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Minkowski-type inequalities for means generated
by two functions and a measure

By LÁSZLÓ LOSONCZI (Debrecen) and ZSOLT PÁLES (Debrecen)

Abstract. Given two continuous functions f, g : I → R such that g is positive and

f/g is strictly monotone, and a probability measure µ on the Borel subsets of [0, 1], the

two variable mean Mf,g;µ : I2 → I is defined by

Mf,g;µ(x, y) :=

(
f

g

)−1




∫ 1

0

f
(
tx+ (1− t)y

)
dµ(t)

∫ 1

0

g
(
tx+ (1− t)y

)
dµ(t)


 (x, y ∈ I).

The aim of this paper is to study Minkowski-type inequalities for these means, i.e.,

to find conditions for the generating functions f0, g0 : I0 → R, f1, g1 : I1 → R, . . . ,

fn, gn : In → R, and for the measure µ such that

Mf0,g0;µ(x1 + · · ·+ xn, y1 + · · ·+ yn)
≤
[≥]

Mf1,g1;µ(x1, y1) + · · ·+Mfn,gn;µ(xn, yn)

holds for all x1, y1 ∈ I1, . . . , xn, yn ∈ In with x1 + · · · + xn, y1 + · · · + yn ∈ I0. The

particular case when the generating functions are power functions, i.e., when the means

are generalized Gini means is also investigated.
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1. Introduction

Throughout this paper the classes of continuous strictly monotone and con-

tinuous positive real-valued functions defined on a nonempty open real interval I

will be denoted by CM(I) and CP(I), respectively. Given two continuous func-

tions f, g : I → R with g ∈ CP(I), f/g ∈ CM(I) and a probability measure µ on

the Borel subsets of [0, 1], the two variable mean Mf,g;µ : I2 → I is defined by

Mf,g;µ(x, y) :=

(
f

g

)−1




∫ 1

0

f
(
tx+ (1− t)y

)
dµ(t)

∫ 1

0

g
(
tx+ (1− t)y

)
dµ(t)


 (x, y ∈ I).

If µ = δ0+δ1
2 (where δs denotes the Dirac measure concentrated at s ∈ [0, 1]),

ϕ ∈ CM(I), and p ∈ CP(I), then

Mpϕ,p;µ(x, y) = ϕ−1

(
p(x)ϕ(x) + p(y)ϕ(y)

p(x) + p(y)

)
(x, y ∈ I),

which was introduced and studied by Bajraktarević [Baj58], [Baj69]. In the

particular case p = 1, we get the well-known quasi-arithmetic means (cf. [HLP34]).

If µ is the Lebesgue measure on [0, 1] and ϕ,ψ : I → R are continuously

differentiable functions with ψ′ ∈ CP(I) and ϕ′/ψ′ ∈ CM(I), then, by the Funda-

mental Theorem of Calculus, one can easily see that

Mϕ′,ψ′;µ(x, y) =





(
ϕ′

ψ′

)−1(
ϕ(y)− ϕ(x)

ψ(y)− ψ(x)

)
if x 6= y

x if x = y

(x, y ∈ I),

which is called a Cauchy or difference mean in the literature (cf. [BM00], [Los00]).

When ψ(x) = x, then this mean goes over into a Lagrangian mean (cf. [BM98],

[Ber98]).

Consider now the setting when I = R+ and the functions f , g are power

functions, more precisely, for p, q ∈ R, define

f(x) = xp, g(x) = xq if p 6= q,

f(x) = xp lnx, g(x) = xp if p = q. (1)
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Then the mean Mf,g;µ reduces to the following generalization of the so-called Gini

means:

Gp,q;µ(x, y) :=








∫ 1

0

(
tx+ (1− t)y

)p
dµ(t)

∫ 1

0

(
tx+ (1− t)y

)q
dµ(t)




1
p−q

if p 6= q,

exp




∫ 1

0

(
tx+ (1− t)y

)p
ln
(
tx+ (1− t)y

)
dµ(t)

∫ 1

0

(
tx+ (1− t)y

)p
dµ(t)


 if p = q.

In the particular case when µ = 1
2 (δ0 + δ1), the mean Gp,q;µ goes over into

the standard Gini mean (cf. [Gin38]) defined as

Gp,q;µ(x, y) = Gp,q(x, y) :=





(
xp + yp

xq + yq

) 1
p−q

if p 6= q

exp

(
xp lnx+ yp ln y

xp + yp

)
if p = q

(x, y ∈ R+).

