Publ. Math. Debrecen 78/3-4 (2011), 633–646 DOI: 10.5486/PMD.2011.4829

On the maximal operator of Walsh-Marcinkiewicz means

By KÁROLY NAGY (Nyíregyháza)

Abstract. In this paper we prove that the maximal operator $\tilde{\mathcal{M}}^* f := \sup_{n \in \mathbf{P}} \frac{|\mathcal{M}_n f|}{\log^{3/2}(n+1)}$, where $\mathcal{M}_n f$ is the *n*th Marcinkiewicz–Fejér mean of the 2-dimensional Walsh–Fourier series, is bounded from the Hardy space $H_{2/3}(G^2)$ to the space $L_{2/3}(G^2)$.

1. Introduction

The a.e. convergence of Walsh–Fejér means $\sigma_n f$ was proved by FINE [2]. In 1975 SCHIPP [12] showed that the maximal operator σ^* is of weak type (1, 1) and of type (p, p) for 1 . The boundedness fails to hold for <math>p = 1. But, FUJII [3] proved that σ^* is bounded from the dyadic Hardy space H_1 to the space L_1 . The theorem of FUJII was extended by WEISZ [17], he showed that the maximal operator σ^* is bounded from the martingale Hardy space H_p to the space L_p for p > 1/2. Simon gave a counterexample [13], which showes that the boundedness does not hold for 0 . The counterexample for <math>p = 1/2 due to GOGINAVA [6]. In the endpoint case p = 1/2 two positive result was showed. WEISZ [18] proved that σ^* is bounded from the Hardy space $H_{1/2}$ to the space weak- $L_{1/2}$. In 2008 GOGINAVA [8] proved that the maximal operator $\tilde{\sigma}^*$ defined by

$$\tilde{\sigma}^* := \sup_{n \in \mathbf{P}} \frac{|\sigma_n f|}{\log^2(n+1)}$$

Mathematics Subject Classification: 42C10.

Key words and phrases: Walsh system, Fejér means, Marcinkiewicz means, Maximal operator.

is bounded from the Hardy space $H_{1/2}$ to the space $L_{1/2}$. He also proved that for any nondecreasing function $\varphi : \mathbf{P} \to [1, \infty)$ satisfying the condition

$$\overline{\lim_{n \to \infty} \frac{\log^2(n+1)}{\varphi(n)}} = +\infty$$

the maximal operator $\sup_{n \in \mathbf{P}} \frac{|\sigma_n f|}{\varphi(n)}$ is not bounded from the Hardy space $H_{1/2}$ to the space $L_{1/2}$.

In 1939 for the two-dimensional trigonometric Fourier partial sums $S_{j,j}(f)$ MARCINKIEWICZ [10] has proved for $f \in L \log L([0, 2\pi]^2)$ that the means

$$\mathcal{M}_n f = \frac{1}{n} \sum_{j=1}^n S_{j,j}(f)$$

converge a.e. to f as $n \to \infty$. ZHIZHIASHVILI [19] improved this result for $f \in L([0, 2\pi]^2)$.

For the two-dimensional Walsh–Fourier series WEISZ [14] proved that the maximal operator

$$\mathcal{M}^* f = \sup_{n \ge 1} \frac{1}{n} \left| \sum_{j=0}^{n-1} S_{j,j}(f) \right|$$

is bounded from the two-dimensional dyadic martingale Hardy space H_p to the space L_p for p > 2/3 and is of weak type (1, 1). GOGINAVA [6] proved that the assumption p > 2/3 is essential for the boundedness of the maximal operator \mathcal{M}^* from the Hardy space $H_p(G^2)$ to the space $L_p(G^2)$. Namely, in the endpoint case p = 2/3 he gave a counterexample for which the boundedness does not hold. In the endpoint case p = 2/3, GOGINAVA [7] proved that the maximal operator \mathcal{M}^* of the Walsh–Marcinkiewicz means of double Fourier series is bounded from the Hardy space $H_{2/3}$ to the space weak- $L_{2/3}$.

In the present paper we prove that the maximal operator $\tilde{\mathcal{M}}^*$ defined by

$$\tilde{\mathcal{M}}^* := \sup_{n \in \mathbf{P}} \frac{|\mathcal{M}_n f|}{\log^{3/2}(n+1)}$$

is bounded from the Hardy space $H_{2/3}$ to the space $L_{2/3}$. We also prove that for any nondecreasing function $\varphi : \mathbf{P} \to [1, \infty)$ satisfying the condition

$$\overline{\lim_{n \to \infty}} \, \frac{\log^{3/2}(n+1)}{\varphi(n)} = +\infty$$

the maximal operator $\sup_{n \in \mathbf{P}} \frac{|\mathcal{M}_n f|}{\varphi(n)}$ is not bounded from the Hardy space $H_{2/3}$ to the space $L_{2/3}$. That is, we prove the analogue of the theorems of GOGINAVA mentioned above [8].

