Publ. Math. Debrecen 78/3-4 (2011), 743–753 DOI: 10.5486/PMD.2011.5017

Minkowski-type inequalities for means generated by two functions and a measure

By LÁSZLÓ LOSONCZI (Debrecen) and ZSOLT PÁLES (Debrecen)

Abstract. Given two continuous functions $f, g: I \to \mathbb{R}$ such that g is positive and f/g is strictly monotone, and a probability measure μ on the Borel subsets of [0, 1], the two variable mean $M_{f,g;\mu}: I^2 \to I$ is defined by

$$M_{f,g;\mu}(x,y) := \left(\frac{f}{g}\right)^{-1} \left(\frac{\int_0^1 f(tx + (1-t)y)d\mu(t)}{\int_0^1 g(tx + (1-t)y)d\mu(t)}\right) \quad (x,y \in I).$$

The aim of this paper is to study Minkowski-type inequalities for these means, i.e., to find conditions for the generating functions $f_0, g_0 : I_0 \to \mathbb{R}, f_1, g_1 : I_1 \to \mathbb{R}, \ldots, f_n, g_n : I_n \to \mathbb{R}$, and for the measure μ such that

$$M_{f_0,g_0;\mu}(x_1 + \dots + x_n, y_1 + \dots + y_n) \stackrel{\leq}{[\geq]} M_{f_1,g_1;\mu}(x_1, y_1) + \dots + M_{f_n,g_n;\mu}(x_n, y_n)$$

holds for all $x_1, y_1 \in I_1, \ldots, x_n, y_n \in I_n$ with $x_1 + \cdots + x_n, y_1 + \cdots + y_n \in I_0$. The particular case when the generating functions are power functions, i.e., when the means are generalized Gini means is also investigated.

Mathematics Subject Classification: Primary: 39B12, 39B22.

Key words and phrases: generalized Cauchy means, equality and homogeneity problem.

This research has been supported by the Hungarian Scientific Research Fund (OTKA) Grant NK81402 and by the TÁMOP 4.2.1./B-09/1/KONV-2010-0007 project implemented through the New Hungary Development Plan co-financed by the European Social Fund, and the European Regional Development Fund.

1. Introduction

Throughout this paper the classes of continuous strictly monotone and continuous positive real-valued functions defined on a nonempty open real interval Iwill be denoted by $\mathcal{CM}(I)$ and $\mathcal{CP}(I)$, respectively. Given two continuous functions $f, g: I \to \mathbb{R}$ with $g \in \mathcal{CP}(I)$, $f/g \in \mathcal{CM}(I)$ and a probability measure μ on the Borel subsets of [0, 1], the two variable mean $M_{f,g;\mu}: I^2 \to I$ is defined by

$$M_{f,g;\mu}(x,y) := \left(\frac{f}{g}\right)^{-1} \left(\frac{\int_0^1 f(tx + (1-t)y)d\mu(t)}{\int_0^1 g(tx + (1-t)y)d\mu(t)}\right) \qquad (x,y \in I).$$

If $\mu = \frac{\delta_0 + \delta_1}{2}$ (where δ_s denotes the Dirac measure concentrated at $s \in [0, 1]$), $\varphi \in \mathcal{CM}(I)$, and $p \in \mathcal{CP}(I)$, then

$$M_{p\varphi,p;\mu}(x,y) = \varphi^{-1}\left(\frac{p(x)\varphi(x) + p(y)\varphi(y)}{p(x) + p(y)}\right) \qquad (x,y \in I),$$

which was introduced and studied by BAJRAKTAREVIĆ [Baj58], [Baj69]. In the particular case p = 1, we get the well-known quasi-arithmetic means (cf. [HLP34]).

