Mean values of L-functions and relative class numbers of cyclotomic fields

By STÉPHANE R. LOUBOUTIN (Marseille)

Dedicated to Florence F.

Abstract

Using formulas for quadratic mean values of L-functions at $s=1$, we recover previously known explicit upper bounds on relative class numbers of cyclotomic fields. We also obtain new better bounds.

1. Introduction

Various authors have given elementary proofs of upper bounds on relative class numbers h_{f}^{-}of cyclotomic fields $\mathbf{Q}\left(\zeta_{f}\right)$ of conductors $f \not \equiv 2(\bmod 4)$. For example, we have

$$
\begin{equation*}
h_{2^{m}}^{-} \leq 2^{m}\left(2^{m-1} / 32\right)^{2^{m-3}} \quad(m \geq 2) \tag{1}
\end{equation*}
$$

(see [Met3]) and

$$
\begin{equation*}
h_{p}^{-} \leq 2 p(p / 32)^{(p-1) / 4} \quad(p \geq 3 \text { a prime number }) \tag{2}
\end{equation*}
$$

(see [Feng]). H. Walum broached this question by studying mean values of L functions of prime conductors. In [Lou93] (and [Lou01]) we extended H. Walum's result on mean values of L-functions and obtained new and better bounds on relative class numbers. Here, in Lemmas 3 and 6, we obtain a general result for mean values of L-functions. By using Lemma 2, we recover these bounds on
relative class numbers and improve upon them (see (16), (17), (18), (19) and (20) below). We show that for p or m large enough, we can replace the constant 32 by any given constant less than $4 \pi^{2}=39.47841 \ldots$:

Proposition 1. Fix $C<4 \pi^{2}=39.47841 \ldots$. For p effectively large enough we have

$$
h_{p}^{-} \leq 2 p(p / C)^{(p-1) / 4}
$$

For m effectively large enough we have

$$
h_{2^{m}}^{-} \leq 2^{m} \sqrt{2}\left(2^{m-1} / C\right)^{2^{m-3}} .
$$

Using more sophisticated results, a better bound is known (see [MM]):

$$
h_{p}^{-} \leq p^{31 / 4}\left(\frac{p}{4 \pi^{2}}\right)^{p / 4}
$$

2. The method

Let $K_{f}=\mathbf{Q}\left(\zeta_{f}\right)$ be a cyclotomic field of prime power conductor $f=p^{m}>2$, $p \geq 2$ a prime, and of degree $2 n=\phi(f)=p^{m-1}(p-1)$. Let K_{f}^{+}be the maximal real subfield of K_{f}, of degree n. Let d_{f} and d_{f}^{+}be the absolute values of the discriminants of K_{f} and K_{f}^{+}. Hence,

$$
d_{f} / d_{f}^{+}= \begin{cases}\sqrt{p d_{f}}=p^{\left(1+p^{m-1}(p m-m-1)\right) / 2} & \text { if } p \geq 3 \\ \sqrt{4 d_{f}}=2^{1+2^{m-2}(m-1)} & \text { if } p=2\end{cases}
$$

(see [Was, Lemma 4.19 and Proposition 2.1]). Let

$$
w_{f}= \begin{cases}2 f=2 p^{m} & \text { if } p \geq 3 \\ f=2^{m} & \text { if } p=2\end{cases}
$$

be the number of complex roots of unity in K_{f}. In particular,

$$
w_{f} \sqrt{d_{f} / d_{f}^{+}}= \begin{cases}2 p \cdot p^{\phi(f) / 4} & \text { if } f=p \geq 3 \tag{3}\\ \sqrt{2} \cdot 2^{m} \cdot\left(2^{m-1}\right)^{\phi(f) / 4} & \text { if } f=2^{m} \geq 4\end{cases}
$$

Let X_{f}^{-}be the set of the $\phi(f) / 2$ odd Dirichlet characters $\bmod f>2$. Then,

$$
h_{f}^{-}=w_{f} \sqrt{d_{f} / d_{f}^{+}} \prod_{\chi \in X_{f}^{-}} \frac{1}{2 \pi} L(1, \chi)
$$

(use [Was, Corollary 4.13 and page 42]). Now, we fix $f_{0} \geq 1$, a product of small distinct prime numbers $q \geq 2$. We let χ_{0} be the trivial character $\bmod f_{0}$. We assume that f run over integers coprime with f_{0}, and for $\chi \in X_{f}^{-}$, we let $\chi_{0} \chi$ be the odd character mod $f_{0} f$ induced by χ. We have

$$
\prod_{\chi \in X_{f}^{-}} L(1, \chi)=\left(\prod_{q \mid f_{0}} \Pi(q, f)\right)^{-1} \prod_{\chi \in X_{f}^{-}} L\left(1, \chi_{0} \chi\right)
$$

where

$$
\Pi(q, f):=\prod_{\chi \in X_{f}^{-}}\left(1-\frac{\chi(q)}{q}\right)
$$

(throughout the paper, q is a prime divisor of f_{0}, and p a prime divisor of f). The geometric mean being less than or equal to the arithmetic mean, we obtain:

Lemma 2. If $\operatorname{gcd}\left(f_{0}, f\right)=1$, then

$$
\begin{equation*}
h_{f}^{-} \leq \frac{w_{f} \sqrt{d_{f} / d_{f}^{+}}}{\prod_{q \mid f_{0}} \Pi(q, f)} S\left(f_{0}, f\right)^{\phi(f) / 4}, \tag{4}
\end{equation*}
$$

where

$$
S\left(f_{0}, f\right):=\frac{2}{\phi(f)} \sum_{\chi \in X_{f}^{-}}\left|\frac{1}{2 \pi} L\left(1, \chi_{0} \chi\right)\right|^{2}
$$

To use Lemma 2, we need formulae for the sums $S\left(f_{0}, f\right)$. If F is an n periodic function, we let $\sum_{a \bmod ^{*}{ }_{n}} F(a)$ denote a summation over any set of representatives of $(\mathbf{Z} / n \mathbf{Z})^{*}$. Recall from [Lou93] that if χ is an odd Dirichlet character $\bmod n \geq 3$ (we do not assume that χ is primitive), then

$$
\begin{equation*}
\frac{1}{2 \pi} L(1, \chi)=\frac{1}{4 n} \sum_{a \bmod ^{*} n} \chi(a) \cot \left(\frac{\pi a}{n}\right) \tag{5}
\end{equation*}
$$

and that, for $n \geq 2$, we have

$$
\begin{equation*}
\tilde{S}(n):=\sum_{a \bmod ^{*} n} \cot ^{2}\left(\frac{\pi a}{n}\right)=\frac{n^{2}}{3} \prod_{p \mid n}\left(1-\frac{1}{p^{2}}\right)-\phi(n) . \tag{6}
\end{equation*}
$$

By (5), we have
$S\left(f_{0}, f\right)=\frac{1}{16 f_{0}^{2} f^{2}} \sum_{a \mathrm{mod}^{*} f_{0} f} \sum_{b \mathrm{mod}^{*} f_{0} f} \frac{2}{\phi(f)}\left(\sum_{\chi \in X_{f}^{-}} \chi(a) \overline{\chi(b)}\right) \cot \left(\frac{\pi a}{f_{0} f}\right) \cot \left(\frac{\pi b}{f_{0} f}\right)$.

Changing b into $a b$ and using $|\chi(a)|=1$ for $\operatorname{gcd}(a, f)=1$ and

$$
\sum_{\chi \in X_{f}^{-}} \overline{\chi(b)}= \begin{cases}\phi(f) / 2 & \text { if } b \equiv 1 \quad(\bmod f) \\ -\phi(f) / 2 & \text { if } b \equiv-1 \quad(\bmod f) \\ 0 & \text { otherwise }\end{cases}
$$

we obtain

$$
S\left(f_{0}, f\right)=\frac{1}{8 f_{0}^{2} f^{2}} \sum_{a \bmod ^{*} f_{0} f} \sum_{\substack{b \bmod ^{*} f_{0} f \\ b \equiv 1 \\(\bmod f)}} \cot \left(\frac{\pi a}{f_{0} f}\right) \cot \left(\frac{\pi a b}{f_{0} f}\right) .
$$

Using (6) with $n=f_{0} f$, we obtain:
Lemma 3. If $\operatorname{gcd}\left(f_{0}, f\right)=1$, then

$$
S\left(f_{0}, f\right)=\frac{1}{24}\left\{\prod_{q \mid f_{0}}\left(1-\frac{1}{q^{2}}\right)\right\}\left\{\prod_{p \mid f}\left(1-\frac{1}{p^{2}}\right)\right\}-\frac{\phi\left(f_{0}\right)^{2} \phi(f)}{8 f_{0}^{2} f^{2}}+\frac{T\left(f_{0}, f\right)}{8 f_{0}^{2} f^{2}}
$$

where

$$
T\left(f_{0}, f\right)=\sum_{a \text { mod }^{*} f_{0} f} \sum_{\substack{\left.b=1 \bmod ^{*} f_{0} f \\ b \equiv 1 \\ b \neq 1 \\(\bmod f) \\ \bmod f_{0} f\right)}}\left(1+\cot \left(\frac{\pi a}{f_{0} f}\right) \cot \left(\frac{\pi a b}{f_{0} f}\right)\right) .
$$

