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On the diameter and girth of ideal-based zero-divisor graphs

By SHAHABADDIN EBRAHIMI ATANI (Rasht), AHMAD YOUSEFIAN DARANI (Ardabil)
and EDMUND R. PUCZYÃLOWSKI (Warsaw)

Abstract. We describe the diameter and the girth of the zero-divisor graph of a

commutative ring R with respect to a nonzero ideal I.

1. Introduction and preliminaries

Let R be a commutative ring with identity. The zero-divisor graph [1] of R,

denoted Γ(R), is an undirected graph whose vertices are the nonzero zero-divisors

of R with two distinct vertices a and b joined by an edge if and only if ab = 0.

This graph was studied by many authors. A particular attention was paid to its

diameter and girth (cf. [2]–[5] and papers cited there).

In [6] Redmond introduced and studied the following more general concept.

For a given ideal I of R the zero-divisor graph ΓI(R) of R with respect to I is the

undirected graph with vertices T (I) = {x ∈ R \ I | xy ∈ I for some y ∈ R \ I},
where distinct vertices x and y are adjacent if and only if xy ∈ I.

Obviously Γ(R) = Γ0(R) and it is clear that ΓI(R) = ∅ if and only if I is a

prime ideal of R (we treat R as a prime ideal of R).

For given distinct vertices a and b in an undirected graph G, the distance

between a and b, denoted d(a, b), is the length of a shortest path connecting a

and b, if such a path exists; otherwise, d(a, b) = ∞. We set d(a, b) = 0 if and only

if a = b. If d(a, b) < ∞ for arbitrary a, b, then G is said to be connected and its

diameter is defined as diam(G) = sup{d(a, b) | a, b are vertices of G}. The girth
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gr(G) of G is defined as the length of a shortest cycle in G. If G has no cycles,

we set gr(G) = ∞.

The invariants diam(Γ(R)) and gr(Γ(R)) are well described (cf. [1]–[5]). In

particular it is known that diam(Γ(R)) ≤ 3 and gr(Γ(R) is 3, 4 or ∞. In this

paper we continue studies, started in [6], of diam(ΓI(R)) and gr(ΓI(R)) for I 6= 0.

For given a ∈ R denote by ā the image of a in R/I. In Proposition 2.1

we describe for arbitrary distinct a, b ∈ T (I) the relationship between d(a, b)

and d(ā, b̄). This allows us to find (Section 2) a precise relationship between

diam(ΓI(R)) and diam(Γ(R/I)), and, applying known results on diam(Γ(R/I)),

characterize diam(ΓI(R)). In Section 3 we get a complete, more explicit than

in [6], description of gr(ΓI(R)).

Throughout the paper R is a commutative ring with identity and I is a

nonzero ideal of R, which is not prime (in particular I 6= R).

2. Diameter

We start with describing the relationship between d(a, b) and d(ā, b̄), for

arbitrary a, b ∈ T (I). It is evident that d(ā, b̄) ≤ d(a, b).

Proposition 2.1. Let a, b be distinct elements of T (I).

(1) ([6], Theorem 2.5) If ā 6= b̄, then d(a, b) = 1 if and only if d(ā, b̄) = 1;

(2) (cf. [6], Corollary 2.6) If ā = b̄, then d(a, b) = 1 provided a2 ∈ I and

d(a, b) = 2 otherwise;

(3) If d(ā, b̄) = 2, then d(a, b) = 2;

(4) d(ā, b̄) = 3 if and only if d(a, b) = 3.

Proof. (1) is obvious as ab ∈ I if and only if āb̄ = 0.

(2) If ā = b̄ and a2 ∈ I, then āb̄ = ā2 = 0, so ab ∈ I. Consequently

d(a, b) = 1. Suppose that ā = b̄ and a2 6∈ I. Then ab 6∈ I, so d(a, b) > 1. Since

a ∈ T (I), there is c ∈ T (I) such that ac ∈ I. However ac = bc, so bc ∈ I. Hence,

since a2 6∈ I, a 6= c 6= b. Consequently d(a, b) = 2 and we are done.

(3) Suppose that d(ā, b̄) = 2. Then ab 6∈ I, so d(a, b) > 1. Since d(ā, b̄) = 2

there is c ∈ T (I) such that ā 6= c̄ 6= b̄ and ac ∈ I, bc ∈ I. Obviously c is distinct

from a and b, so d(a, b) = 2.

(4) The “if” part follows from the inequality d(ā, b̄) ≤ d(a, b) and (1)–(3).