If μ is the Lebesgue measure on [0,1] and $\varphi, \psi : I \to \mathbb{R}$ are continuously differentiable functions with $\psi' \in C\mathcal{P}(I)$ and $\varphi'/\psi' \in C\mathcal{M}(I)$, then, by the Fundamental Theorem of Calculus, one can easily see that

$$M_{\varphi',\psi';\mu}(x,y) = \begin{cases} \left(\frac{\varphi'}{\psi'}\right)^{-1} \left(\frac{\varphi(y) - \varphi(x)}{\psi(y) - \psi(x)}\right) & \text{if } x \neq y \\ x & \text{if } x = y \end{cases} \quad (x,y \in I),$$

which is called a Cauchy or difference mean in the literature (cf. [BM00], [Los00]). When $\psi(x) = x$, then this mean goes over into a Lagrangian mean (cf. [BM98], [Ber98]).

Consider now the setting when $I = \mathbb{R}_+$ and the functions f, g are power functions, more precisely, for $p, q \in \mathbb{R}$, define

$$f(x) = x^{p}, \qquad g(x) = x^{q} \quad \text{if} \quad p \neq q,$$

$$f(x) = x^{p} \ln x, \qquad g(x) = x^{p} \quad \text{if} \quad p = q. \tag{1}$$

Then the mean $M_{f,g;\mu}$ reduces to the following generalization of the so-called Gini means:

$$G_{p,q;\mu}(x,y) := \begin{cases} \left(\frac{\int_{0}^{1} \left(tx + (1-t)y\right)^{p} d\mu(t)}{\int_{0}^{1} \left(tx + (1-t)y\right)^{q} d\mu(t)}\right)^{\frac{1}{p-q}} & \text{if } p \neq q, \\ \\ \exp\left(\frac{\int_{0}^{1} \left(tx + (1-t)y\right)^{p} \ln\left(tx + (1-t)y\right) d\mu(t)}{\int_{0}^{1} \left(tx + (1-t)y\right)^{p} d\mu(t)}\right) & \text{if } p = q. \end{cases}$$

In the particular case when $\mu = \frac{1}{2}(\delta_0 + \delta_1)$, the mean $G_{p,q;\mu}$ goes over into the standard Gini mean (cf. [Gin38]) defined as

$$G_{p,q;\mu}(x,y) = G_{p,q}(x,y) := \begin{cases} \left(\frac{x^p + y^p}{x^q + y^q}\right)^{\frac{1}{p-q}} & \text{if } p \neq q\\ \exp\left(\frac{x^p \ln x + y^p \ln y}{x^p + y^p}\right) & \text{if } p = q \end{cases}$$
(x, y \in \mathbb{R}_+).

The other particular case of great importance is when μ is equal to the Lebesgue measure $\lambda.$ Then

$$G_{p,q;\lambda}(x,y) = S_{p+1,q+1}(x,y) \qquad (x,y \in \mathbb{R}_+),$$

where $S_{p,q}$ is the so-called Stolarsky mean (cf. $\left[\mathrm{Sto75} \right] \right)$ given by

$$S_{p,q}(x,y) := \begin{cases} \left(\frac{q(x^p - y^p)}{p(x^q - y^q)}\right)^{\frac{1}{p-q}} & \text{if } (p-q)pq \neq 0\\ \exp\left(-\frac{1}{p} + \frac{x^p \ln x - y^p \ln y}{x^p - y^p}\right) & \text{if } p = q \neq 0\\ \left(\frac{x^p - y^p}{p(\ln x - \ln y)}\right)^{\frac{1}{p}} & \text{if } p \neq 0, q = 0\\ \left(\frac{x^q - y^q}{q(\ln x - \ln y)}\right)^{\frac{1}{q}} & \text{if } p = 0, q \neq 0\\ \sqrt{xy} & \text{if } p = q = 0 \end{cases}$$

In [Los71], the first author obtained Minkowski-type inequalities for Bajraktarević means. Investigating Minkowski-type inequalities for the standard Gini means, CZINDER and the second author obtained the following result (cf. [CP00, Theorem 5]).