Since $T\left(f_{0}, f\right)=0$ for $f_{0}=1$ and $f_{0}=2$ (the sum over b is empty), from Lemma 3, we deduce explicit formulae for $S(1, f)$ and $S(2, f)$:

Proposition 4. We have

$$
S(1, f)=\frac{1}{24} \prod_{p \mid f}\left(1-\frac{1}{p^{2}}\right)-\frac{\phi(f)}{8 f^{2}}
$$

In particular,

$$
\begin{equation*}
S(1, p)=\frac{1}{24}\left(1-\frac{1}{p}\right)\left(1-\frac{2}{p}\right) \quad(p \geq 3 \text { a prime }) \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
S\left(1,2^{m}\right)=\frac{1}{32}\left(1-\frac{1}{2^{m-1}}\right) \quad(m \geq 1) \tag{8}
\end{equation*}
$$

Proposition 5. We have

$$
S(2, f)=\frac{1}{32} \prod_{p \mid f}\left(1-\frac{1}{p^{2}}\right)-\frac{\phi(f)}{32 f^{2}}
$$

In particular,

$$
\begin{equation*}
S(2, p)=\frac{1}{32}\left(1-\frac{1}{p}\right) \quad(p \geq 3 \text { a prime }) \tag{9}
\end{equation*}
$$

Now, assume that $f_{0}>2$. We will not be able to give explicit formulae for $T\left(f_{0}, f\right)$ (see also [Lou99]), but Lemma 6 below will enable us to compute such formulae for any given f_{0}. Set $\zeta_{l}=\exp (2 \pi i / l)$. Write $a=A+k f_{0} \equiv A\left(\bmod f_{0}\right)$ and $b=1+B f \equiv 1(\bmod f)$. We have

$$
1+\cot \left(\frac{\pi a}{f_{0} f}\right) \cot \left(\frac{\pi a b}{f_{0} f}\right)=2 i \cot \left(\frac{\pi A B}{f_{0}}\right)\left(\frac{1}{\zeta_{f}^{k} \zeta_{f_{0} f}^{A}-1}-\frac{1}{\zeta_{f}^{k} \zeta_{f_{0} f}^{A(1+f B)}-1}\right)
$$

and

$$
\begin{aligned}
T\left(f_{0}, f\right)=2 i & \sum_{A \bmod ^{*} f_{0}}
\end{aligned} \sum_{\substack{B=1 \\
\operatorname{gcd}\left(1+B f, f_{0}\right)=1}}^{f_{0}-1} \cot \left(\frac{\pi A B}{f_{0}}\right) .
$$

Now, if $\lambda^{l} \neq 1$, then

$$
\sum_{k=0}^{l-1} \frac{1}{\zeta_{l}^{k} \lambda-1}=\frac{l}{\lambda^{l}-1}
$$

(evaluate the logarithmic derivative of $x^{l}-1$ at $x=\lambda^{-1}$, if $\lambda \neq 0$). Hence, if $\operatorname{gcd}\left(f_{0}, f\right)=1$ and $\omega=\zeta_{f_{0} f}$ or $\omega=\zeta_{f_{0} f}^{1+f B}$, then

$$
\begin{aligned}
& \sum_{A \bmod ^{*} f_{0}} \cot \left(\frac{\pi A B}{f_{0}}\right) \sum_{\substack{k=0 \\
\operatorname{gcd}\left(A+k f_{0}, f\right)=1}}^{f-1} \frac{1}{\zeta_{f}^{k} \omega^{A}-1} \\
& \quad=\sum_{A \bmod ^{*} f_{0}} \cot \left(\frac{\pi A B}{f_{0}}\right) \sum_{d \mid f} \mu(d) \sum_{\substack{k=0 \\
d \mid A+k f_{0}}}^{f-1} \frac{1}{\zeta_{f}^{k} \omega^{A}-1} \\
& \quad=\sum_{d \mid f} \mu(d) \sum_{A \bmod ^{*} f_{0}} \cot \left(\frac{\pi d A B}{f_{0}}\right) \sum_{\substack{k=0 \\
d \mid d A+k f_{0}}}^{f-1} \frac{1}{\zeta_{f}^{k} \omega^{d A}-1}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{d \mid f} \mu(d) \sum_{A \bmod ^{*} f_{0}} \cot \left(\frac{\pi d A B}{f_{0}}\right) \sum_{k=0}^{f / d-1} \frac{1}{\zeta_{f / d}^{k} \omega^{d A}-1} \\
& =f \sum_{d \mid f} \frac{\mu(d)}{d} \sum_{A \bmod ^{*} f_{0}} \cot \left(\frac{\pi d A B}{f_{0}}\right) \frac{1}{\omega^{f A}-1}
\end{aligned}
$$