For Walsh–Kaczmarz–Marcinkiewicz means the author [9] proved, that it is of weak type (1,1) and of type (p, p) for 1 . This theorem was extended in [4].

2. Definitions and notation

Now, we give a brief introduction to the theory of dyadic analysis [11], [1]. Let **P** denote the set of positive integers, $\mathbf{N} := \mathbf{P} \cup \{0\}$. Denote \mathbb{Z}_2 the discrete cyclic group of order 2, that is $\mathbb{Z}_2 = \{0, 1\}$, where the group operation is the modulo 2 addition and every subset is open. The Haar measure on \mathbb{Z}_2 is given such that the measure of a singleton is 1/2. Let *G* be the complete direct product of the countable infinite copies of the compact groups \mathbb{Z}_2 . The elements of *G* are of the form $x = (x_0, x_1, \ldots, x_k, \ldots)$ with $x_k \in \{0, 1\}(k \in \mathbf{N})$. The group operation on *G* is the coordinate-wise addition, the measure (denoted by μ) and the topology are the product measure and topology. The compact Abelian group *G* is called the Walsh group. A base for the neighborhoods of *G* can be given in the following way:

$$I_0(x) := G,$$

$$I_n(x) := I_n(x_0, \dots, x_{n-1}) := \{ y \in G : y = (x_0, \dots, x_{n-1}, y_n, y_{n+1}, \dots) \},$$

 $(x \in G, n \in \mathbf{N})$. These sets are called dyadic intervals. Let $0 = (0 : i \in \mathbf{N}) \in G$ denote the null element of G, and $I_n := I_n(0)(n \in \mathbf{N})$. Set $e_n := (0, \ldots, 0, 1, 0, \ldots) \in G$, the *n*th coordinate of which is 1 and the rest are zeros $(n \in \mathbf{N})$. For $k \in \mathbf{N}$ and $x \in G$ denote

$$r_k(x) := \left(-1\right)^{x_k}$$

the kth Rademacher function. If $n \in \mathbf{N}$, then $n = \sum_{i=0}^{\infty} n_i 2^i$ can be written, where $n_i \in \{0,1\}$ $(i \in \mathbf{N})$, i.e. n is expressed in the number system of base 2. Denote $|n| := \max\{j \in \mathbf{N} : n_j \neq 0\}$, that is $2^{|n|} \le n < 2^{|n|+1}$.

The Walsh–Paley system is defined as the sequence of Walsh–Paley functions:

$$w_n(x) := \prod_{k=0}^{\infty} (r_k(x))^{n_k} = r_{|n|}(x) (-1)^{\sum_{k=0}^{|n|-1} n_k x_k} \quad (x \in G, n \in \mathbf{P}).$$

The σ -algebra generated by the dyadic 2-dimensional cube I_k^2 of measure $2^{-k} \times 2^{-k}$ will be denoted by $\mathcal{F}_k (k \in \mathbf{N})$.

The space $L_p(G^2), 0 with norms or quasi-norms <math>\|\cdot\|_p$ is defined in the usual way (For details see e.g. WEISZ [15]).

Denote by $f = (f_n, n \in \mathbf{N})$ the one-parameter martingale with respect to $(\mathcal{F}_n, n \in \mathbf{N})$. The maximal function of a martingale f is defined by

$$f^* = \sup_{n \in \mathbf{N}} |f_n|.$$

For $0 the Hardy martingale space <math display="inline">H_p(G^2)$ consists of all martingales for which

$$||f||_{H_p} = ||f^*||_p < \infty.$$

The Dirichlet kernels are defined by

$$D_n(x) := \sum_{k=0}^{n-1} w_k(x).$$

Recall that (see e.g. [11])

$$D_{2^n}(x) = \begin{cases} 2^n, & \text{if } x \in I_n(0), \\ 0, & \text{if } x \notin I_n(0). \end{cases}$$
(1)

The Fejér kernels are defined as follows

$$K_n(x) := \frac{1}{n} \sum_{k=0}^{n-1} D_k(x).$$

The Kroneker product $(w_{n,m} : n, m \in \mathbf{N})$ of two Walsh system is said to be the two-dimensional Walsh system. Thus,

$$w_{n,m}\left(x^{1},x^{2}\right) = w_{n}\left(x^{1}\right)w_{m}\left(x^{2}\right).$$

If $f \in L(G^2)$, then the number $\widehat{f}(n,m) := \int_{G^2} fw_{n,m}$ $(n,m \in \mathbb{N})$ is said to be the (n,m)th Walsh–Fourier coefficient of f. We can extend this definition to martingales in the usual way (see WEISZ [15], [16]). Denote by $S_{n,m}$ the (n,m)th rectangular partial sum of the Walsh–Fourier series of a martingale f. Namely,

$$S_{n,m}(f;x^1,x^2) := \sum_{k=0}^{n-1} \sum_{i=0}^{m-1} \widehat{f}(k,i) w_{k,i}(x^1,x^2).$$

