}\right|=\frac{1}{[n]} x(1-x) \cdot \frac{1-x+x q^{n}}{1-x+x q} \leq \frac{1}{[n]} x(1-x) \tag{22}
\end{equation*}
$$

Thus we set $\varphi(x)=\sqrt{x(1-x)}, x \in[0,1]$. Taking into account [10, (2)], we have for $g \in W^{2}(\varphi)$,

$$
\begin{align*}
& R_{n+1, q}(g, x)-R_{n, q}(g, x)=\frac{x(1-x)}{(1-x+x q) \ldots\left(1-x+x q^{n}\right)} \sum_{k=0}^{n-1}\left[\begin{array}{c}
n-1 \\
k
\end{array}\right] q^{k(k-1) / 2} x^{k} \\
& \quad \times(1-x)^{n-1-k}\left\{\frac{q^{k}[n]}{[k+1]} g\left(\frac{[k+1]}{[n]}\right)-\frac{q^{k}[n][n+1]}{[k+1][n-k]} g\left(\frac{[k+1]}{[n+1]}\right)\right. \\
& \left.\quad+\frac{q^{n}[n]}{[n-k]} g\left(\frac{[k]}{[n]}\right)\right\} . \tag{23}
\end{align*}
$$

By Taylor's formula, we find

$$
\begin{align*}
g\left(\frac{[k+1]}{[n]}\right)= & g\left(\frac{[k+1]}{[n+1]}\right)+\left(\frac{[k+1]}{[n]}-\frac{[k+1]}{[n+1]}\right) g^{\prime}\left(\frac{[k+1]}{[n+1]}\right) \\
& +\int_{[k+1] /[n+1]}^{[k+1] /[n]}\left(\frac{[k+1]}{[n]}-u\right) g^{\prime \prime}(u) d u \tag{24}
\end{align*}
$$

and

$$
\begin{align*}
g\left(\frac{[k]}{[n]}\right)= & g\left(\frac{[k+1]}{[n+1]}\right)+\left(\frac{[k]}{[n]}-\frac{[k+1]}{[n+1]}\right) g^{\prime}\left(\frac{[k+1]}{[n+1]}\right) \\
& +\int_{[k+1] /[n+1]}^{[k] /[n]}\left(\frac{[k]}{[n]}-u\right) g^{\prime \prime}(u) d u \tag{25}
\end{align*}
$$

respectively. Because

$$
\frac{q^{k}[n]}{[k+1]}+\frac{q^{n}[n]}{[n-k]}=\frac{q^{k}[n][n+1]}{[k+1][n-k]}
$$

and

$$
\frac{q^{k}[n]}{[k+1]}\left(\frac{[k+1]}{[n]}-\frac{[k+1]}{[n+1]}\right)+\frac{q^{n}[n]}{[n-k]}\left(\frac{[k]}{[n]}-\frac{[k+1]}{[n+1]}\right)=0
$$

by combining $(23),(24),(25),(22),(13)$ and (21), we obtain

$$
\begin{aligned}
& \left|R_{n+1, q}(g, x)-R_{n, q}(g, x)\right| \leq \frac{x(1-x)}{(1-x+x q) \ldots\left(1-x+x q^{n}\right)} \sum_{k=0}^{n-1}\left[\begin{array}{c}
n-1 \\
k
\end{array}\right] q^{k(k-1) / 2} \\
& \quad \times x^{k}(1-x)^{n-1-k}\left\{\frac{q^{k}[n]}{[k+1]}\left|\int_{[k+1] /[n+1]}^{[k+1] /[n]}\left(\frac{[k+1]}{[n]}-u\right) g^{\prime \prime}(u) d u\right|\right. \\
& \left.\quad+\frac{q^{n}[n]}{[n-k]}\left|\int_{[k+1] /[n+1]}^{[k] /[n]}\left(\frac{[k]}{[n]}-u\right) g^{\prime \prime}(u) d u\right|\right\}
\end{aligned}
$$