and

$$
\begin{aligned}
& T\left(f_{0}, f\right)=f \sum_{d \mid f} \frac{\mu(d)}{d} \sum_{A \bmod ^{*} f_{0}} \sum_{\substack{0 \neq B \bmod f_{0} \\
\operatorname{gcd}\left(1+B f, f_{0}\right)=1}} \cot \left(\frac{\pi d A B}{f_{0}}\right) \\
& \times\left(\cot \left(\frac{\pi A}{f_{0}}\right)-\cot \left(\frac{\pi A(1+B f)}{f_{0}}\right)\right) .
\end{aligned}
$$

If $f f^{*} \equiv d^{*} d \equiv A^{*} A \equiv 1\left(\bmod f_{0}\right)$, changing B into $f^{*}\left(A^{*} B-1\right)$ and A into $f A$ we change $(d A B, A, A(1+B f))$ into $(d(B-A), f A, f B)$ with $B \neq A$. Finally, changing A into $d^{*} A$ and B into $d^{*} B$ we obtain:

Lemma 6. Let $f_{0}>2$ be given. Assume that $\operatorname{gcd}\left(f_{0}, f\right)=1$. We have

$$
T\left(f_{0}, f\right)=f \sum_{d \mid f} \frac{\mu(d)}{d} A\left(f_{0}, f / d\right)
$$

where the coefficients

$$
A\left(f_{0}, d\right)=\sum_{A \bmod ^{*} f_{0}} \sum_{\substack{B \bmod f^{*} \\ B \neq A}} \cot \left(\frac{\pi(B-A)}{f_{0}}\right)\left(\cot \left(\frac{\pi d A}{f_{0}}\right)-\cot \left(\frac{\pi d B}{f_{0}}\right)\right)
$$

are rational numbers which depend on $d \bmod f_{0}$ only. Moreover,

$$
A\left(f_{0}, 1\right)=\phi\left(f_{0}\right)^{2}-\frac{f_{0}^{2}}{3} \prod_{q \mid f_{0}}\left(1-\frac{1}{q^{2}}\right) .
$$

Proof. Using $\cot (y-x)(\cot x-\cot y)=(\cot x)(\cot y)+1$ we obtain

$$
A\left(f_{0}, 1\right)=\sum_{A \bmod ^{*} f_{0}} \sum_{\substack{B \not \bmod ^{*} f_{0} \\ B \neq A}}\left(1+\cot \left(\frac{\pi A}{f_{0}}\right) \cot \left(\frac{\pi B}{f_{0}}\right)\right)
$$

Since $\sum_{B \bmod ^{*} f_{0}} \cot \left(\frac{\pi B}{f_{0}}\right)=0$ (change B into $f_{0}-B$), we obtain

$$
A\left(f_{0}, 1\right)=\phi\left(f_{0}\right)\left(\phi\left(f_{0}\right)-1\right)-\sum_{A \bmod ^{*} f_{0}} \cot ^{2}\left(\frac{\pi A}{f_{0}}\right)=\phi\left(f_{0}\right)\left(\phi\left(f_{0}\right)-1\right)-\tilde{S}\left(f_{0}\right)
$$

and the desired result, by (6).
Finally, if a and b are rational integers, then $\cot \left(\pi a / f_{0}\right) \cot \left(\pi b / f_{0}\right)$ is in $\mathbf{Q}\left(\zeta_{f_{0}}\right)$, and such that $\sigma_{t}\left(\cot \left(\pi a / f_{0}\right) \cot \left(\pi b / f_{0}\right)\right)=\cot \left(\pi a t / f_{0}\right) \cot \left(\pi b t / f_{0}\right)$ whenever $\operatorname{gcd}\left(t, f_{0}\right)=1$, where σ_{t} is the automorphism of $\mathbf{Q}\left(\zeta_{f_{0}}\right)$ which sends $\zeta_{f_{0}}$ to $\zeta_{f_{0}}^{t}$. It follows that the $A\left(f_{0}, d\right)$'s are in $\mathbf{Q}\left(\zeta_{f_{0}}\right)$ and are invariant under the actions of the Galois group of $\mathbf{Q}\left(\zeta_{f_{0}}\right) / \mathbf{Q}$. Hence, they are rational numbers.