The Marcinkiewicz–Fejér means of a martingale f are defined by

$$\mathcal{M}_n(f;x^1,x^2) := \frac{1}{n} \sum_{k=0}^{n-1} S_{k,k}(f;x^1,x^2)$$

The 2-dimensional Dirichlet kernels and Marcinkiewicz–Fejér kernels are defined by

$$D_{k,l}(x^1, x^2) := D_k(x^1) D_l(x^2), \quad K_n(x^1, x^2) := \frac{1}{n} \sum_{k=0}^{n-1} D_{k,k}(x^1, x^2).$$

For the martingale f we consider the maximal operator

$$\mathcal{M}^* f(x^1, x^2) = \sup_{n \in \mathbf{P}} |\mathcal{M}_n(f; x^1, x^2)|.$$

3. Auxiliary propositions and main results

First, we formulate our main theorems. Our theorems are the two-dimensional analogue of the theorems of GOGINAVA [8] for Walsh–Fejér means.

Theorem 1. The maximal operator $\tilde{\mathcal{M}}^*$ is bounded from the Hardy space $H_{2/3}(G^2)$ to the space $L_{2/3}(G^2)$.

Theorem 2. Let $\varphi : \mathbf{P} \to [1, \infty)$ be a nondecreasing function satisfying the condition

$$\lim_{n \to \infty} \frac{\log^{3/2}(n+1)}{\varphi(n)} = +\infty.$$
 (2)

Then the maximal operator

$$\sup_{n \in \mathbf{P}} \frac{|\mathcal{M}_n f|}{\varphi(n)}$$

is not bounded from the Hardy space $H_{2/3}(G^2)$ to the space $L_{2/3}(G^2)$.

To prove our Theorem 1 we need the following Lemmas of GOGINAVA [7, Lemma 7, Lemma 9], GLUKHOV [5] and WEISZ [16]:

Lemma 1 (Goginava [7]). Let $(x^1, x^2) \in (I_{l^1} \setminus I_{l^1+1}) \times (I_{m^2} \setminus I_{m^2+1})$ and $0 \le l^1 < N, 0 \le m^2 < N$. Then

$$\begin{split} &\int_{I_N \times I_N} |K_n(x^1 + t^1, x^2 + t^2)| d\mu(t^1, t^2) \\ &\leq \frac{c}{2^{3N}} \left\{ 2^{l^1 - m^2} \sum_{r^1 = l^1 + 1}^{m^2 + 1} 2^{r^1} D_{2^{m^2 + 1}}(x^1 + e_{l^1} + e_{r^1}) \sum_{s = m^2 + 1}^{N} D_{2^s}(x^2 + e_{m^2} + x_{m^2 + 1, s - 1}^1) \right\} \end{split}$$

$$+2^{l^{1}+m^{2}}\sum_{s=l^{1}}^{m^{2}}\sum_{r^{1}=l^{1}+1}^{s}D_{2^{s}}(x^{1}+e_{l^{1}}+e_{r^{1}})\bigg\}, \text{ for } n \geq 2^{N},$$

with the notation $x_{i,j} := \sum_{s=i}^{j} x_s e_s \ (x_{i,i-1} = 0).$

Lemma 2 (GOGINAVA [7]). Let $(x^1, x^2) \in I_N \times (I_{m^2} \setminus I_{m^2+1})$ and $0 \le m^2 < N$. Then

$$\int_{I_N \times I_N} |K_n(x^1 + t^1, x^2 + t^2)| d\mu(t^1, t^2) \le c \frac{2^{m^2}}{2^{2N}} \sum_{s=m^2}^{N-1} D_{2^s}(x^2 + e_{m^2}), \text{ for } n > 2^N.$$

Lemma 3 (GLUKHOV [5]). There exists a constant c such that

$$\sup_{n} \int_{G^2} |K_n(x^1, x^2)| d\mu(x^1, x^2) \le c.$$

A bounded measurable function a is a p-atom, if there exists a dyadic twodimensional cube I^2 , such that

- a) $\int_{I^2} a d\mu = 0$,
- b) $||a||_{\infty} \le \mu(I^2)^{-1/p}$,
- c) supp $a \subset I^2$.

Lemma 4 (WEISZ [16]). Suppose that the operator T is sublinear and pquasilocal for any $0 . If T is bounded from <math>L_{\infty}$ to L_{∞} , then

$$||Tf||_p \le c_p ||f||_{H_p} \quad \text{for all } f \in H_p.$$

4. Proofs of the theorems

First, we prove Theorem 1.

PROOF OF THEOREM 1. Lemma 3 yields the boundedness from the space L_{∞} to the space L_{∞} . By Lemma 4, the proof will be complete, if we show that the maximal operator $\tilde{\mathcal{M}}^*$ is 2/3-quasilocal. That is, there exists a constant c such that

$$\int_{\overline{I^2}} |\tilde{\mathcal{M}}^* a|^{2/3} d\mu \le c < \infty$$

for every 2/3-atom a. where the dyadic cube I^2 is the support of the 2/3-atom a.