The other particular case of great importance is when µ is equal to the Lebesgue

measure λ. Then

Gp,q;λ(x, y) = Sp+1,q+1(x, y) (x, y ∈ R+),

where Sp,q is the so-called Stolarsky mean (cf. [Sto75]) given by

Sp,q(x, y) :=





(
q(xp − yp)

p(xq − yq)

) 1
p−q

if (p− q)pq 6= 0

exp

(
−1

p
+

xp lnx− yp ln y

xp − yp

)
if p = q 6= 0

(
xp − yp

p(lnx− ln y)

) 1
p

if p 6= 0, q = 0

(
xq − yq

q(lnx− ln y)

) 1
q

if p = 0, q 6= 0

√
xy if p = q = 0

(x, y ∈ R+).
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In [Los71], the first author obtained Minkowski-type inequalities for Bajrak-

tarević means. Investigating Minkowski-type inequalities for the standard Gini

means, Czinder and the second author obtained the following result (cf. [CP00,

Theorem 5]).

Theorem A. Let n ≥ 2 and p0, p1, . . . , pn, q0, q1, . . . , qn ∈ R. Then

Gp0,q0(x1 + · · ·+ xn, y1 + · · ·+ yn) ≤ Gp1,q1(x1, y1) + · · ·+Gpn,qn(xn, yn)

holds for all x1, . . . , xn, y1, . . . , yn > 0 if and only if

(a) 0 ≤ min{p1, q1, . . . , pn, qn},
(b) min{p0, q0} ≤ min{1, p1, q1, . . . , pn, qn},
(c) max{1, p0 + q0} ≤ min{p1 + q1, . . . , pn + qn}.

The particular case p0 = p1 = · · · = pn, q0 = q1 = · · · = qn, i.e., when

all the Gini means are the same, was investigated by the authors in [LP96]. It

is interesting to note that the characterization of the reversed Minkowski-type

inequality even in this particular setting is still unknown.

In the context of Stolarsky means, in [LP98], we obtained the following result

(formulated in the case n = 2 only).

Theorem B. Let n ≥ 2 and p, q ∈ R. Then the inequality

Sp,q(x1 + · · ·+ xn, y1 + · · ·+ yn)
≤
[≥]

Sp,q(x1, y1) + · · ·+ Sp,q(xn, yn)

holds for all x1, . . . , xn, y1, . . . , yn > 0 if and only if

3
≤
[≥]

p+ q and 1
≤
[≥]

min{p, q}.

In order that the more general inequality

Sp0,q0(x1 + · · ·+ xn, y1 + · · ·+ yn)
≤
[≥]

Sp1,q1(x1, y1) + · · ·+ Spn,qn(xn, yn)

be valid for all x1, . . . , xn, y1, . . . , yn > 0, Czinder and the second author obta-

ined necessary conditions and also sufficient conditions for the parameters p0, p1,

. . . , pn, q0, q1, . . . , qn ∈ R in [CP03].

Motivated by the above preliminaries, the aim of this paper is to study

Minkowski-type inequalities for the means Mf,g;µ, i.e., our purpose is to find
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conditions for the generating functions f0, g0 : I0 → R, f1, g1 : I1 → R, . . . ,

fn, gn : In → R, and for the measure µ such that

Mf0,g0;µ(x1 + · · ·+ xn, y1 + · · ·+ yn)

≤
[≥]

Mf1,g1;µ(x1, y1) + · · ·+Mfn,gn;µ(xn, yn) (2)

be valid for all x1, y1 ∈ I1, . . . , xn, yn ∈ In with x1 + · · ·+ xn, y1 + · · ·+ yn ∈ I0.

In the main results of the paper we give sufficient conditions (which, in a certain

sense, are also necessary) for (2) to hold. As an important particular case, we

also consider Minkowski-type inequalities involving the generalized Gini means.