3. Some explicit formulae for $S\left(f_{0}, f\right)$

Lemma 3 yields explicit formulae for $S(1, f)$ and $S(2, f)$, in which cases $T(1, f)=T(2, f)=0$. We have not been able to come up with a fully explicit formula for $S\left(f_{0}, f\right)$ for $f_{0}>2$. If $f_{0}>2$ is given, Lemma 6 shows that

$$
\begin{equation*}
T\left(f_{0}, p\right)=p A\left(f_{0}, p\right)-A\left(f_{0}, 1\right) \tag{10}
\end{equation*}
$$

where $A\left(f_{0}, p\right)$ depends on $p \bmod f_{0}$ only. (In the same way, $T\left(f_{0}, p^{m}\right)=$ $p^{m} A\left(f_{0}, p^{m}\right)-p^{m-1} A\left(f_{0}, p^{m-1}\right)$ depends only on $p \bmod f_{0}$ and of $m \bmod$ the order of p in $\left.\left(\mathbf{Z} / f_{0} \mathbf{Z}\right)^{*}\right)$. Therefore, for a given f_{0} we can compute all the $\phi\left(f_{0}\right)$ possible $A\left(f_{0}, p\right)$ depending only on $p \bmod f_{0}$ and we end up with an explicit formula for $T\left(f_{0}, p\right)$ and $S\left(f_{0}, p\right)$ which will depend on $p \bmod f_{0}$.

For example, for $p>5$ and $f_{0}=30$ we have $A(30,1)=-128$ and

$p \bmod 30$	1	7	11	13
$A(30, p)$	-128	-112	160	64
$T(30, p)$	$-128(p-1)$	$-16(7 p-8)$	$32(5 p+4)$	$64(p+2)$
$S(30, p)$	$\frac{2}{75}\left(1-\frac{1}{p}\right)$	$\frac{2}{75}\left(1-\frac{11}{12 p}\right)$	$\frac{2}{75}\left(1+\frac{1}{2 p}\right)$	$\frac{2}{75}$
$f \bmod 30$	17	19	23	29
$A(30, p)$	-64	-160	112	128
$T(30, p)$	$-64(p-2)$	$-32(5 p-4)$	$16(7 p+8)$	$128(p+1)$
$S(30, p)$	$\frac{2}{75}\left(1-\frac{2}{3 p}\right)$	$\frac{2}{75}\left(1-\frac{7}{6 p}\right)$	$\frac{2}{75}\left(1+\frac{1}{4 p}\right)$	$\frac{2}{75}\left(1+\frac{1}{3 p}\right)$

Table 1.
In fact, if $f=p$ is a prime, we have the following rather nice formula:
Theorem 7. Assume that $f_{0}>2$ and set

$$
C\left(f_{0}\right):=\frac{1}{24} \prod_{q \mid f_{0}}\left(1-\frac{1}{q^{2}}\right) .
$$

If $\operatorname{gcd}\left(f_{0}, f\right)=1$, set

$$
B\left(f_{0}, f\right):=\frac{A\left(f_{0}, f\right)-\phi\left(f_{0}\right)^{2}}{8 f_{0}^{2}}
$$

which depends on $f \bmod f_{0}$ only. Then,

$$
S\left(f_{0}, p\right)=C\left(f_{0}\right)+\frac{B\left(f_{0}, p\right)}{p}
$$

In particular, if $p \equiv 1\left(\bmod f_{0}\right)$, then

$$
\begin{equation*}
S\left(f_{0}, p\right)=C\left(f_{0}\right) \times\left(1-\frac{1}{p}\right) \tag{11}
\end{equation*}
$$

and if $p \equiv-1\left(\bmod f_{0}\right)$, then

$$
S\left(f_{0}, p\right)=C\left(f_{0}\right) \times\left(1+\frac{1}{p}\right)-\frac{\phi\left(f_{0}\right)^{2}}{4 f_{0}^{2} p}
$$

Proof. For the first assertion, use Lemma 3, Lemma 6 and (10). For the other assertions, notice that $A\left(f_{0}, f\right)=A\left(f_{0}, 1\right)=A\left(f_{0}, 1\right)$ if $f \equiv 1\left(\bmod f_{0}\right)$ and $A\left(f_{0}, f\right)=-A\left(f_{0}, 1\right)=-A\left(f_{0}, 1\right)$ if $f \equiv-1\left(\bmod f_{0}\right)$.