$$
\begin{aligned}
\leq & \frac{x(1-x)}{(1-x+x q) \ldots\left(1-x+x q^{n}\right)} \sum_{k=0}^{n-1}\left[\begin{array}{c}
n-1 \\
k
\end{array}\right] q^{k(k-1) / 2} x^{k}(1-x)^{n-1-k} \\
& \times\left\{\frac{q^{k}[n]}{[k+1]}\left(\frac{[k+1]}{[n]}-\frac{[k+1]}{[n+1]}\right)^{2} \varphi^{-2}\left(\frac{[k+1]}{[n+1]}\right)\left\|\varphi^{2} g^{\prime \prime}\right\|\right. \\
& \left.+\frac{q^{n}[n]}{[n-k]}\left(\frac{[k]}{[n]}-\frac{[k+1]}{[n+1]}\right)^{2} \varphi^{-2}\left(\frac{[k+1]}{[n+1]}\right)\left\|\varphi^{2} g^{\prime \prime}\right\|\right\} \\
= & \frac{x(1-x)}{(1-x+x q) \ldots\left(1-x+x q^{n}\right)}\left\|\varphi^{2} g^{\prime \prime}\right\| \sum_{k=0}^{n-1}[n-1] q^{k(k-1) / 2} \\
& \times x^{k}(1-x)^{n-1-k}\left\{\frac{q^{k}[n]}{[k+1]} \frac{[k+1]^{2} q^{2 n}}{[n]^{2}[n+1]^{2}} \frac{[k+1]([n+1]-[k+1])}{[n+1]^{2}}\right. \\
& +\frac{q^{n}[n]}{[n-k]} \frac{q^{2 k}[n-k]^{2}}{[n]^{2}[n+1]^{2}} \frac{x+1]([n+1]-[k+1])}{[k+1-x)} \\
= & \left.\frac{x(1-x+x q) \ldots\left(1-x+x q^{n}\right)}{\left(1-x \varphi^{2} g^{\prime \prime} \| \sum_{k=0}^{n-1}[n-1\right.} \begin{array}{c}
k
\end{array}\right] q^{k(k-1) / 2} \\
& \times x^{k}(1-x)^{n-1-k} \frac{q^{n-1+k}[n+1]}{[n][n-k][k+1]} \\
= & \frac{\left\|\varphi^{2} g^{\prime \prime}\right\|}{(1-x+x q) \ldots\left(1-x+x q^{n}\right)} \sum_{k=0}^{n-1} \frac{q^{n-1}}{[n]^{2}}\left[\begin{array}{c}
n+1 \\
k+1
\end{array}\right] q^{(k+1) k / 2} x^{k+1}(1-x)^{n-k} \\
= & \frac{q^{n-1}}{[n]^{2}}\left\|\varphi^{2} g^{\prime \prime}\right\| \sum_{k=1}^{n}[n+1] \frac{q^{k(k-1) / 2} x^{k}(1-x)^{n+1-k}}{(1-x+x q) \ldots\left(1-x+x q^{n}\right)} \\
\leq & \frac{q^{n-1}}{[n]^{2}}\left\|\varphi^{2} g^{\prime \prime}\right\| R_{n+1, q}\left(e_{0}, x\right)=\frac{q^{n-1}}{[n]^{2}}\left\|\varphi^{2} g^{\prime \prime}\right\| .
\end{aligned}
$$

Similarly to the case $\mathbf{1}^{\circ}$, we can choose the sequences $\left(\alpha_{n}\right)_{n \geq 1}$ and $\left(\beta_{n}\right)_{n \geq 1}$ as $\alpha_{n}=q^{n-1} /\left(1-q^{n}\right)^{2}$ and $\beta_{n}=q^{n-1} /[n]^{2}$, where $n=1,2, \ldots$ and $0<q<1$. By Theorem 2.1, we have the following statement.