Theorem A. Let $n \geq 2$ and $p_0, p_1, \ldots, p_n, q_0, q_1, \ldots, q_n \in \mathbb{R}$. Then

$$G_{p_0,q_0}(x_1 + \dots + x_n, y_1 + \dots + y_n) \le G_{p_1,q_1}(x_1, y_1) + \dots + G_{p_n,q_n}(x_n, y_n)$$

holds for all $x_1, \ldots, x_n, y_1, \ldots, y_n > 0$ if and only if

- (a) $0 \le \min\{p_1, q_1, \dots, p_n, q_n\},\$
- (b) $\min\{p_0, q_0\} \le \min\{1, p_1, q_1, \dots, p_n, q_n\},\$
- (c) $\max\{1, p_0 + q_0\} \le \min\{p_1 + q_1, \dots, p_n + q_n\}.$

The particular case $p_0 = p_1 = \cdots = p_n$, $q_0 = q_1 = \cdots = q_n$, i.e., when all the Gini means are the same, was investigated by the authors in [LP96]. It is interesting to note that the characterization of the reversed Minkowski-type inequality even in this particular setting is *still unknown*.

In the context of Stolarsky means, in [LP98], we obtained the following result (formulated in the case n = 2 only).

Theorem B. Let $n \geq 2$ and $p, q \in \mathbb{R}$. Then the inequality

$$S_{p,q}(x_1 + \dots + x_n, y_1 + \dots + y_n) \stackrel{\leq}{[\geq]} S_{p,q}(x_1, y_1) + \dots + S_{p,q}(x_n, y_n)$$

holds for all $x_1, \ldots, x_n, y_1, \ldots, y_n > 0$ if and only if

$$3 \stackrel{\leq}{[\geq]} p+q \quad and \quad 1 \stackrel{\leq}{[\geq]} \min\{p,q\}.$$

In order that the more general inequality

$$S_{p_0,q_0}(x_1 + \dots + x_n, y_1 + \dots + y_n) \stackrel{\leq}{[\geq]} S_{p_1,q_1}(x_1, y_1) + \dots + S_{p_n,q_n}(x_n, y_n)$$

be valid for all $x_1, \ldots, x_n, y_1, \ldots, y_n > 0$, CZINDER and the second author obtained necessary conditions and also sufficient conditions for the parameters $p_0, p_1, \ldots, p_n, q_0, q_1, \ldots, q_n \in \mathbb{R}$ in [CP03].

Motivated by the above preliminaries, the aim of this paper is to study Minkowski-type inequalities for the means $M_{f,g;\mu}$, i.e., our purpose is to find

conditions for the generating functions $f_0, g_0 : I_0 \to \mathbb{R}, f_1, g_1 : I_1 \to \mathbb{R}, \ldots, f_n, g_n : I_n \to \mathbb{R}$, and for the measure μ such that

$$M_{f_0,g_0;\mu}(x_1 + \dots + x_n, y_1 + \dots + y_n) \\ \leq \\ [\geq] M_{f_1,g_1;\mu}(x_1, y_1) + \dots + M_{f_n,g_n;\mu}(x_n, y_n)$$
(2)

be valid for all $x_1, y_1 \in I_1, \ldots, x_n, y_n \in I_n$ with $x_1 + \cdots + x_n, y_1 + \cdots + y_n \in I_0$. In the main results of the paper we give sufficient conditions (which, in a certain sense, are also necessary) for (2) to hold. As an important particular case, we also consider Minkowski-type inequalities involving the generalized Gini means.

2. Main results

In order to describe the regularity conditions related the two generating functions f, g of the mean $M_{f,g;\mu}$ in a convenient way, we say that the pair (f,g) of functions is in the class $\mathcal{C}_1(I)$ if f, g are continuously differentiable functions such that $g \in \mathcal{CP}(I)$ and the Wronski determinant

$$\begin{vmatrix} f'(x) & f(x) \\ g'(x) & g(x) \end{vmatrix} = g^2(x) \left(\frac{f(x)}{g(x)}\right)' \quad (x \in I)$$
(3)

