On additive countably continuous functions

By TOMASZ NATKANIEC (Gdańsk)

Abstract

We construct an example of additive Darboux function $f: \mathbb{R} \rightarrow \mathbb{R}$ which is strongly countably continuous and discontinuous. We show also that if an additive function f is covered by countable family of continuous functions from \mathbb{R} to \mathbb{R}, then it can be also covered by countably many linear functions. Finally we remark that every finitely continuous and additive function is continuous.

Let us establish some of terminology to be used. By \mathbb{R} and \mathbb{Q} we denote the sets of all reals and rationals, respectively. Let, moreover, $\mathbb{Q}^{*}=\mathbb{Q} \backslash\{0\}$. For $A \subset \mathbb{R}$ and $x \in \mathbb{R}$, define $A+x=\{a+x: a \in A\}$ and $x A=\{x a: a \in A\}$. The symbol $|A|$ stands for the cardinality of a set A. The cardinality of \mathbb{R} is denoted by c .

We will consider \mathbb{R} as a linear space over the field \mathbb{Q}. For $A \subset \mathbb{R}, \operatorname{LIN}(A)$ denotes the linear subspace of \mathbb{R} generated by A. Any basis of \mathbb{R} over \mathbb{Q} will be referred as a Hamel basis. Recall that every function defined on a Hamel basis has the unique extension to additive function defined on whole \mathbb{R}. (See e.g. [MK] for more details.)

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is:

- additive $(f \in \mathrm{Add})$ if $f(x+y)=f(x)+f(y)$ for all $x, y \in \mathbb{R}$;
- Darboux $(f \in \mathrm{D})$ if f maps intervals onto intervals;
- countably continuous $(f \in \mathrm{CC})$, if there is a decomposition $\left(A_{n}\right)_{n<\omega}$ of \mathbb{R} such that $f \upharpoonright A_{n}$ is continuous for every $n<\omega$;
- strongly countably continuous $(f \in \operatorname{SCC})$, if there is a sequence $\left(f_{n}\right)_{n<\omega}$ of continuous functions from \mathbb{R} to \mathbb{R} such that $f \subset \bigcup_{n<\omega} f_{n}[\mathrm{GH}]$, cf. [GF].
- Sierpiński-Zygmund function $(f \in \mathrm{SZ})$ if the restriction $f \upharpoonright A$ is discontinuous for each $A \subset \mathbb{R}$ of size $\mathfrak{c}[\mathrm{SZ}]$.
Let F be a family of partial functions from \mathbb{R} to \mathbb{R}. We say that $f: \mathbb{R} \rightarrow \mathbb{R}$ is countably $\mathrm{F}(f \in \mathrm{CF})$, if there exists a sequence $\left\langle f_{n}\right\rangle_{n} \subset \mathrm{~F}$ such that $f \subset \bigcup_{n<\omega} f_{n}$. The class of continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ is denoted by C. By L we denote the class of all linear functions, i.e., all functions $f: A \rightarrow \mathbb{R}, A \subset \mathbb{R}$, of the form $f(x)=a x+b$, where a, b are fixed. (Then a will be called the direction of f.) Note that $\mathrm{CL} \subset \mathrm{SCC} \subset \mathrm{CC}$.

Obviously no SZ function is CC. It is not hard to construct an example of $f \in \operatorname{Add} \cap \mathrm{SZ}$ (see e.g. [NR]), thus there are $f \in \operatorname{Add} \backslash$ CC. On the other hand, Z. Grande and A. Fatz-Grupka constructed a function $f \in \operatorname{Add} \cap \mathrm{SCC} \backslash \mathrm{C}$ with uncountable image [GF, Example 2]. This result has been strengthened recently by G. Horbaczewska. She gives an example of $f \in \operatorname{Add} \cap \mathrm{SCC} \backslash \mathrm{C}$ with an image which intersects every uncountable Borel subset of \mathbb{R} [GH, Example 2]. We will show that such a function can maps every interval onto whole \mathbb{R}. (This means, in particular, that f is Darboux.)