2. Main results

In order to describe the regularity conditions related the two generating func-

tions f , g of the mean Mf,g;µ in a convenient way, we say that the pair (f, g) of

functions is in the class C1(I) if f , g are continuously differentiable functions such

that g ∈ CP(I) and the Wronski determinant

∣∣∣∣∣
f ′(x) f(x)

g′(x) g(x)

∣∣∣∣∣ = g2(x)

(
f(x)

g(x)

)′
(x ∈ I) (3)

does not vanish on I. Obviously, the latter condition implies that f/g is strictly

monotone, i.e., f/g ∈ CM(I). For (f, g) ∈ C1(I), we define the deviation function

D∗
f,g : I2 → R by

D∗
f,g(x, y) :=

∣∣∣∣∣
f(x) f(y)

g(x) g(y)

∣∣∣∣∣
∣∣∣∣∣
f ′(y) f(y)

g′(y) g(y)

∣∣∣∣∣

=

g(x)

(
f(x)

g(x)
− f(y)

g(y)

)

g(y)

(
f(y)

g(y)

)′ (x, y ∈ I). (4)

Clearly, we have that D∗
f,g(x, y)

<
=
>

0 if and only if x
<
=
>

y.

The next result characterizes the mean Mf,g;µ via an implicit equation and

signifies the role of the function D∗
f,g (cf. [LP08]).
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Lemma 1. Let (f, g) ∈ C1(I) and µ be a Borel probability measure on [0, 1].

Then for all x, y ∈ I and u ∈ [x, y],

Mf,g;µ(x, y)
<
=
>

u if and only if

∫ 1

0

D∗
f,g

(
tx+ (1− t)y, u

)
dµ(t)

<
=
>

0. (5)

As a consequence of (5), we have the identity

∫ 1

0

D∗
f,g

(
tx+ (1− t)y,Mf,g;µ(x, y)

)
dµ(t) = 0 (x, y ∈ I). (6)

By Lemma 2 below, the function D∗
f,g is also connected to the sequence of

means Mf,g;mk
, where (mk) is the sequence of measures defined by

mk :=

(
1− 1

k

)
δ0 +

1

k
δ1 (k ∈ N). (7)

For its proof, the reader should consult [LP08].

Lemma 2. Let (f, g) ∈ C1(I). Then

lim
k→∞

k
[
Mf,g;mk

(x, y)− y
]
= D∗

f,g(x, y) (x, y ∈ I). (8)

Now we can formulate our main result which gives a sufficient condition for

the general Minkowski-type inequality (2) which does not involve the measure µ.

Theorem 3. Let I0, I1, . . . , In be open real intervals, and let (fi, gi) ∈ C1(Ii)

for i = 0, 1, . . . , n. Then the following three assertions are equivalent:

(i) For all Borel probability measures µ on [0, 1],

Mf0,g0;µ(x1 + · · ·+ xn, y1 + · · ·+ yn)

≤
[≥]

Mf1,g1;µ(x1, y1) + · · ·+Mfn,gn;µ(xn, yn) (9)

holds for all x1, y1 ∈ I1, . . . , xn, yn ∈ In with x1+ · · ·+xn, y1+ · · ·+yn ∈ I0.

(ii) For all k ∈ N,

Mf0,g0;mk
(x1 + · · ·+ xn, y1 + · · ·+ yn)

≤
[≥]

Mf1,g1;mk
(x1, y1) + · · ·+Mfn,gn;mk

(xn, yn) (10)

holds for all x1, y1 ∈ I1, . . . , xn, yn ∈ In with x1+ · · ·+xn, y1+ · · ·+ yn ∈ I0
(where (mk) is the sequence of measures defined by (7)).
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(iii)

D∗
f0,g0(x1+ · · ·+xn, y1+ · · ·+ yn)

≤
[≥]

D∗
f1,g1(x1, y1)+ · · ·+D∗

fn,gn(xn, yn) (11)

holds for all x1, y1 ∈ I1, . . . , xn, yn ∈ In with x1+ · · ·+xn, y1+ · · ·+yn ∈ I0.

Proof. The implication (i)=⇒(ii) is obvious. To prove (ii)=⇒(iii), for

x1, y1 ∈ I1, . . . , xn, yn ∈ In with x1 + · · · + xn, y1 + · · · + yn ∈ I0, use (10)

and Lemma 2 to get

D∗
f0,g0(x1 + · · ·+ xn, y1 + · · ·+ yn)

= lim
k→∞

k [Mf0,g0;mk
(x1 + · · ·+ xn, y1 + · · ·+ yn)− (y1 + · · ·+ yn)]

≤
[≥]

lim
k→∞

k
[(
Mf1,g1;mk

(x1, y1)− y1
)
+ · · ·+ (

Mfn,gn;mk
(xn, yn)− yn

)]

= D∗
f1,g1(x1, y1) + · · ·+D∗

fn,gn(xn, yn),

which proves (11).