does not vanish on I. Obviously, the latter condition implies that f/g is strictly monotone, i.e., $f/g \in \mathcal{CM}(I)$. For $(f,g) \in \mathcal{C}_1(I)$, we define the *deviation* function $\mathcal{D}_{f,g}^* : I^2 \to \mathbb{R}$ by

$$\mathcal{D}_{f,g}^{*}(x,y) := \frac{\begin{vmatrix} f(x) & f(y) \\ g(x) & g(y) \end{vmatrix}}{\begin{vmatrix} f'(y) & f(y) \\ g'(y) & g(y) \end{vmatrix}} = \frac{g(x)\left(\frac{f(x)}{g(x)} - \frac{f(y)}{g(y)}\right)}{g(y)\left(\frac{f(y)}{g(y)}\right)'} \qquad (x,y \in I).$$
(4)

Clearly, we have that $\mathcal{D}_{f,g}^*(x,y) \stackrel{<}{=} 0$ if and only if $x \stackrel{<}{=} y$.

The next result characterizes the mean $M_{f,g;\mu}$ via an implicit equation and signifies the role of the function $\mathcal{D}_{f,g}^*$ (cf. [LP08]).

Lemma 1. Let $(f,g) \in \mathcal{C}_1(I)$ and μ be a Borel probability measure on [0,1]. Then for all $x, y \in I$ and $u \in [x, y]$,

$$M_{f,g;\mu}(x,y) \stackrel{\leq}{=} u \quad \text{if and only if} \quad \int_0^1 \mathcal{D}_{f,g}^* \big(tx + (1-t)y, u \big) d\mu(t) \stackrel{\leq}{=} 0.$$
 (5)

As a consequence of (5), we have the identity

$$\int_0^1 \mathcal{D}_{f,g}^* \big(tx + (1-t)y, M_{f,g;\mu}(x,y) \big) d\mu(t) = 0 \quad (x,y \in I).$$
(6)

By Lemma 2 below, the function $\mathcal{D}_{f,g}^*$ is also connected to the sequence of means $M_{f,g;m_k}$, where (m_k) is the sequence of measures defined by

$$m_k := \left(1 - \frac{1}{k}\right)\delta_0 + \frac{1}{k}\delta_1 \quad (k \in \mathbb{N}).$$
(7)

For its proof, the reader should consult [LP08].

Lemma 2. Let $(f,g) \in \mathcal{C}_1(I)$. Then

$$\lim_{k \to \infty} k \big[M_{f,g;m_k}(x,y) - y \big] = \mathcal{D}^*_{f,g}(x,y) \qquad (x,y \in I).$$
(8)

Now we can formulate our main result which gives a sufficient condition for the general Minkowski-type inequality (2) which does not involve the measure μ .

Theorem 3. Let I_0, I_1, \ldots, I_n be open real intervals, and let $(f_i, g_i) \in C_1(I_i)$ for $i = 0, 1, \ldots, n$. Then the following three assertions are equivalent:

(i) For all Borel probability measures μ on [0, 1],

$$M_{f_0,g_0;\mu}(x_1 + \dots + x_n, y_1 + \dots + y_n) \\ \leq \\ [\geq] M_{f_1,g_1;\mu}(x_1, y_1) + \dots + M_{f_n,g_n;\mu}(x_n, y_n)$$
(9)

holds for all $x_1, y_1 \in I_1, \ldots, x_n, y_n \in I_n$ with $x_1 + \cdots + x_n, y_1 + \cdots + y_n \in I_0$. (ii) For all $k \in \mathbb{N}$,

 $M_{f_0,g_0;m_k}(x_1 + \dots + x_n, y_1 + \dots + y_n)$

$$\stackrel{\leq}{[\geq]} M_{f_1,g_1;m_k}(x_1,y_1) + \dots + M_{f_n,g_n;m_k}(x_n,y_n) \quad (10)$$

holds for all $x_1, y_1 \in I_1, \ldots, x_n, y_n \in I_n$ with $x_1 + \cdots + x_n, y_1 + \cdots + y_n \in I_0$ (where (m_k) is the sequence of measures defined by (7)).