Proposition 1. There exists $f \in \operatorname{Add} \cap \mathrm{D} \cap \mathrm{SCC} \backslash \mathrm{C}$.
Proof. Let H be a Hamel basis and H_{0} be a subset of H with $\left|H_{0}\right|=\omega$. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be an additive function such that $f\left(H_{0}\right)=H_{0} \cup\{0\}$ and f is the identity on $H \backslash H_{0}$. Then there exists an $h_{0} \in H_{0} \cap f^{-1}(0)$, so the kernel of f is dense in \mathbb{R}. Moreover, $H \subset f(\mathbb{R})$, thus f is a surjection and consequently it maps every non-degenerate interval onto \mathbb{R}. (See e.g. [MK, Theorem XII.6.1].) Hence f is Darboux and non-continuous.

We will verify that $f \in \operatorname{SCC}$. Let $V=\operatorname{LIN}\left(H_{0}\right)$ and $W=\operatorname{LIN}\left(H \backslash H_{0}\right)$. Since $\left|H_{0}\right|=\omega, V$ is countable, and we have $\mathbb{R}=W+V=\bigcup_{v \in V}(W+v)$ and, moreover, $f(w)=w$ for $w \in W$. Observe that $f \upharpoonright(W+v)$ is continuous for all $v \in V$. Indeed, if $x \in W+v$ then $w=x-v \in W$ and consequently, $f(x)=f(w+v)=f(w)+f(v)=w+f(v)=(x-v)+f(v)$. Let f_{v} be the linear function defined by $f_{v}(x)=(x-v)+f(v)$. Then $f \upharpoonright(W+v) \subset f_{v}$ and therefore, $f \subset \bigcup_{v \in V} f_{v}$.

Notice that for every $f \in \mathrm{SCC}$ the graph of f has measure zero (and is meager) on the plane. Thus f constructed in Proposition 1 is an example (in ZFC)
of additive discontinuous Darboux function with a small graph. A similar result has been obtained by K. Ciesielski, who proved that CH implies the existence of an additive almost continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ whose graph has Lebesgue measure zero [KC, Corollary 2.2]. (An analogous example is constructed under CPA in [CP].) A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is almost continuous in the sense of Stallings if each open subset of \mathbb{R}^{2} containing the graph of f contains also a continuous function from \mathbb{R} to $\mathbb{R}[\mathrm{JS}]$. Recall that every almost continuous function is Darboux. See e.g. [TN]. Ciesielski's example is not countably continuous. Thus the following problem seems to be interesting.

Problem 1. Does there exist an additive almost continuous function $f \in \mathrm{CC} \backslash \mathrm{C}$?

Notice that the function f constructed in Proposition 1 as well as examples in $[\mathrm{GF}]$ and $[\mathrm{GH}]$ are in fact countably linear. This remark leads to a natural question: does there exist an additive function $f \in \mathrm{SCC} \backslash \mathrm{CL}$? To answer this query we start with the following fact.

Theorem 2. Suppose $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ is continuous, $H \subset \mathbb{R}$ is non-meager and $f \in \operatorname{Add}$ is such that $f(x)=\varphi(x)$ for $x \in H$. If $f \in \mathrm{CC}$, then f is linear on some non-meager set $B \subset H$.