(iii)=⇒(i) Let u1, v1 ∈ I1, . . . , un, vn ∈ In with u1+· · ·+un, v1+· · ·+vn ∈ I0.

Substituting

xi := tui + (1− t)vi, yi := Mfi,gi;µ(ui, vi) (i = 1, . . . , n)

into (11) and integrating on [0, 1] with respect to t by the measure µ, we get
∫ 1

0

D∗
f0,g0

(
t(u1 + · · ·+ un) + (1− t)(v1 + · · ·+ vn), y1 + · · ·+ yn

)
dµ(t)

≤
[≥]

∫ 1

0

D∗
f1,g1

(
tu1 + (1− t)v1, y1

)
dµ(t) + . . .

+

∫ 1

0

D∗
fn,gn

(
tun + (1− t)vn, yn

)
dµ(t). (12)

By Lemma 1 and the choice of y1, . . . , yn, the right hand side of this inequality is

zero. Thus, we obtain from (12) that
∫ 1

0

D∗
f0,g0

(
t(u1 + · · ·+ un) + (1− t)(v1 + · · ·+ vn), y1 + · · ·+ yn

)
dµ(t)

≤
[≥]

0.

This inequality, by Lemma 1 again, yields that

Mf0,g0;µ(u1 + · · ·+ un, v1 + · · ·+ vn)

≤
[≥]

y1 + · · ·+ yn = Mf1,g1;µ(u1, v1) + · · ·+Mfn,gn;µ(un, vn),

which proves (9) on the domain indicated. ¤
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The following result concerns generalized quasi-arithmetic means when a

stronger statement can be obtained.

Theorem 4. Let I0, I1, . . . , In be open intervals with I1 + · · · + In ⊆ I0.

Assume that fi : Ii → I0 are continuously differentiable functions such that

f ′
i(x) 6= 0 if x ∈ Ii i = 0, 1, . . . , n (the latter conditions ensure that (fi, 1) ∈ C1(Ii)

for i = 0, 1, . . . , n). Then the following three assertions are equivalent:

(i) For all Borel probability measures µ on [0, 1],

Mf0,1;µ(x1 + · · ·+ xn, y1 + · · ·+ yn)
≤
[≥]

Mf1,1;µ(x1, y1) + · · ·+Mfn,1;µ(xn, yn)

holds for all x1, y1 ∈ I1, . . . , xn, yn ∈ In.

(ii) For all k ∈ N,

Mf0,1;mk
(x1+ · · ·+xn, y1+ · · ·+yn)

≤
[≥]

Mf1,1;mk
(x1, y1)+ · · ·+Mfn,1;mk

(xn, yn)

holds for all x1, y1 ∈ I1, . . . , xn, yn ∈ In (where mk is the sequence of

measures defined by (7)).

(iii)

D∗
f0,1(x1 + · · ·+ xn, y1 + · · ·+ yn)

≤
[≥]

D∗
f1,1(x1, y1) + · · ·+D∗

fn,1(xn, yn) (13)

holds for all x1, y1 ∈ I1, . . . , xn, yn ∈ In.

(iv) The function F : f1(I1)× · · · × fn(In) → R defined by

F (u1, . . . , un) := f0
(
f−1
1 (u1) + · · ·+ f−1

n (un)
)

(ui ∈ fi(Ii), i = 1, . . . , n)

is
concave

[convex]
on its domain provided that f0 is increasing and

convex

[concave]
on its

domain provided that f0 is decreasing.

Proof. The equivalence (i)⇐⇒(ii)⇐⇒(iii) follows from the previous the-

orem. To complete the proof we show that (iii) and (iv) are equivalent too.

Assume, for the sake of definiteness that f0 is increasing and the upper inequality

sign holds in (13). By known characterizations of differentiable concave functions

(see [RV73, p. 98, Theorem A], or [NP06, p. 141, Theorem 3.9.1], F is concave if

and only if

F (u)− F (v) ≤
n∑

i=1

∂iF (v)(ui − vi) (14)
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holds for all u = (u1, . . . , un), v = (v1, . . . , vn) in the domain of F , where ∂iF

denotes the partial derivative of F with respect to its ith variable. A simple

calculation shows that

∂iF (v) = f ′
0

(
f−1
1 (v1) + · · ·+ f−1

n (vn)
) 1

f ′
i

(
f−1
i (vi)

) .