Let *a* be an arbitrary 2/3-atom with support I^2 , and $\mu(I^2) = 2^{-2N}$. Without loss of generality, we may assume that $I^2 := I_N \times I_N$. It is evident that $\tilde{\mathcal{M}}_n(a) = 0$ if $n \leq 2^N$ (with the notation $\tilde{\mathcal{M}}_n(f) := \frac{|\mathcal{M}_n f|}{\log^{3/2}(n+1)}$). Therefore, we set $n > 2^N$.

By $||a||_{\infty} \leq 2^{3N}$ we have that

$$\frac{|\mathcal{M}_{n}(a;x^{1},x^{2})|}{\log^{3/2}(n+1)} \leq \frac{1}{\log^{3/2}(n+1)} \int_{I_{N}\times I_{N}} |a(t^{1},t^{2})| |K_{n}(x^{1}+t^{1},x^{2}+t^{2})| d\mu(t^{1},t^{2})$$
$$\leq \frac{c2^{3N}}{\log^{3/2}(n+1)} \int_{I_{N}\times I_{N}} |K_{n}(x^{1}+t^{1},x^{2}+t^{2})| d\mu(t^{1},t^{2})$$

and

$$|\tilde{\mathcal{M}}^*a| \le \frac{c2^{3N}}{N^{3/2}} \sup_{n>2^N} \int_{I_N \times I_N} |K_n(x^1 + t^1, x^2 + t^2)| d\mu(t^1, t^2).$$
(3)

We write that

$$\begin{split} \int_{\overline{I_N \times I_N}} |\tilde{\mathcal{M}}^* a|^{2/3} d\mu &= \int_{I_N \times \overline{I_N}} |\tilde{\mathcal{M}}^* a|^{2/3} d\mu + \int_{\overline{I_N} \times I_N} |\tilde{\mathcal{M}}^* a|^{2/3} d\mu \\ &+ \int_{\overline{I_N} \times \overline{I_N}} |\tilde{\mathcal{M}}^* a|^{2/3} d\mu =: L_1 + L_2 + L_3. \end{split}$$

First, we discuss L_1 by the help of Lemma 2 and inequality (3) (the discussion of L_2 goes analogously). We introduce the notation $J_t := I_t \setminus I_{t+1}$ $(t \in \mathbf{N})$.

$$\begin{split} L_1 &= \sum_{m^2=0}^{N-1} \int_{I_N \times J_{m^2}} |\tilde{\mathcal{M}}^* a(x^1, x^2)|^{2/3} d\mu(x^1, x^2) \\ &\leq \frac{c}{N} \sum_{m^2=0}^{N-1} \int_{I_N \times J_{m^2}} \left| 2^{3N} \sup_{n>2^N} \int_{I_N \times I_N} |K_n(x^1 + t^1, x^2 + t^2)| d\mu(t^1, t^2) \right|^{2/3} d\mu(x^1, x^2) \\ &\leq \frac{c}{N} \sum_{m^2=0}^{N-1} \int_{I_N \times J_{m^2}} \left| 2^{m^2 + N} \sum_{s=m^2}^{N-1} D_{2^s}(x^2 + e_{m^2}) \right|^{2/3} d\mu(x^1, x^2). \end{split}$$

We decompose J_{m^2} as the following disjoint union:

$$J_{m^2} = \bigcup_{q^2 = m^2 + 1}^{N} I_N^{m^2, q^2}$$

,

where

$$I_N^{m^2,q^2} := \begin{cases} I_{q^2+1}(0,\ldots,0,x_{m^2}=1,0,\ldots,0,x_{q^2}=1), & \text{for } m^2 < q^2 < N, \\ I_N(0,\ldots,0,x_{m^2}=1,0,\ldots,0), & \text{for } q^2 = N. \end{cases}$$

From (1), we get

$$L_{1} \leq \frac{c2^{-N/3}}{N} \sum_{m^{2}=0}^{N-1} \sum_{q^{2}=m^{2}+1}^{N} \int_{I_{N}^{m^{2},q^{2}}} \left| 2^{m^{2}} \sum_{s=m^{2}}^{q^{2}} 2^{s} \right|^{2/3} d\mu(x^{2})$$
$$\leq \frac{c2^{-N/3}}{N} \sum_{m^{2}=0}^{N-1} \sum_{q^{2}=m^{2}+1}^{N} 2^{2m^{2}/3+2q^{2}/3} 2^{-q^{2}} \leq c.$$

Now, we discuss L_3 .