Let $q \in(0,1)$ be given. Then there exists a positive linear operator $L_{\infty, q}$ on $C[0,1]$ such that

$$
\left\|R_{n, q} f-L_{\infty, q} f\right\| \leq C \omega_{\varphi}^{2}\left(f, \sqrt{q^{n-1}} /\left(1-q^{n}\right)\right)
$$

for all $f \in C[0,1]$ and $n=1,2, \ldots$
The operator $L_{\infty, q}$ is identical with the limit q-analogue of the Bernstein operator, denoted by $\tilde{R}_{\infty, q}$, because in [14] it is proved that $\left\{R_{n, q} f\right\}$ converges to $\tilde{R}_{\infty, q} f$ as $n \rightarrow \infty$, uniformly on $[0,1]$.

References

[1] A. Aral, A generalization of Szász-Mirakyan operators based on q-integers, Math. Comput. Modelling 47 (2008), 1052-1062.
[2] A. Aral and V. Gupta, On q-Baskakov type operators, Demonstratio Math. 42 (2009), 107-120.
[3] M.-M. Derriennic, Modified Bernstein polynomials and Jacobi polynomials in q-calculus, Rend. Circ. Math. Palermo Serie II (Suppl. 76) (2005), 269-290.
[4] R. A. DeVore and G. G. Lorentz, Constructiv Approximation, Springer-Verlag, Berlin, 1993.
[5] Z. Ditzian and V. Totik, Moduli of Smoothness, Springer-Verlag, Berlin, 1987.
[6] V. Gupta, Some approximation properties of q-Durrmeyer operators, Appl. Math. Comput. 197 (2008), 172-178
[7] V. Gupta and H. Wang, The rate of convergence of q-Durrmeyer operators for $0<q<1$, Math. Meth. Appl. Sci. 31 (2008), 1946-1955.
[8] A. Il'inskil and S. Ostrovska, Convergence of generalized Bernstein polynomials, J. Approx. Theory 116 (2002), 100-112.
[9] S. Lewanowicz and P. WoZ̆ny, Generalized Bernstein polynomials, BIT 44 (2004), 63-78.
[10] A. Lupaş, A q-analogue of the Bernstein operator, Babeş-Bolyai University, Seminar on Numerical and Statistical Calculus 9 (1987), 85-92.
[11] L. Lupaş, A q-analogue of the Meyer-König and Zeller operator, Anal. Univ. Oradea 2 (1992), 62-66.
[12] G. Nowak, Approximation properties for generalized q-Bernstein polynomials, J. Math. Anal. Appl. 350 (2009), 50-55.
[13] H. Oruç and G. M. Phillips, A generalization of the Bernstein polynomials, Proc. Edinb. Math. Soc. 42 (1999), 403-413.
[14] S. Ostrovska, On the Lupaş q-analogue of the Bernstein operator, Rocky Mountain J. Math. 36 (2006), 1615-1629.
[15] G. M. Phillips, Bernstein polynomials based on the q-integers, Ann. Numer. Math. 4 (1997), 511-518.
[16] G. M. Phillips, Interpolation and Approximation by Polynomials, Springer-Verlag, New York, 2003.
[17] T. Trif, Meyer-König and Zeller operators based on the q-integers, Rev. Anal. Numér. Théorie Approx. 29 (2000), 221-229.
[18] H. WANG, Korovkin-type theorem and application, J. Approx. Theory 132 (2005), 258-264.
[19] H. WANG, Properties of convergence for the q-Meyer-König and Zeller operators, J. Math. Anal. Appl. 335 (2007), 1360-1373.

ZOLTÁN FINTA
DEPARTMENT OF MATHEMATICS
BABEŞ-BOLYAI UNIVERSITY
1, M. KOGĂLNICEANU ST.
400084 CLUJ-NAPOCA
ROMANIA
E-mail: fzoltan@math.ubbcluj.ro