Dividing (14) by f ′
0(f

−1
1 (v1)+· · ·+f−1

n (vn)) > 0 and then substituting f−1
i (ui) =:

xi, f
−1
i (vi) =: yi, we obtain exactly (13), which proves the equivalence we claimed.

¤

3. Minkowski-type inequalities for generalized Gini means

Theorem 5. Let n ≥ 2 and p0, p1, . . . , pn, q0, q1, . . . , qn ∈ R. Then the

following three assertions are equivalent:

(i) For all Borel probability measures µ on [0, 1],

Gp0,q0;µ(x1+· · ·+xn, y1+· · ·+yn) ≤ Gp1,q1;µ(x1, y1)+· · ·+Gpn,qn;µ(xn, yn) (15)

holds for all x1, y1, . . . , xn, yn > 0.

(ii) For all k ∈ N,

Gp0,q0;mk
(x1 + · · ·+ xn, y1 + · · ·+ yn)

≤ Gp1,q1;mk
(x1, y1) + · · ·+Gpn,qn;mk

(xn, yn) (16)

holds for all x1, y1, . . . , xn, yn > 0.

(iii) (a) 0 ≤ min{p1, q1, . . . , pn, qn},

(b) min{p0, q0} ≤ min{1, p1, q1, . . . , pn, qn},

(c) max{1, p0, q0} ≤ max{pi, qi}, (i = 1, . . . , n). (17)

Concerning the reversed Minkowski inequality, we have the following result.

Theorem 6. Let n ≥ 2 and p0, p1, . . . , pn, q0, q1, . . . , qn ∈ R. Then the

following three assertions are equivalent:

(i) For all Borel probability measures µ on [0, 1],

Gp0,q0;µ(x1+· · ·+xn, y1+· · ·+yn) ≥ Gp1,q1;µ(x1, y1)+· · ·+Gpn,qn;µ(xn, yn) (18)

holds for all x1, y1, . . . , xn, yn > 0.
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(ii) For all k ∈ N,
Gp0,q0;mk

(x1 + · · ·+ xn, y1 + · · ·+ yn)

≥ Gp1,q1;mk
(x1, y1) + · · ·+Gpn,qn;mk

(xn, yn) (19)

holds for all x1, y1, . . . , xn, yn > 0.

(iii) (a) 1 ≥ max{p1, q1, . . . , pn, qn},

(b) max{p0, q0} ≥ max{0, p1, q1, . . . , pn, qn}, (20)

(c) min{0, p0, q0} ≥ min{pi, qi}, (i = 1, . . . , n).

Proof of Theorem 5 and Theorem 6. The equivalence of conditions (i)

and (ii) in both theorems is a consequence of the equivalence of conditions (i) and

(ii) of Theorem 3. To elaborate the third equivalent condition of Theorem 3,

observe that if f , g are defined by (1), then the function D∗
f,g is of the form

D∗
f,g(x, y) = yδp,q

(x
y

)
(x, y ∈ R+),

where

δp,q(t) :=





tp − tq

p− q
if p 6= q

tp ln t if p = q

(t ∈ R+). (21)

Thus, by Theorem 3, inequalities (15) and (18) are satisfied if and only if

(y1 + · · ·+ yn)δp0,q0

(x1 + · · ·+ xn

y1 + · · ·+ yn

) ≤
[≥]

y1δp1,q1

(x1

y1

)
+ · · ·+ ynδpn,qn

(xn

yn

)

holds for all x1, y1, . . . , xn, yn > 0. With the notation ui := xi/yi and ti :=

yi/(y1 + · · ·+ yn), the above inequality is satisfied if and only if

δp0,q0(t1u1 + · · ·+ tnun)
≤
[≥]

t1δp1,q1(u1) + · · ·+ tnδpn,qn(un) (22)

for all u1, . . . , un, t1, . . . , tn > 0 with t1 + · · ·+ tn = 1.

The domain of parameters when (22) is valid on the indicated domain was

characterized in the paper [Pál82]. As it was proved in [Pál82], (22) holds with ≤
and ≥ inequality signs if and only if condition (iii) of Theorem 5 and Theorem 6

holds, respectively. ¤
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