$$\begin{split} L_3 &= \sum_{l^1=0}^{N-1} \sum_{m^2=0}^{N-1} \int_{J_{l^1} \times J_{m^2}} |\tilde{\mathcal{M}}^* a|^{2/3} d\mu \\ &= \sum_{l^1=0}^{N-1} \sum_{m^2=0}^{l^1-1} \int_{J_{l^1} \times J_{m^2}} |\tilde{\mathcal{M}}^* a|^{2/3} d\mu \\ &+ \sum_{l^1=0}^{N-1} \sum_{m^2=l^1}^{N-1} \int_{J_{l^1} \times J_{m^2}} |\tilde{\mathcal{M}}^* a|^{2/3} d\mu = L_{3,1} + L_{3,2}. \end{split}$$

We discuss $L_{3,2}$ (the discussion of $L_{3,1}$ goes analogously). By the inequality (3) we have that

$$\begin{split} L_{3,2} &\leq \frac{c}{N} \sum_{l^1=0}^{N-1} \sum_{m^2=l^1}^{N-1} \int_{J_{l^1} \times J_{m^2}} \\ &\times \left| 2^{3N} \sup_{n>2^N} \int_{I_N \times I_N} |K_n(x^1+t^1,x^2+t^2)| d\mu(t^1,t^2) \right|^{2/3} d\mu(x^1,x^2) \\ &=: \frac{c}{N} \sum_{l^1=0}^{N-1} \sum_{m^2=l^1}^{N-1} L_{3,2}^{l^1,m^2}. \end{split}$$

To discuss $L_{3,2}^{l^1,m^2}$, we write the set J_{l^1} in the form of following disjoint union:

$$J_{l^1} = \bigcup_{k=l^1+1}^{m^2+1} I_{m^2+1}^{l^1,k}.$$

That is,

$$L_{3,2}^{l^1,m^2} = \sum_{k=l^1+1}^{m^2+1} \int_{I_{m^2+1}^{l^1,k} \times J_{m^2}} | \qquad |^{2/3} d\mu(x^1,x^2)$$

By Lemma 1, $\sum_{r^1=l^1+1}^{m^2+1} D_{2^{m^2+1}}(.+e_{l^1}+e_{r^1}) = 0 \text{ and}$ $\sum_{r^1=l^1+1}^{m^2+1} D_{2^{m^2+1}}(.+e_{l^1}+e_{r^1}) \neq 0 \text{ determine two cases. Thus, we write } I_{m^2+1}^{l^1,k} = (I_{m^2+1}^{l^1,k} \cap \bigcup_{r^1=l^1+1}^{m^2+1} I_{m^2+1}(e_{l^1}+e_{r^1})) \bigcup (I_{m^2+1}^{l^1,k} \cap (\bigcup_{r^1=l^1+1}^{m^2+1} I_{m^2+1}(e_{l^1}+e_{r^1}))). \text{ Thus,}$ this divide the expression $L_{3,2}^{l^1,m^2}$ into two parts $L_{3,2,1}^{l^1,m^2}$ and $L_{3,2,2}^{l^1,m^2}$. In $L_{3,2,1}^{l^1,m^2}$ we integrate on the set $I_{m^2+1}^{l^1,k} \cap \bigcup_{r^1=l^1+1}^{m^2+1} I_{m^2+1}(e_{l^1}+e_{r^1})$, while in $L_{3,2,2}^{l^1,m^2}$ we integrate on the set $I_{m^2+1}^{l^1,k} \cap (\bigcup_{r^1=l^1+1}^{m^2+1} I_{m^2+1}(e_{l^1}+e_{r^1})) = I_{m^2+1}(e_{l^1}+e_k)$. Using Lemma 1, we immediately have

$$L_{3,2,1}^{l^1,m^2} \le c2^{-m^2} \sum_{k=l^1+1}^{m^2+1} \int_{I_{m^2+1}^{l^1,k}} \left| 2^{l^1+m^2} \sum_{s=l^1}^{m^2} D_{2^s}(x^1+e_{l^1}+e_k) \right|^{2/3} d\mu(x^1).$$

Now, we decompose the set $I_{m^2+1}^{l^1,k}$ in the following form of disjoint union:

$$I_{m^2+1}^{l^1,k} = \bigcup_{r=k+1}^{m^2+1} I_{m^2+1}^{l^1,k,r},$$

where $I_{m^2+1}^{l^1,k,r} := I_{r+1}(0, \ldots, 0, x_{l^1}^1 = 1, 0, \ldots, 0, x_k^1 = 1, 0, \ldots, x_r^1 = 1)$ for $k < r \le m^2$ and $I_{m^2+1}^{l^1,k,r} := I_{m^2+1}(e_{l^1} + e_k)$ for $r = m^2 + 1$. This yields

$$L_{3,2,1}^{l^{1},m^{2}} \leq c2^{-m^{2}} \sum_{k=l^{1}+1}^{m^{2}+1} \sum_{r=k+1}^{m^{2}+1} \int_{I_{m^{2}+1}^{l^{1},k,r}} \left| 2^{l^{1}+m^{2}} \sum_{s=l^{1}}^{r} 2^{s} \right|^{2/3} d\mu(x^{1})$$

$$\leq c2^{-m^{2}} \sum_{k=l^{1}+1}^{m^{2}+1} \sum_{r=k+1}^{m^{2}+1} 2^{2(l^{1}+m^{2}+r)/3} 2^{-r} \leq c2^{l^{1}/3-m^{2}/3}.$$
(4)