(iii)

$$\mathcal{D}_{f_0,g_0}^*(x_1 + \dots + x_n, y_1 + \dots + y_n) \stackrel{\leq}{[\geq]} \mathcal{D}_{f_1,g_1}^*(x_1, y_1) + \dots + \mathcal{D}_{f_n,g_n}^*(x_n, y_n)$$
(11)

holds for all $x_1, y_1 \in I_1, \ldots, x_n, y_n \in I_n$ with $x_1 + \cdots + x_n, y_1 + \cdots + y_n \in I_0$.

PROOF. The implication (i) \Longrightarrow (ii) is obvious. To prove (ii) \Longrightarrow (iii), for $x_1, y_1 \in I_1, \ldots, x_n, y_n \in I_n$ with $x_1 + \cdots + x_n, y_1 + \cdots + y_n \in I_0$, use (10) and Lemma 2 to get

$$\mathcal{D}_{f_0,g_0}^*(x_1 + \dots + x_n, y_1 + \dots + y_n)$$

$$= \lim_{k \to \infty} k \left[M_{f_0,g_0;m_k}(x_1 + \dots + x_n, y_1 + \dots + y_n) - (y_1 + \dots + y_n) \right]$$

$$\stackrel{\leq}{\leq} \lim_{k \to \infty} k \left[\left(M_{f_1,g_1;m_k}(x_1, y_1) - y_1 \right) + \dots + \left(M_{f_n,g_n;m_k}(x_n, y_n) - y_n \right) \right]$$

$$= \mathcal{D}_{f_1,g_1}^*(x_1, y_1) + \dots + \mathcal{D}_{f_n,g_n}^*(x_n, y_n),$$

which proves (11).

(iii) \Longrightarrow (i) Let $u_1, v_1 \in I_1, \ldots, u_n, v_n \in I_n$ with $u_1 + \cdots + u_n, v_1 + \cdots + v_n \in I_0$. Substituting

$$x_i := tu_i + (1-t)v_i, \quad y_i := M_{f_i, g_i; \mu}(u_i, v_i) \qquad (i = 1, \dots, n)$$

into (11) and integrating on [0, 1] with respect to t by the measure μ , we get

$$\int_{0}^{1} \mathcal{D}_{f_{0},g_{0}}^{*} \left(t(u_{1} + \dots + u_{n}) + (1 - t)(v_{1} + \dots + v_{n}), y_{1} + \dots + y_{n} \right) d\mu(t) \\
\stackrel{\leq}{[\geq]} \int_{0}^{1} \mathcal{D}_{f_{1},g_{1}}^{*} \left(tu_{1} + (1 - t)v_{1}, y_{1} \right) d\mu(t) + \dots \\
+ \int_{0}^{1} \mathcal{D}_{f_{n},g_{n}}^{*} \left(tu_{n} + (1 - t)v_{n}, y_{n} \right) d\mu(t).$$
(12)

By Lemma 1 and the choice of y_1, \ldots, y_n , the right hand side of this inequality is zero. Thus, we obtain from (12) that

$$\int_0^1 \mathcal{D}^*_{f_0,g_0} \big(t(u_1 + \dots + u_n) + (1-t)(v_1 + \dots + v_n), y_1 + \dots + y_n \big) d\mu(t) \stackrel{\leq}{[\geq]} 0.$$

This inequality, by Lemma 1 again, yields that

which proves (9) on the domain indicated.

The following result concerns generalized quasi-arithmetic means when a stronger statement can be obtained.