Proof. Let $\mathbb{R}=\bigcup_{n<\omega} A_{n}$ and $f_{n}=f \upharpoonright A_{n}$ be continuous for $n<\omega$. Let $\left\{I_{n}: n<\omega\right\}$ be a sequence of all open intervals with rational end-points. For each $h \in H$ there exist $n_{h}, m_{h}<\omega$ for which the set $(H-h) \cap A_{n_{h}}$ is nowhere meager in $I_{m_{h}}$. Hence there are $n_{0}, m_{0}<\omega$ for which the set H_{0} of all $h \in H$ with $\left\langle n_{h}, m_{h}\right\rangle=\left\langle n_{0}, m_{0}\right\rangle$ is non-meager and consequently nowhere meager in some interval (a, b). Fix $x \in I_{m_{0}} \cap A_{n_{0}}$ and $y, y^{\prime} \in(a, b) \cap H_{0}$. Then there exist sequences $\left\langle x_{n}\right\rangle_{n}$ in $H \cap\left(A_{n_{0}}+y\right)$ and $\left\langle x_{n}^{\prime}\right\rangle_{n}$ in $H \cap\left(A_{n_{0}}+y^{\prime}\right)$ such that $x=\lim _{n}\left(x_{n}-y\right)=\lim _{n}\left(x_{n}^{\prime}-y^{\prime}\right)$. Since $f_{n_{0}}$ is continuous at $x, \lim _{n} f_{n_{0}}\left(x_{n}-y\right)=$ $\lim _{n} f_{n_{0}}\left(x_{n}^{\prime}-y^{\prime}\right)$. On the other hand, $f_{n_{0}}\left(x_{n}-y\right)=f\left(x_{n}-y\right)=f\left(x_{n}\right)-f(y)=$ $\varphi\left(x_{n}\right)-\varphi(y) \rightarrow_{n} \varphi(x+y)-\varphi(y)$. Similarly, $f_{n_{0}}\left(x_{n}^{\prime}-y^{\prime}\right) \rightarrow_{n} \varphi\left(x+y^{\prime}\right)-\varphi\left(y^{\prime}\right)$. Therefore for every $x \in I_{m_{0}} \cap A_{n_{0}}$ and all $y, y^{\prime} \in(a, b) \cap H_{0}$ we have the equality

$$
\begin{equation*}
\varphi(x+y)-\varphi(y)=\varphi\left(x+y^{\prime}\right)-\varphi\left(y^{\prime}\right) \tag{1}
\end{equation*}
$$

Since $A_{n_{0}}$ is dense in $I_{m_{0}}, H_{0}$ is dense in (a, b) and φ is continuous, the equation (1) holds for all $x \in I_{m_{0}}$ and $y, y^{\prime} \in(a, b)$.

Fix non-empty open intervals $I \subset I_{m_{0}}$ and $J \subset(a, b)$ such that I, J and $I+J$ are pairwise disjoint. Now, let $\psi: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function such
that $\psi(x)=\varphi(x)$ for $x \in J \cup(I+J)$ and $\psi(x)=\varphi(x+y)-\varphi(y)$ for $x \in I$, where $y \in J$. (Note that this definition does not depend on y.) Then for all $x \in I$ and $y \in J$ we have the equality $\psi(x+y)=\psi(x)+\psi(y)$. This implies that there exist $g \in$ Add and $c \in \mathbb{R}$ such that $\varphi(y)=\psi(y)=g(y)+c$ for $y \in J$. (See [MK, Theorem XIII.6.1].) Since φ is continuous, g is continuous on J, hence there is $a \in \mathbb{R}$ such that $g(y)=a y$ for $y \in \mathbb{R}$, and consequently, φ is linear on J. This implies that f is linear on a non-meager set $B=H_{0} \cap J$.

Lemma 3. Suppose $f \in \operatorname{Add} \cap \mathrm{CC}$ and H_{1}, H_{2} are disjoint non-meager sets. If $\varphi_{1}=f \upharpoonright H_{1}$ and $\varphi_{2}=f \upharpoonright H_{2}$ are linear then they have the same direction.