Now, we turn our attention to $L_{3,2,2}^{l^1,m^2}$.

$$\begin{split} L_{3,2,2}^{l^1,m^2} &\leq c \sum_{k=l^1+1}^{m^2+1} \int_{I_{m^2+1}(e_{l^1}+e_k) \times J_{m^2}} ()^{2/3} d\mu(x^1,x^2) \\ &\leq c \sum_{k=l^1+1}^{m^2+1} \sum_{\substack{x_i^1=0\\i\in\{m^2+1,\dots,N-1\}\\x_j^1=0 \text{ otherwise}}}^{1} \int_{I_N(e_{l^1}+e_k+x^1) \times J_{m^2}} ()^{2/3} d\mu(x^1,x^2) \end{split}$$

For fixed x_i^1 , $m^2 + 1 \le i < N$ we decompose the set J_{m^2} in the form of following disjoint union:

$$J_{m^2} = \bigcup_{q^2 = m^2 + 1}^{N} I_N^{m^2, q^2}(x_{m^2 + 1, q^2 - 1}^1),$$

where $I_N^{m^2,q^2}(x_{m^2+1,q^2-1}^1) := I_{q^2+1}(0,\ldots,0,x_{m^2}^2 = 1,x_{m^2+1}^1,\ldots,x_{q^2-1}^1,1-x_{q^2}^1),$ for $m^2 < q^2 < N$ and $I_N^{m^2,q^2}(x_{m^2+1,q^2-1}^1) := I_N(0,\ldots,0,x_{m^2}^2 = 1,x_{m^2+1}^1,\ldots,x_{N-1}^1),$ for $q^2 = N$. That is, by Lemma 1

$$\begin{split} L_{3,2,2}^{l^1,m^2} &\leq c \sum_{k=l^1+1}^{m^2+1} \sum_{\substack{x_i^1=0\\i\in\{m^2+1,\ldots,N-1\}\\x_j^1=0 \text{ otherwise}}}^{1} \sum_{\substack{q^2=m^2+1\\x_j^1=0}}^{N} \sum_{\substack{q^2=m^2+1\\x_j^1=0}}^{N} \int_{I_N(e_{l^1}+e_k+x^1)\times I_N^{m^2,q^2}(x_{m^2+1,q^{2}-1}^1)} \\ &\times \left(2^{l^1+k}\sum_{\substack{s=m^2+1\\s=m^2+1}}^{q^2} 2^s + 2^{l^1+m^2}\sum_{\substack{s=l^2\\s=l^1}}^{m^2} 2^s\right)^{2/3} d\mu(x^1,x^2) \\ &\leq c \sum_{k=l^1+1}^{m^2+1} \sum_{\substack{q^2=m^2+1\\q^2=m^2+1}}^{N} 2^{2(l^1+m^2+q^2)/3} 2^{-m^2-q^2} \\ &\leq c(m^2+1-l^1) 2^{2l^1/3-2m^2/3}. \end{split}$$

This and inequality (4) yield that

$$\begin{split} L_{3,2} &\leq \frac{c}{N} \sum_{l^1=0}^{N-1} \sum_{m^2=l^1}^{N-1} 2^{l^1/3-m^2/3} + \frac{c}{N} \sum_{l^1=0}^{N-1} \sum_{m^2=l^1}^{N-1} (m^2+1-l^1) 2^{2l^1/3-2m^2/3} \\ &\leq \frac{cN}{N} \leq c. \end{split}$$

This completes the proof of Theorem 1.

Next, we prove Theorem 2.

PROOF OF THEOREM 2. Let

$$f_A(x^1, x^2) := (D_{2^{A+1}}(x^1) - D_{2^A}(x^1))(D_{2^{A+1}}(x^2) - D_{2^A}(x^2)).$$

A simple calculation yields

$$\hat{f}_A(i,k) = \begin{cases} 1, & \text{if } i, k = 2^A, \dots, 2^{A+1} - 1, \\ 0, & \text{otherwise,} \end{cases}$$

and

$$S_{i,j}(f;x^1,x^2)$$

$$=\begin{cases} (D_i(x^1) - D_{2^A}(x^1))(D_j(x^2) - D_{2^A}(x^2)), & \text{if } i, j = 2^A + 1, \dots, 2^{A+1} - 1, \\ f_A(x^1,x^2), & \text{if } i, j \ge 2^{A+1}, \\ 0, & \text{otherwise.} \end{cases}$$