Theorem 4. Let I_0, I_1, \ldots, I_n be open intervals with $I_1 + \cdots + I_n \subseteq I_0$. Assume that $f_i : I_i \to I_0$ are continuously differentiable functions such that $f'_i(x) \neq 0$ if $x \in I_i$ $i = 0, 1, \ldots, n$ (the latter conditions ensure that $(f_i, 1) \in \mathcal{C}_1(I_i)$ for $i = 0, 1, \ldots, n$). Then the following three assertions are equivalent:

(i) For all Borel probability measures μ on [0, 1],

$$M_{f_0,1;\mu}(x_1 + \dots + x_n, y_1 + \dots + y_n) \stackrel{\leq}{[\geq]} M_{f_1,1;\mu}(x_1, y_1) + \dots + M_{f_n,1;\mu}(x_n, y_n)$$

holds for all $x_1, y_1 \in I_1, \ldots, x_n, y_n \in I_n$.

(ii) For all
$$k \in \mathbb{N}$$

$$M_{f_0,1;m_k}(x_1 + \dots + x_n, y_1 + \dots + y_n) \stackrel{\leq}{[\geq]} M_{f_1,1;m_k}(x_1, y_1) + \dots + M_{f_n,1;m_k}(x_n, y_n)$$

holds for all $x_1, y_1 \in I_1, \ldots, x_n, y_n \in I_n$ (where m_k is the sequence of measures defined by (7)).

(iii)

$$\mathcal{D}_{f_0,1}^*(x_1 + \dots + x_n, y_1 + \dots + y_n) \stackrel{\leq}{[\geq]} \mathcal{D}_{f_1,1}^*(x_1, y_1) + \dots + \mathcal{D}_{f_n,1}^*(x_n, y_n)$$
(13)

holds for all $x_1, y_1 \in I_1, \ldots, x_n, y_n \in I_n$.

(iv) The function $F: f_1(I_1) \times \cdots \times f_n(I_n) \to \mathbb{R}$ defined by

$$F(u_1, \dots, u_n) := f_0 \left(f_1^{-1}(u_1) + \dots + f_n^{-1}(u_n) \right) \qquad (u_i \in f_i(I_i), \ i = 1, \dots, n)$$

is $\frac{concave}{[convex]}$ on its domain provided that f_0 is increasing and $\frac{convex}{[concave]}$ on its domain provided that f_0 is decreasing.

PROOF. The equivalence (i) \iff (ii) \iff (iii) follows from the previous theorem. To complete the proof we show that (iii) and (iv) are equivalent too. Assume, for the sake of definiteness that f_0 is increasing and the upper inequality sign holds in (13). By known characterizations of differentiable concave functions (see [RV73, p. 98, Theorem A], or [NP06, p. 141, Theorem 3.9.1], F is concave if and only if

$$F(u) - F(v) \le \sum_{i=1}^{n} \partial_i F(v)(u_i - v_i)$$
(14)

holds for all $u = (u_1, \ldots, u_n), v = (v_1, \ldots, v_n)$ in the domain of F, where $\partial_i F$ denotes the partial derivative of F with respect to its *i*th variable. A simple calculation shows that

$$\partial_i F(v) = f_0' \left(f_1^{-1}(v_1) + \dots + f_n^{-1}(v_n) \right) \frac{1}{f_i' \left(f_i^{-1}(v_i) \right)}$$

Dividing (14) by $f'_0(f_1^{-1}(v_1) + \dots + f_n^{-1}(v_n)) > 0$ and then substituting $f_i^{-1}(u_i) =: x_i, f_i^{-1}(v_i) =: y_i$, we obtain exactly (13), which proves the equivalence we claimed.

3. Minkowski-type inequalities for generalized Gini means

Theorem 5. Let $n \geq 2$ and $p_0, p_1, \ldots, p_n, q_0, q_1, \ldots, q_n \in \mathbb{R}$. Then the following three assertions are equivalent:

(i) For all Borel probability measures μ on [0, 1],

$$G_{p_0,q_0;\mu}(x_1 + \dots + x_n, y_1 + \dots + y_n) \le G_{p_1,q_1;\mu}(x_1, y_1) + \dots + G_{p_n,q_n;\mu}(x_n, y_n)$$
(15)

holds for all $x_1, y_1, ..., x_n, y_n > 0$.