Proof. Let $\varphi_{i}(x)=a_{i} x+b_{i}$ for $x \in H_{i}, i=1,2$. Let $\left\{I_{n}: n<\omega\right\}$ be a sequence of all open intervals with rational end-points. Let $\mathbb{R}=\bigcup_{n<\omega} A_{n}$ and $f_{n}=f \upharpoonright A_{n}$ be continuous for all $n<\omega$. For every $h \in H_{2}$ there exist $n_{h}, m_{h}<\omega$ such that the set $\left(H_{1}+h\right) \cap A_{n_{h}}$ is nowhere meager in $I_{m_{h}}$. There exist n_{0}, m_{0} for which the set $H_{0}=\left\{h \in H_{2}:\left\langle n_{h}, m_{h}\right\rangle=\left\langle n_{0}, m_{0}\right\rangle\right\}$ is non-meager. Fix $x \in I_{m_{0}} \cap A_{n_{0}}$ and $h, h^{\prime} \in H_{0}$ with $h \neq h^{\prime}$. Then there exist two sequences $\left\langle x_{n}\right\rangle_{n}$, $\left\langle y_{n}\right\rangle_{n}$ in H_{1} such that $x_{n}+h, y_{n}+h^{\prime} \in A_{n_{0}}$ and $\lim _{n}\left(x_{n}+h\right)=x=\lim _{n}\left(y_{n}+h^{\prime}\right)$. Since $f_{n_{0}}$ is continuous, $\lim _{n} f_{n_{0}}\left(x_{n}+h\right)=\lim _{n} f_{n_{0}}\left(y_{n}+h^{\prime}\right)$. On the other hand, $\lim _{n} f_{n_{0}}\left(x_{n}+h\right)=a_{1}(x-h)+b_{1}+a_{2} h+b_{2}$ and $\lim _{n} f_{n_{0}}\left(y_{n}+h^{\prime}\right)=$ $a_{1}\left(x-h^{\prime}\right)+b_{1}+a_{2} h^{\prime}+b_{2}$. Thus $a_{1}(x-h)+a_{2} h=a_{1}\left(x-h^{\prime}\right)+a_{2} h^{\prime}$ and consequently, $a_{1}=a_{2}$.

Lemma 4. Let H be a Hamel basis in \mathbb{R} and let $f \in$ Add. If there exists a sequence $\left\langle f_{n}\right\rangle_{n}$ of linear functions which covers $f \upharpoonright H$ and all f_{n} have the same direction, then $f \in \mathrm{CL}$.

Proof. Let $f_{n}: x \mapsto a x+b_{n}$ for $n<\omega$. For any n define $H_{n}=\{x \in$ $\left.H: f(x)=f_{n}(x)\right\} \backslash \bigcup_{i<n} H_{i}$. Then $H=\bigcup_{n<\omega} H_{n}$ and H_{n} are pairwise disjoint. Let $T=\bigcup_{n<\omega}\left(\mathbb{Q}^{*}\right)^{n}$. Notice that $\mathbb{R}=\bigcup_{\left\langle q_{0}, \ldots, q_{n-1}\right\rangle \in T} \sum_{i<n} q_{i} H \cup\{0\}$. Fix $\left\langle q_{0}, \ldots, q_{n-1}\right\rangle \in T$. Then $\sum_{i<n} q_{i} H=\sum_{i<n} \bigcup_{j<\omega} H_{j}=\bigcup_{s \in \omega^{n}} \sum_{i<n} q_{i} H_{s(i)}$. It is enough to observe that for any $s \in \omega^{n}$, f is linear on the set $\sum_{i<n} q_{i} H_{s(i)}$. In fact, if $x \in \sum_{i<n} q_{i} H_{s(i)}$ then $x=\sum_{i<n} q_{i} h_{i}$, where $h_{i} \in H_{s(i)}$, hence $f(x)=$ $a x+d$, where $d=\sum_{i<n} q_{i} b_{s(i)}$.

Theorem 5. Every additive strongly countably continuous function is countably linear.

Proof. Assume that $f \in$ Add and $\left\langle f_{n}\right\rangle_{n}$ is a sequence of continuous functions, $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$, such that $f \subset \bigcup_{n<\omega} f_{n}$. For every $n<\omega$ set $A_{n}=\{x \in \mathbb{R}$: $\left.f(x)=f_{n}(x)\right\}$. Let N be the set of all $n<\omega$ for which the set A_{n} is non-meager.

Notice that $A=\bigcup_{n \notin N} A_{n}$ is meager. Since A_{n} is non-meager for $n \in N$, Theorem 2 yields that f_{n} is linear on some non-meager subset of A_{n}. By Lemma 3, all f_{n} for $n \in N$ have the same direction. Now, the set $B=\bigcup_{n \in N} A_{n}$ is residual, so the Piccard Theorem implies easily that B includes a Hamel basis H. ([MK, Theorem II.9.1], see also Theorems IX.3.2 and IX.3.6 in [MK].) By Lemma 4, this shows that $f \in \mathrm{CL}$.