642

We can write the nth Dirichlet kernel in the following form:

$$D_n(x) = D_{2^{|n|}}(x) + r_{|n|}(x)D_{n-2^{|n|}}(x)$$

Thus, we have for a nondecreasing function φ that

$$\begin{split} \tilde{\mathcal{M}}^* f_A(x^1, x^2) &= \sup_{n \in \mathbf{P}} \frac{|\mathcal{M}_n(f_A; x^1, x^2)|}{\varphi(n)} \ge \max_{t: 1 \le 2^t \le 2^A} \frac{|\mathcal{M}_{2^A + 2^t}(f_A; x^1, x^2)|}{\varphi(2^A + 2^t)} \\ &\ge \max_{t: 1 \le 2^t \le 2^A} \frac{1}{(2^A + 2^t)\varphi(2^A + 2^t)} \Big|^{2^A + 2^t - 1} S_{k,k}(f_A; x^1, x^2) \Big| \\ &\ge \max_{t: 1 \le 2^t \le 2^A} \frac{1}{2^{A+1}\varphi(2^{A+1})} \Big|^{2^A + 2^t - 1} \sum_{k=0}^{2^A + 2^t - 1} (D_k(x^1) - D_{2^A}(x^1))(D_k(x^2) - D_{2^A}(x^2)) \Big| \\ &= \max_{t: 1 \le 2^t \le 2^A} \frac{1}{2^{A+1}\varphi(2^{A+1})} \Big|^{2^A + 2^t - 1} \sum_{k=2^A + 1} r_A(x^1)D_{k-2^A}(x^1)r_A(x^2)D_{k-2^A}(x^2) \Big| \\ &= \max_{t: 1 \le 2^t \le 2^A} \frac{1}{2^{A+1}\varphi(2^{A+1})} \Big|^{2^t - 1} \sum_{l=1}^{2^t - 1} D_l(x^1)D_l(x^2) \Big| \\ &= \frac{1}{2^{A+1}\varphi(2^{A+1})} \max_{t: 1 \le 2^t \le 2^A} 2^t |K_{2^t}(x^1, x^2)|. \end{split}$$

Since, we have

$$f_A^*(x^1, x^2) = \sup_{n \in \mathbf{N}} |S_{2^n, 2^n}(f_A; x^1, x^2)| = |f_A(x^1, x^2)|$$

and

$$||f_A||_{H_{2/3}} = ||f_A^*||_{2/3} = c2^{-A}.$$

We obtain

$$\frac{\|\tilde{\mathcal{M}}^*f_A\|_{2/3}}{\|f_A\|_{H_{2/3}}} \geq \frac{c}{2^A \varphi(2^{A+1}) 2^{-A}} \left(\int_{G^2} \max_{t:1 \leq 2^t \leq 2^A} (2^t |K_{2^t}(x^1, x^2)|)^{2/3} d\mu(x^1, x^2) \right)^{3/2}.$$

To investigate the integral $\int_{G^2} \max_{t:1 \leq 2^t \leq 2^A} (2^t |K_{2^t}(x^1, x^2)|)^{2/3} d\mu(x^1, x^2)$, we decompose the set G as the following disjoint union

$$G = I_A \cup \bigcup_{s=0}^{A-1} (I_s \backslash I_{s+1}).$$

It is easy to show that, for $(x^1, x^2) \in I_s \times I_s$

$$K_{2^s}(x^1, x^2) = \frac{(2^s - 1)(2^{s+1} - 1)}{6}.$$

Therefore,

$$\begin{split} &\int_{G\times G} \max_{t:1\leq 2^{t}\leq 2^{A}} (2^{t}|K_{2^{t}}(x^{1},x^{2})|)^{2/3} d\mu(x^{1},x^{2}) \\ &\geq \sum_{s=1}^{A-1} \int_{(I_{s}\setminus I_{s+1})\times (I_{s}\setminus I_{s+1})} \max_{t:1\leq 2^{t}\leq 2^{A}} (2^{t}|K_{2^{t}}(x^{1},x^{2})|)^{2/3} d\mu(x^{1},x^{2}) \\ &\geq \sum_{s=1}^{A-1} \int_{(I_{s}\setminus I_{s+1})\times (I_{s}\setminus I_{s+1})} (2^{s}|K_{2^{s}}^{w}(x^{1},x^{2})|)^{2/3} d\mu(x^{1},x^{2}) \\ &= \sum_{s=1}^{A-1} \int_{(I_{s}\setminus I_{s+1})\times (I_{s}\setminus I_{s+1})} \left(2^{s}\frac{(2^{s}-1)(2^{s+1}-1)}{6}\right)^{2/3} d\mu(x^{1},x^{2}) \\ &\geq c \sum_{s=1}^{A-1} \int_{(I_{s}\setminus I_{s+1})\times (I_{s}\setminus I_{s+1})} (2^{3s})^{2/3} d\mu(x^{1},x^{2}) \geq c(A-2). \end{split}$$

That is,

$$\frac{\|\tilde{\mathcal{M}}^*f_A\|_{2/3}}{\|f_A\|_{H_{2/3}}} \ge \frac{c(A+1)^{3/2}}{\varphi(2^{A+1})}$$

for A big enough.