(ii) For all $k \in \mathbb{N}$,

$$G_{p_0,q_0;m_k}(x_1 + \dots + x_n, y_1 + \dots + y_n)$$

$$\leq G_{p_1,q_1;m_k}(x_1, y_1) + \dots + G_{p_n,q_n;m_k}(x_n, y_n) \quad (16)$$

holds for all $x_1, y_1, \ldots, x_n, y_n > 0$.

- (iii) (a) $0 \le \min\{p_1, q_1, \dots, p_n, q_n\},\$
 - (b) $\min\{p_0, q_0\} \le \min\{1, p_1, q_1, \dots, p_n, q_n\},\$
 - (c) $\max\{1, p_0, q_0\} \le \max\{p_i, q_i\}, \quad (i = 1, \dots, n).$ (17)

Concerning the reversed Minkowski inequality, we have the following result.

Theorem 6. Let $n \geq 2$ and $p_0, p_1, \ldots, p_n, q_0, q_1, \ldots, q_n \in \mathbb{R}$. Then the following three assertions are equivalent:

(i) For all Borel probability measures μ on [0, 1],

$$G_{p_0,q_0;\mu}(x_1 + \dots + x_n, y_1 + \dots + y_n) \ge G_{p_1,q_1;\mu}(x_1, y_1) + \dots + G_{p_n,q_n;\mu}(x_n, y_n)$$
(18)
holds for all $x_1, y_1, \dots, x_n, y_n > 0$.

(ii) For all $k \in \mathbb{N}$,

$$G_{p_0,q_0;m_k}(x_1 + \dots + x_n, y_1 + \dots + y_n)$$

$$\geq G_{p_1,q_1;m_k}(x_1, y_1) + \dots + G_{p_n,q_n;m_k}(x_n, y_n) \quad (19)$$

holds for all $x_1, y_1, \dots, x_n, y_n > 0.$

(iii) (a)
$$1 \ge \max\{p_1, q_1, \dots, p_n, q_n\},$$

(b) $\max\{p_0, q_0\} \ge \max\{0, p_1, q_1, \dots, p_n, q_n\},$ (20)
(c) $\min\{0, p_0, q_0\} \ge \min\{p_i, q_i\},$ $(i = 1, \dots, n).$

PROOF OF THEOREM 5 AND THEOREM 6. The equivalence of conditions (i) and (ii) in both theorems is a consequence of the equivalence of conditions (i) and (ii) of Theorem 3. To elaborate the third equivalent condition of Theorem 3, observe that if f, g are defined by (1), then the function $\mathcal{D}_{f,g}^*$ is of the form

$$\mathcal{D}_{f,g}^*(x,y) = y\delta_{p,q}\left(\frac{x}{y}\right) \qquad (x,y \in \mathbb{R}_+),$$

where

$$\delta_{p,q}(t) := \begin{cases} \frac{t^p - t^q}{p - q} & \text{if } p \neq q \\ t^p \ln t & \text{if } p = q \end{cases} \qquad (t \in \mathbb{R}_+).$$
(21)

Thus, by Theorem 3, inequalities (15) and (18) are satisfied if and only if

$$(y_1 + \dots + y_n)\delta_{p_0,q_0}\left(\frac{x_1 + \dots + x_n}{y_1 + \dots + y_n}\right) \stackrel{\leq}{[\geq]} y_1\delta_{p_1,q_1}\left(\frac{x_1}{y_1}\right) + \dots + y_n\delta_{p_n,q_n}\left(\frac{x_n}{y_n}\right)$$

holds for all $x_1, y_1, \ldots, x_n, y_n > 0$. With the notation $u_i := x_i/y_i$ and $t_i := y_i/(y_1 + \cdots + y_n)$, the above inequality is satisfied if and only if

$$\delta_{p_0,q_0}(t_1u_1 + \dots + t_nu_n) \stackrel{\leq}{[\geq]} t_1\delta_{p_1,q_1}(u_1) + \dots + t_n\delta_{p_n,q_n}(u_n)$$
(22)

for all $u_1, ..., u_n, t_1, ..., t_n > 0$ with $t_1 + \dots + t_n = 1$.