Corollary 6. Every additive and countably linear function f can be covered by countably many linear functions with the same direction.

Finally, recall that CC $\backslash \mathrm{SCC} \neq \emptyset$. (In fact, every increasing left-hand continuous function with a countable dense set of points of discontinuity is CC but not SCC, see [GF, Example 1], c.f., [GH].)

Problem 2. Does there exist $f \in \operatorname{Add} \cap \mathrm{CC} \backslash \mathrm{SCC}$?
(In fact, we guess that every function $f \in$ Add $\cap \mathrm{CC}$ can be covered by countably many lines, but we are unable to prove this hypothesis.)

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is finitely continuous if there is a decomposition of \mathbb{R} onto finitely many parts $A_{i}, i<n$, with $f \upharpoonright A_{i}$ continuous for each $i<n$. (See e.g. [MM] or [MP].)

Proposition 7. Every additive and finitely continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous.

Proof. Assume $\mathbb{R}=\bigcup_{i<n} X_{i}$ and $f \upharpoonright X_{i}$ is continuous for each $i<n$. Let J_{0} be an non-degenerate interval such that f is bounded on $J_{0} \cap X_{0}$. If $J_{0} \cap X_{1}=\emptyset$, then set $J_{1}=J_{0}$. Otherwise, let J_{1} be a non-degenerate subinterval of J_{0} such that f is bounded on $J_{1} \cap X_{1}$. Proceeding in the same way we construct a decreasing sequence of non-degenerate intervals $J_{i}, i<n$, such that f is bounded on each of sets $J_{i} \cap X_{i}$. Then, since $J_{n-1}=\bigcup_{i<n}\left(J_{n-1} \cap X_{i}\right), f$ is bounded on J_{n-1}, so f is continuous [MK, Theorem IX.1.2].

Acknowledgements. The author is greatly indebted to the Referee for his helpful suggestions concerning a presentation of results, especially for a simplification of the proof of Proposition 1.

References

[KC] K. Ciesielski, Some additive Darboux-like functions, J. Appl. Anal. 4(1) (1998), 43-51.
[CP] K. Ciesielski and J. Pawlikowski, On additive almost continuous functions under $\mathrm{CPA}_{\text {prism }}^{\text {game }}$, J. Appl. Anal. 11(2) (2005), 153-171.
[GF] Z. Grande and A. Fatz-Grupka, On countably continuous functions, Tatra Mt. Math. Publ. 28 (2004), 57-63.
[GH] G. Horbaczewska, On strongly countably continuous functions, Tatra Mt. Math. Publ. 42 (2009), 81-86.
[MK] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities. Cauchy's Equation and Jensen's Inequality, PWN, Warszawa, Kraków, Katowice,, 1985.
[MM] M. Marciniak, On finitely continuous Darboux and strong finitely continuous functions, Real Anal. Exchange 33(1) (2007), 15-22.
[MP] M. Marciniak and R. Pawlak, On the restrictions of functions, Finitely continuous functions and path continuity, Tatra Mt. Math. Publ. 24(1) (2002), 65-77.
[TN] T. Natkaniec, Almost Continuity, Real Anal. Exchange 17(2) (1992), 462-520.
[NR] T. Natkaniec and H. Rosen, Additive Sierpiński-Zygmund functions, Real Anal. Exchange 31(1) (2005), 253-269.
[SZ] W. Sierpiński and A. Zygmund, Sur une fonction qui est discontinue sur tout ensemble de puissance du continu, Fund. Math. 4 (1923), 316-318.
[JS] J. R. Stallings, Fixed point theorems for connectivity maps, Fund. Math. 47 (1959), 249-263.

TOMASZ NATKANIEC
INSTITUTE OF MATHEMATICS
UNIVERSITY OF GDAŃSK
WITA STWOSZA 57
80-952 GDAŃSK
POLAND
E-mail: mattn@mat.ug.edu.pl
(Received January 18, 2010; revised February 4, 2011)