Now, let $\{n_k : k \in \mathbf{P}\}$ be an increasing sequence of positive integers such that

$$\lim_{k \to \infty} \frac{\log^{3/2} n_k}{\varphi(n_k)} = +\infty$$

There exists a positive integer m'_k such that $2^{m'_k} \le n_k < 2 \cdot 2^{m'_k}$. φ is a nondecreasing function, then we have

$$\overline{\lim_{k \to \infty}} \frac{(m'_k)^{3/2}}{\varphi(2^{m'_k})} \ge c \lim_{k \to \infty} \frac{\log^{3/2} n_k}{\varphi(n_k)} = +\infty.$$

Let $\{m_k : k \in \mathbf{P}\} \subset \{m'_k : k \in \mathbf{P}\}$ be such that

$$\lim_{k \to \infty} \frac{(m_k)^{3/2}}{\varphi(2^{m_k})} = +\infty.$$

This yields

$$\frac{\|\tilde{\mathcal{M}}^* f_{m_k-1}\|_{2/3}}{\|f_{m_k-1}\|_{H_{2/3}}} \ge \frac{c(m_k)^{3/2}}{\varphi(2^{m_k})}$$

 $k \rightarrow \infty$ completes the proof of this theorem.

References

- G. N. AGAJEV, N. YA. VILENKIN, G. M. DZHAFARLI and A. I. RUBINSTEIN, Multiplicative systems of functions and harmonic analysis on 0-dimensional groups, "*ELM*" (*Baku, USSR*) (1981) (in *Russian*).
- [2] J. FINE, Cesàro summability of Walsh–Fourier series, Proc. Nat. Acad. Sci. USA 41 (1955), 558–591.
- [3] N. J. FUJII, A maximal inequality for H¹-functions on a generalized Walsh–Paley group, Proc. Amer. Math. Soc. 77 (1979), 111–116.
- [4] G. GÁT, U. GOGINAVA and K. NAGY, On the Marcinkiewicz–Féjer means of double Fourier series with respect to the Walsh–Kaczmarz system, *Studia Sci. Math. Hung.* 46(3) (2009), 399–421.
- [5] V. A. GLUKHOV, On the summability of multiple Fourier series with respect to multiplicative systems, *Mat. Zamet.* **39** (1986), 665–673 (in *Russian*).
- [6] U. GOGINAVA, The maximal operator of the Marcinkiewicz-Fejér means of the d-dimensional Walsh-Fourier series, East J. Approx. 12, no. 3 (2006), 295–302.
- [7] U. GOGINAVA, The weak type inequality for the maximal operator of the Marcinkiewicz— Fejér means of the two-dimensional Walsh–Fourier series, *Journal of Approx. Theory* 154 (2008), 161–180.
- [8] U. GOGINAVA, Maximal operators of Fejér–Walsh means, Acta Sci. Math. (Szeged) 74 (2008), 615–624.
- [9] K. NAGY, On the two-dimensional Marcinkiewicz means with respect to Walsh-Kaczmarz system, *Journal of Approx. Theory* 142 (2006), 138–165.
- [10] J. MARCINKIEWICZ, Sur une methode remarquable de sommation des series doubles de Fourier, Ann. Scuola Norm. Sup. Pisa 8 (1939), 49–160.
- [11] F. SCHIPP, W. R. WADE, P. SIMON and J. PÁL, Walsh Series. An Introduction to Dyadic Harmonic Analysis, Adam Hilger, Bristol – New York, 1990.
- [12] F. SCHIPP, Certain rearrengements of series in the Walsh series, Mat. Zametki 18 (1975), 193–201.
- [13] P. SIMON, Cesàro summability with respect to two-parameter Walsh-system, Monatsh. Math. 131 (2000), 321–334.
- [14] F. WEISZ, Convergence of double Walsh–Fourier series and Hardy spaces, Approx. Theory and its Appl. 17 (2001), 32–44.
- [15] F. WEISZ, Martingale Hardy Spaces and their Applications in Fourier Analysis, Springer-Verlang, Berlin, 1994.
- [16] F. WEISZ, Summability of Multi-Dimensional Fourier Series and Hardy Space, Kluwer Academic, Dordrecht, 2002.
- [17] F. WEISZ, Cesàro summability of one and two-dimensional Walsh–Fourier series, Anal. Math. 22 (1996), 229–242.
- [18] F. WEISZ, θ-summability of Fourier series, Acta Math. Hungar. 103 (2004), 139–176.

[19] L. V. ZHIZHIASHVILI, Generalization of a theorem of Marcinkiewicz, Izv. Akad. Nauk USSR Ser Math. 32 (1968), 1112–1122.

KÁROLY NAGY INSTITUTE OF MATHEMATICS AND COMPUTER SCIENCES COLLEGE OF NYÍREGYHÁZA H-4400 NYÍREGYHÁZA, P.O. BOX 166 HUNGARY

E-mail: nkaroly@nyf.hu

(Received February 3, 2010; revised January 27, 2011)