The domain of parameters when (22) is valid on the indicated domain was characterized in the paper [Pál82]. As it was proved in [Pál82], (22) holds with \leq and \geq inequality signs if and only if condition (iii) of Theorem 5 and Theorem 6 holds, respectively.

References

[Baj58] M. BAJRAKTAREVIĆ, Sur une équation fonctionnelle aux valeurs moyennes, Glasnik Mat.-Fiz. Astronom. Društvo Mat. Fiz. Hrvatske Ser. II 13 (1958), 243–248.

753

- [Baj69] M. BAJRAKTAREVIĆ, Über die Vergleichbarkeit der mit Gewichtsfunktionen gebildeten Mittelwerte, Studia Sci. Math. Hungar. 4 (1969), 3–8.
- [Ber98] L. R. BERRONE, The mean value theorem: functional equations and Lagrangian means, Epsilon 14, no. 1(40) (1998), 131–151.
- [BM98] L. R. BERRONE and J. MORO, Lagrangian means, Aequationes Math. 55, no. 3 (1998), 217–226.
- [BM00] L. R. BERRONE and J. MORO, On means generated through the Cauchy mean value theorem, Aequationes Math. 60, no. 1–2 (2000), 1–14.
- [CP00] P. CZINDER and ZS. PÁLES, A general Minkowski-type inequality for two variable Gini means, Publ. Math. Debrecen 57 (2000), 203–216.
- [CP03] P. CZINDER and Zs. PÁLES, Minkowski-type inequalities for two variable Stolarsky means, Acta Sci. Math. (Szeged) 69, no. 1–2 (2003), 27–47.
- [Gin38] C. GINI, Di una formula compressiva delle medie, Metron 13 (1938), 3–22.
- [HLP34] G. H. HARDY, J. E. LITTLEWOOD and G. PÓLYA, Inequalities, Cambridge University Press, Cambridge, 1934, (first edition), 1952 (second edition).
- [Los71] L. LOSONCZI, Subadditive Mittelwerte, Arch. Math. (Basel) 22 (1971), 168–174.
- [Los00] L. LOSONCZI, Equality of Cauchy mean values, *Publ. Math. Debrecen* **57** (2000), 217–230.
- [LP96] L. LOSONCZI and Zs. PÁLES, Minkowski's inequality for two variable Gini means, Acta Sci. Math. (Szeged) 62 (1996), 413–425.
- [LP98] L. LOSONCZI and Zs. PÁLES, Minkowski's inequality for two variable difference means, Proc. Amer. Math. Soc. 126, no. 3 (1998), 779–789.
- [LP08] L. LOSONCZI and ZS. PÁLES, Comparison of means generated by two functions and a measure, J. Math. Anal. Appl. 345, no. 1 (2008), 135–146.
- [NP06] C. P. NICULESCU and L.-E. PERSSON, Convex Functions and Their Applications, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 23, Springer-Verlag, New York, 2006, A contemporary approach.
- [Pál82] Zs. PÁLES, A generalization of the Minkowski inequality, J. Math. Anal. Appl. 90, no. 2 (1982), 456–462.
- [RV73] A. W. ROBERTS and D. E. VARBERG, Convex Functions, Pure and Applied Mathematics, vol. 57, Academic Press, New York – London, 1973.
- [Sto75] K. B. STOLARSKY, Generalizations of the logarithmic mean, Math. Mag. 48 (1975), 87–92.

LÁSZLÓ LOSONCZI FACULTY OF ECONOMICS UNIVERSITY OF DEBRECEN KASSAI ÚT 26 H-4028 DEBRECEN HUNGARY

E-mail: losi@math.klte.hu

ZSOLT PÁLES INSTITUTE OF MATHEMATICS UNIVERSITY OF DEBRECEN H-4010 DEBRECEN, P. O. BOX 12 HUNGARY

E-mail: pales@math.klte.hu

(Received October 1, 2010)