Conversely suppose that d(ā, b̄) = 3. Then there is a path ā, ā1, ā2, b̄ in Γ(R/I)
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of length 3. Obviously a, a1, a2, b is a path in ΓI(R), so d(a, b) ≤ 3. Since

3 = d(ā, b̄) ≤ d(a, b), we get d(a, b) = 3. The proof is complete. ¤

Proposition 2.1 together with the fact that diam(Γ(R/I)) ≤ 3 give a pre-

cise description of d(a, b) in terms of d(ā, b̄). It in particular implies ([6], The-

orem 2.4) that diam(ΓI(R)) ≤ 3. This allows us to find a precise relation between

diam(ΓI(R)) and diam(Γ(R/I)).

Corollary 2.1. (1) diam(ΓI(R)) = 1 if and only if diam(Γ(R/I)) = 1 or 0;

(2) diam(ΓI(R)) = 2 if and only if diam(Γ(R/I)) = 2;

(3) diam(ΓI(R))) = 3 if and only if diam(Γ(R/I)) = 3.

Proof. (1) is an immediate consequence of Proposition 2.1 (1) and (2) and

the fact that diam(Γ(R/I)) = 0 if and only if T (I) = r+I for an element r ∈ R\I
such that r2 ∈ I.

(2) is an immediate consequence of Proposition 2.1.

We know that diam(Γ(R/I)) ≤ 3, diam(ΓI(R)) ≤ 3 and, by (1) and (2),

diam(ΓI(R)) ≤ 2 if and only if diam(Γ(R/I)) ≤ 2. These and Proposition 2.1 (4)

imply (3). ¤

Applying [3, Theorem 2.6] one obtains a description of diam(Γ(R/I)), which

together with Corollary 2.1 give the following description of diam(ΓI(R)) (since

diamΓI(R) ≤ 3 it is enough to describe cases in which the diameter is equal 1

or 2).

Theorem 2.1. (1) diam(ΓI(R)) = 1 if and only if one of the following

conditions holds

(i) R/I ' Z2 × Z2;

(ii) T (I) =
√
I \ I, where

√
I is the radical of I, i.e.,

√
I = {r ∈ R | rn ∈

I for a positive integer n} and (
√
I)2 ⊆ I.

(2) diam(ΓI(R)) = 2 if and only if either

(i) I = P1 ∩ P2 for some distinct prime ideals P1, P2 of R and R/I 6' Z2 × Z2

or

(ii) the former conditions do not hold and each pair of distinct zero divisors of

R/I has a nonzero annihilator.
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3. Girth

In this section we describe gr(ΓI(R)) (recall that I 6= 0 and it is not a prime

ideal).

Theorem 3.1. (1) Suppose that R/I is a reduced ring, i.e., it contains no

nonzero nilpotent elements. Then gr(ΓI(R)) = 4 if and only if I = P1 ∩ P2 for

distinct prime ideals P1, P2 of R. In this case ΓI(R) is a complete bipartite graph.

Otherwise gr(ΓI(R)) = 3.

(2) Suppose that the ring R/I is not reduced. Then gr(ΓI(R)) = 3 or

gr(ΓI(R)) = ∞. The latter holds if and only if (up to isomorphism)

(i) R = Z2 ⊕ Z4 and I = Z2;

(ii) R = Z2 ⊕ (Z2[x]/(x
2)) and I = Z2;

(iii) R = Z8 and I = 4R;

(iv) R = Z4[x]/(x
2 − 2, 2x) and I = (2, x2)/(x2 − 2, 2x);

(v) R = Z4[x]/(2x, x
2) and I = (2, x2)/(2x, x2) or I = (x)/(2x, x2) or I =

(x− 2, 2x)/(2x, x2);

(vi) R = Z2[x]/(x
3) and I = (x2)/(x3);

(vii) R = Z2[x, y]/(x
2, y2, xy) and I = (x, y2, xy)/(x2, y2, xy).

Proof. (1) This part can be deduced from results obtained in [5]. We give a

short direct proof. Note first that since R̄ = R/I is a reduced ring, for any ideals

K,L of R̄, K ∩ L = 0 if and only if KL = 0. It is evident that if R̄ contains a

direct sum of more than two nonzero ideals, then gr(ΓI(R)) = 3. Hence, since I

is not a prime ideal, gr(ΓI(R)) 6= 3 if and only if R̄ contains a direct sum of two

but not more nonzero ideals. Thus there are nonzero a, b ∈ R̄ such that ab = 0

and R̄a, R̄b are domains. Let A = {x ∈ R̄ | ax = 0} and B = {x ∈ R̄ | xb = 0}.
If for some x, y ∈ R̄, xya = 0, then xaya = 0. Since R̄a is a domain, xa = 0 or

ya = 0. This shows that A is a prime ideal. Similarly B is a prime ideal. Now the

sum Ra+Rb is direct and since R̄ does not contain direct sums of more than two

nonzero ideals, for every 0 6= x ∈ R̄, xa 6= 0 or xb 6= 0. This shows that A∩B = 0.