Proposition 8. If 3 does not divide f, then

$$
S(3, f)=\frac{1}{27} \prod_{p \mid f}\left(1-\frac{1}{p^{2}}\right)-\frac{\phi(f)}{18 f^{2}}+\frac{T(3, f)}{72 f^{2}}
$$

with

$$
T(3, f)=\frac{4 f}{3}\left(\frac{f}{3}\right) \prod_{p \mid f}\left(1-\left(\frac{p}{3}\right) \frac{1}{p}\right)
$$

In particular,

$$
S(3, p)=\frac{1}{27}\left(1-\frac{3-\left(\frac{p}{3}\right)}{2 p}\right) \quad(p \neq 3)
$$

and

$$
\begin{equation*}
S\left(3,2^{m}\right)=\frac{1}{36}\left(1-\frac{1-(-1)^{m}}{2^{m}}\right) \tag{12}
\end{equation*}
$$

If $\operatorname{gcd}(f, 6)=1$, then

$$
S(6, f)=\frac{1}{36} \prod_{p \mid f}\left(1-\frac{1}{p^{2}}\right)-\frac{\phi(f)}{72 f^{2}}+\frac{T(6, f)}{288 f^{2}}
$$

with

$$
T(6, f)=-4 f\left(\frac{f}{3}\right) \prod_{p \mid f}\left(1-\left(\frac{p}{3}\right) \frac{1}{p}\right)
$$

In particular,

$$
\begin{equation*}
S(6, p)=\frac{1}{36}\left(1-\frac{1+\left(\frac{p}{3}\right)}{2 p}\right) \quad(p>3) \tag{13}
\end{equation*}
$$

Proof. Assume that $f_{0}=3$ or $f_{0}=6$. Then, $f \equiv \pm 1\left(\bmod f_{0}\right)$ and $\phi\left(f_{0}\right)=2$. In Lemma $6, A$ must be equal to +1 or $-1 \bmod f_{0}$ and B which can take only one value $\bmod f_{0}$ must be equal to $-A \bmod f_{0}$. Hence, we obtain

$$
A\left(f_{0}, d\right)=4 \cot \left(\frac{-2 \pi}{f_{0}}\right) \cot \left(\frac{\pi d}{f_{0}}\right)= \begin{cases}\frac{4}{3}\left(\frac{d}{3}\right) & \text { if } f_{0}=3 \\ -4\left(\frac{d}{3}\right) & \text { if } f_{0}=6\end{cases}
$$

The desired result follows.
Lemma 9 (E.g., see [Lou93, Lemme (c)]). Let l be the order of $q \bmod f$. Then,

$$
\Pi(q, f)= \begin{cases}\left(1+q^{-l / 2}\right)^{\phi(f) / l} & \text { if lis even and } q^{l / 2} \equiv-1 \quad(\bmod f) \\ \left(1-q^{-l}\right)^{\phi(f) / 2 l} & \text { otherwise },\end{cases}
$$

Moreover, if $f=p^{k}$ with $p \geq 3$ and l is even, then $q^{l / 2} \equiv-1(\bmod f)$.
Finally, $e^{-1 / 2 l} \leq \Pi(q, f) \leq e^{1 / l}$, hence $\Pi(q, f)=1+O\left(\frac{\log q}{\log f}\right)$.
Proof. To prove the lower bound on $\Pi(q, f)$, notice that $q^{l} \geq f+1$ and $\phi(f) \log (1-1 /(f+1)) \geq(f-1) \log (1-1 /(f+1)) \geq-1$ for $f>0$. To prove the upper bound, notice that in the first case we have $q^{f / 2} \geq f-1$ and ($1+1 /$ $(f-1))^{\phi(f)} \leq(1+1 /(f-1))^{f-1} \leq \exp (1)$ for $f \geq 2$.

Lemma 10. We have:

m	2	3	≥ 4
$\Pi\left(3,2^{m}\right)$	$1+3^{-1}$	$1-3^{-2^{m-2}}$	$1-3^{-2^{m-2}}$
$\Pi\left(5,2^{m}\right)$	$1-5^{-1}$	$1-5^{-2^{m-2}}$	$1-5^{-2^{m-2}}$

and $\Pi\left(2,3^{m}\right)=1+2^{3^{m-1}}$ for $m \geq 1$.
Proof. Using $3^{2^{k-3}} \equiv 1+2^{k-1}\left(\bmod 2^{k}\right)$ for $k \geq 4$, and $5^{2^{k-3}} \equiv 1+2^{k-1}$ $\left(\bmod 2^{k}\right)$ for $k \geq 3$, we obtain that the order l of $3 \bmod 2^{m}$ is equal to 2^{m-2} and $3^{l / 2} \not \equiv-1\left(\bmod 2^{m}\right)$ for $m \geq 3$, and that the order l of $5 \bmod 2^{m}$ is equal to 2^{m-2} and $5^{l / 2} \not \equiv-1\left(\bmod 2^{m}\right)$ for $m \geq 3$. Using $2^{3^{k-2}} \equiv-1+3^{k-1}\left(\bmod 3^{k}\right)$ for $k \geq 3$, we obtain that the order l of $2 \bmod 3^{m}$ is equal to $2 \cdot 3^{m-1}$ and $2^{l / 2} \equiv-1$ $\left(\bmod 2^{m}\right)$ for $m \geq 1$.

4. Proof of Proposition 1

Clearly, $A\left(f_{0}, f\right)=O\left(f_{0}^{4}\right)$, and $T\left(f_{0}, f\right)=O\left(f_{0}^{4} f \sum_{d \mid f} \frac{1}{d}\right)=O\left(f_{0}^{4} f \log f\right)$. Therefore,

$$
S\left(f_{0}, f\right)=\frac{1}{24}\left\{\prod_{q \mid f_{0}}\left(1-\frac{1}{q^{2}}\right)\right\}\left\{\prod_{p \mid f}\left(1-\frac{1}{p^{2}}\right)\right\}+O\left(\frac{f_{0}^{2} \log f}{f}\right)
$$

can be made less than $1 / 4 \pi^{2}$ by putting enough prime factors in f_{0}. By Lemma 9 , the desired result follows.

5. Upper bounds on relative class numbers

We are now in a position to obtain explicit upper bounds on relative class numbers of cyclotomic fields. To simplify, we restrict ourselves to cyclotomic fields of prime conductors $p \geq 3$ or of 2 -power conductors $f=2^{m} \geq 4$.
5.1. The case $f_{0}=1$. Using (3), (4) and (7), which yields $S(1, p) \leq 1 / 24$, we obtain

$$
\begin{equation*}
h_{p}^{-} \leq 2 p\left(\frac{p}{24}\right)^{(p-1) / 4} \quad(p \geq 3 \text { a prime }) \tag{14}
\end{equation*}
$$

(see also [Lep], [Met1] and [Met2]). Using (3), (4) and (8), which yields $S\left(1,2^{m}\right) \leq$ $1 / 32$, we obtain $h_{2^{m}}^{-} \leq 2^{m} \sqrt{2}\left(2^{m-1} / 32\right)^{2^{m-3}}$, a bound slightly weaker than (1).
5.2. The case $f_{0}=2$. Using (3), (4) and (9), and $\Pi(2, p) \geq\left(1-2^{-l}\right)^{(p-1) / 6} \geq$ $(1-1 / p)^{(p-1) / 4}$, we obtain:

$$
\begin{equation*}
h_{p}^{-} \leq \frac{2 p}{\Pi(2, p)}\left(\frac{p}{32}\left(1-\frac{1}{p}\right)\right)^{(p-1) / 4} \tag{15}
\end{equation*}
$$

which implies (2), a better bound than (14) (see also [Feng], and the recent worse bound in [Jak]).
5.3. The cases $f_{0}=3$. Using (3), (4), (12) and Lemma 10 , we obtain

$$
\begin{equation*}
h_{2^{m}}^{-} \leq \frac{2^{m} \sqrt{2}}{1-3^{-2^{m-2}}}\left(\frac{2^{m-1}}{36}\right)^{2^{m-3}} \quad(m \geq 2) \tag{16}
\end{equation*}
$$

which is a better bound than all the previously known ones quoted in [Met3].
5.4. The cases $f_{0}=6$. Using (3), (4) and (13), we obtain the following improvement on (2):

$$
\begin{equation*}
h_{p}^{-} \leq \frac{2 p}{\Pi(2, p) \Pi(3, p)}\left(\frac{p}{36}\right)^{(p-1) / 4} \quad(p \geq 5 \text { a prime }) . \tag{17}
\end{equation*}
$$

5.5. The cases $f_{0}=15$.

Proposition 11. We have

$$
T\left(15,2^{m}\right)=2^{m+3} \times\left\{\begin{array}{lll}
7 & \text { if } m \equiv 0 & (\bmod 4) \\
-8 & \text { if } m \equiv 1 & (\bmod 4) \\
-4 & \text { if } m \equiv 2 & (\bmod 4) \\
-10 & \text { if } m \equiv 3 & (\bmod 4)
\end{array}\right.
$$

Hence,

$$
S\left(15,2^{m}\right)=\frac{2}{75}\left(1-\frac{2}{3 \cdot 2^{m}}+\frac{T\left(15,2^{m}\right)}{48 \cdot 2^{2 m}}\right) \leq \frac{2}{75}\left(1+\frac{1}{2^{m+1}}\right)
$$