Let P1 and P2 be the preimages of A and B in R, respectively. Then P1, P2 are

distinct prime ideals of R such that P1∩P2 = I. Clearly T (I) = (P1 \I)∪ (P2 \I)
and x, y ∈ T (I) are adjacent if and only if one of them belongs to P1 \ I and the

other to P2 \ I. Since I 6= 0, none of P1 \ I and P2 \ I is singleton. It is clear

that ΓI(R) contains no triangle but if x1, x2 are distinct elements of P1 \ I and

y1, y2 are distinct elements of P2 \ I, then x1, y1, x2, y2 form a cycle. Hence

gr(ΓI(R)) = 4. It is clear that ΓI(R) is a complete bipartite graph.
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(2) Applying Zorn’s Lemma we can find an ideal J of R containing I and

maximal with respect to J2 ⊆ I. If J \ I contains more than 2 elements, then

gr(ΓI(R)) = 3. In particular, this holds when I contains more than 2 elements.

Let A/I be the annihilator of J/I in R/I. Obviously J ⊆ A. If A 6= J , then for

arbitrary a ∈ A \ J , j ∈ J \ I and 0 6= i ∈ I, the elements j, a, i + j form a

triangle in ΓI(R). Hence in this case gr(ΓI(R)) = 3.

Consequently gr(ΓI(R)) = 3 unless card I = 2, A = J and card(J/I) = 2.

Suppose that these conditions hold. Take 0 6= a ∈ J/I and define the map

f : R/I → J/I by f(x) = ax. Obviously f is an epimorphism of abelian groups

and Ker f = A/I = J/I. Consequently card(R) = 8. It is clear that ΓI(R) has

precisely two vertices and they are adjacent, so gr(ΓI(R)) = ∞. It is also clear

that I is isomorphic (as a ring) to Z2 or I2 = 0.

If I ' Z2, then R = I ⊕ I ′ for an ideal I ′ of R with card I ′ = 4. Hence in

this case, up to isomorphism, R = Z2 ⊕ Z4 or R = Z2 ⊕ (Z2[x]/(x
2)) and I = Z2

These give (i) and (ii), respectively.

Suppose now that I2 = 0. The order of the identity element 1 of R in the

additive group of R is 8, 4 or 2. If it is 8, then obviously R ' Z8 and I = 4R, so

we get (iii).

Suppose that the order of 1 is 4. Then the subring of R generated by 1

can be identified with Z4. Moreover, since cardJ = 4, J ∩ Z4 = {0, 2}. Every

j ∈ J is nilpotent, so 1− j is an invertible element of R and consequently 2 6∈ 2J .

This implies that 2J = 0 as otherwise we would have J = {0, 2} + 2J and

0 6= 2J = 2({0, 2} + 2J) = 0, a contradiction. Pick a ∈ J \ I. Then a2 = 2

or a2 = 0. In the former case a3 = 0 and I = 2Z4. If the latter holds, then I

can be any nontrivial subgroup of the additive group of {0, 2, a, a+ 2}. Let f be

the Z4-algebra epimorphism of Z4[x] onto R such that f(x) = a. In the former

case Ker f = (x2 − 2, 2x, x3) = (x2 − 2, 2x) and f−1(I) = 2Z4 + Ker f = (2, x2).

This gives (iv). If the latter holds, then Ker f = (2x, x2) and f−1(I) is equal to

2Z4 + (2x, x2) = (2, x2) or (x) or (x− 2, 2x, x2) = (x− 2, 2x). These give (v).

Finally suppose that the order of 1 is 2. Then 2R = 0 and R is a Z2-algebra.

Let a ∈ J \ I and I = {0, i}. Then a2 = i or a2 = 0. Since 1− a is an invertible

element of R, ai 6= i. Hence ai = 0. If a2 = i, then a3 = 0 and the homomorphism

f : Z2[x] → R of Z2-algebras such that f(x) = a is an epimorphism with Ker f =

(x3) and f−1(I) = (x2). Thus (up to isomorphism) R = Z2[x]/(x
3) and I =

(x2)/(x3), so we get (vi). If a2 = 0, then the homomorphism f : Z2[x, y] → R

of Z2-algebras such that f(x) = i and f(y) = a is an epimorphism with Ker f =

(x2, y2, xy) and f−1(I) = (x, y2, xy) = (x, y2). Hence (up to isomorphism) R =

Z2[x, y]/(x
2, y2, xy) and I = (x, y2)/(x2, y2, xy), so we get (vii).
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These show that if gr(ΓI(R)) 6= 3, then one of conditions (i)–(vii) holds. It

is not hard to see that if any of conditions (i)–(vii) is satisfied, then

gr(ΓI(R)) = ∞. ¤
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