Using (4), and Lemma 10, we obtain a better bound than (16):

$$
\begin{equation*}
h_{2^{m}}^{-} \leq \frac{2^{m} \sqrt{2}}{\left(1-3^{-2^{m-2}}\right)\left(1-5^{-2^{m-2}}\right)}\left(\frac{2^{m+1}+1}{150}\right)^{2^{m-3}} \quad(m \geq 2) \tag{18}
\end{equation*}
$$

5.6. The case $f_{0}=30$. According to Table $1, S(30, p) \leq \frac{2}{75}\left(1+\frac{1}{2 p}\right)$ and we obtain a better bound than (17):

$$
\begin{equation*}
h_{p}^{-} \leq \frac{2 p}{\Pi(2, p) \Pi(3, p) \Pi(5, p)}\left(\frac{2 p+1}{75}\right)^{(p-1) / 4} \quad(p \geq 7 \text { a prime }) . \tag{19}
\end{equation*}
$$

5.7. The case $p \equiv 1\left(\bmod f_{0}\right)$. Using (3), (4) and (11), we obtain

$$
h_{p}^{-} \leq \frac{2 p}{\prod_{q \mid f_{0}} \Pi(q, p)}\left(\frac{p}{24}\left(\prod_{q \mid f_{0}}\left(1-\frac{1}{q^{2}}\right)\right)\left(1-\frac{1}{p}\right)\right)^{(p-1) / 4} .
$$

By Lemma 9, we deduce that if $p \geq p_{0}\left(f_{0}\right)$ is large enough, then

$$
\begin{equation*}
h_{p}^{-} \leq 2 p\left(\frac{p}{24} \prod_{q \mid f_{0}}\left(1-\frac{1}{q^{2}}\right)\right)^{(p-1) / 4} \tag{20}
\end{equation*}
$$

(more explicitly, by Lemma 9 we have $\Pi(q, p) \geq \exp \left(-\frac{\log q}{2 \log p}\right)$, which yields $\prod_{q \mid f_{0}} \Pi(q, p) \geq \exp \left(-\frac{\log f_{0}}{2 \log p}\right)$, and using $(1-1 / p)^{(p-1) / 4} \leq \exp \left(-\frac{1}{8}\right)$ for $p \geq 3$ we see that is suffices to have $\left.p \geq p_{0}\left(f_{0}\right):=f_{0}^{4}\right)$.

658 S. R. Louboutin : Mean values of L-functions and relative class numbers...

References

[Feng] K. Feng, On the first factor of the class number of a cyclotomic field, Proc. Amer. Math. Soc. 84 (1982), 479-482.
[Jak] S. Jakubec, On some new estimates for $h^{-}\left(\mathbf{Q}\left(\zeta_{p}\right)\right)$, Acta Arith. 137 (2009), 43-50.
[Lep] T. Lepistö, On the growth of the first factor of the class number of the prime cyclotomic field, Ann. Acad. Sci. Fenn. Ser. AI, N 577 (1974), 21.
[Lou93] S. Louboutin, Quelques formules exactes pour des moyennes de fonctions L de Dirichlet, Canad. Math. Bull. 36 (1993), 190-196, Addendum: Canad. Math. Bull. 37 (1994), p. 89.
[Lou99] S. Louboutin, On the mean value of $|L(1, \chi)|^{2}$ for odd primitive Dirichlet characters, Proc. Japan Acad. Ser. A Math. Sci. 75 (1999), 143-145.
[Lou01] S. Louboutin, The mean value of $|L(k, \chi)|^{2}$ at positive rational integers $k \geq 1$, Colloq. Math. 90 (2001), 69-76.
[Met1] T. MetsÄnkylä, On the growth of the first factor of the cyclotomic class number, Ann. Univ. Turku. Ser. A, N 155 (1972).
[Met2] T. MetsÄnkylä, Class numbers and μ-invariants of cyclotomic fields, Proc. Amer. Math. Soc. 43 (1974), 299-300.
[Met3] T. Metsänkylä, Letter to the editor, J. Number Theory 64 (1997), 162-163.
[MM] J. M. Masley and H. L. Montgomery, Cyclotomic fields with unique factorization, J. Reine Angew. Math. 286/287 (1976), 248-256.
[W] H. WALum, An exact formula for an average of L-series, Illinois J. Math. 26 (1982), $1-3$.
[Was] L. C. Washington, Introduction to cyclotomic fields (Second Edition), Graduate Texts in Mathematics, 83, Springer-Verlag, New York, 1997.

STÉPHANE R. LOUBOUTIN
INSTITUT DE MATHÉMATIQUES DE LUMINY
UMR 6206163
AVENUE DE LUMINY, CASE 907
13288 MARSEILLE CEDEX 9
FRANCE
E-mail: loubouti@iml.univ-mrs.fr

