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On additive countably continuous functions

By TOMASZ NATKANIEC (Gdańsk)

Abstract. We construct an example of additive Darboux function f : R → R
which is strongly countably continuous and discontinuous. We show also that if an

additive function f is covered by countable family of continuous functions from R to R,
then it can be also covered by countably many linear functions. Finally we remark that

every finitely continuous and additive function is continuous.

Let us establish some of terminology to be used. By R and Q we denote the

sets of all reals and rationals, respectively. Let, moreover, Q∗ = Q \ {0}. For

A ⊂ R and x ∈ R, define A + x = {a + x : a ∈ A} and xA = {xa : a ∈ A}. The

symbol |A| stands for the cardinality of a set A. The cardinality of R is denoted

by c.

We will consider R as a linear space over the field Q. For A ⊂ R, LIN (A)

denotes the linear subspace of R generated by A. Any basis of R over Q will be

referred as a Hamel basis. Recall that every function defined on a Hamel basis

has the unique extension to additive function defined on whole R. (See e.g. [MK]

for more details.)

A function f : R→ R is:

• additive (f ∈ Add) if f(x+ y) = f(x) + f(y) for all x, y ∈ R;
• Darboux (f ∈ D) if f maps intervals onto intervals;

• countably continuous (f ∈ CC), if there is a decomposition (An)n<ω of R
such that f¹An is continuous for every n < ω;
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• strongly countably continuous (f ∈ SCC), if there is a sequence (fn)n<ω of

continuous functions from R to R such that f ⊂ ⋃
n<ω fn [GH], cf. [GF].

• Sierpiński-Zygmund function (f ∈ SZ) if the restriction f¹A is discontinuous

for each A ⊂ R of size c [SZ].

Let F be a family of partial functions from R to R. We say that f : R → R is

countably F (f ∈ CF), if there exists a sequence 〈fn〉n ⊂ F such that f ⊂ ⋃
n<ω fn.

The class of continuous functions f : R → R is denoted by C. By L we denote

the class of all linear functions, i.e., all functions f : A → R, A ⊂ R, of the form

f(x) = ax + b, where a, b are fixed. (Then a will be called the direction of f .)

Note that CL ⊂ SCC ⊂ CC.

Obviously no SZ function is CC. It is not hard to construct an example of

f ∈ Add ∩ SZ (see e.g. [NR]), thus there are f ∈ Add \ CC. On the other hand,

Z. Grande and A. Fatz-Grupka constructed a function f ∈ Add∩SCC\C with

uncountable image [GF, Example 2]. This result has been strengthened recently

by G. Horbaczewska. She gives an example of f ∈ Add ∩ SCC \C with an image

which intersects every uncountable Borel subset of R [GH, Example 2]. We will

show that such a function can maps every interval onto whole R. (This means,

in particular, that f is Darboux.)

Proposition 1. There exists f ∈ Add ∩D ∩ SCC \ C.

Proof. Let H be a Hamel basis and H0 be a subset of H with |H0| = ω.

Let f : R→ R be an additive function such that f(H0) = H0 ∪ {0} and f is the

identity on H \H0. Then there exists an h0 ∈ H0 ∩ f−1(0), so the kernel of f is

dense in R. Moreover, H ⊂ f(R), thus f is a surjection and consequently it maps

every non-degenerate interval onto R. (See e.g. [MK, Theorem XII.6.1].) Hence

f is Darboux and non-continuous.

We will verify that f ∈ SCC. Let V = LIN (H0) and W = LIN (H \ H0).

Since |H0| = ω, V is countable, and we have R = W + V =
⋃

v∈V (W + v)

and, moreover, f(w) = w for w ∈ W . Observe that f¹(W + v) is continuous

for all v ∈ V . Indeed, if x ∈ W + v then w = x − v ∈ W and consequently,

f(x) = f(w+ v) = f(w)+ f(v) = w+ f(v) = (x− v)+ f(v). Let fv be the linear

function defined by fv(x) = (x− v) + f(v). Then f¹(W + v) ⊂ fv and therefore,

f ⊂ ⋃
v∈V fv. ¤

Notice that for every f ∈ SCC the graph of f has measure zero (and is me-

ager) on the plane. Thus f constructed in Proposition 1 is an example (in ZFC)
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of additive discontinuous Darboux function with a small graph. A similar result

has been obtained by K. Ciesielski, who proved that CH implies the existence

of an additive almost continuous function f : R → R whose graph has Lebesgue

measure zero [KC, Corollary 2.2]. (An analogous example is constructed under

CPA in [CP].) A function f : R→ R is almost continuous in the sense of Stallings

if each open subset of R2 containing the graph of f contains also a continuous

function from R to R [JS]. Recall that every almost continuous function is Dar-

boux. See e.g. [TN]. Ciesielski’s example is not countably continuous. Thus the

following problem seems to be interesting.

Problem 1. Does there exist an additive almost continuous function

f ∈ CC \ C?

Notice that the function f constructed in Proposition 1 as well as examples

in [GF] and [GH] are in fact countably linear. This remark leads to a natural

question: does there exist an additive function f ∈ SCC \ CL? To answer this

query we start with the following fact.

Theorem 2. Suppose ϕ : R → R is continuous, H ⊂ R is non-meager and

f ∈ Add is such that f(x) = ϕ(x) for x ∈ H. If f ∈ CC, then f is linear on some

non-meager set B ⊂ H.

Proof. Let R =
⋃

n<ω An and fn = f¹An be continuous for n < ω. Let

{In : n < ω} be a sequence of all open intervals with rational end-points. For

each h ∈ H there exist nh,mh < ω for which the set (H − h) ∩ Anh
is nowhere

meager in Imh
. Hence there are n0,m0 < ω for which the set H0 of all h ∈ H

with 〈nh,mh〉 = 〈n0,m0〉 is non-meager and consequently nowhere meager in

some interval (a, b). Fix x ∈ Im0 ∩ An0 and y, y′ ∈ (a, b) ∩ H0. Then there

exist sequences 〈xn〉n in H ∩ (An0 + y) and 〈x′
n〉n in H ∩ (An0 + y′) such that

x = limn(xn−y) = limn(x
′
n−y′). Since fn0 is continuous at x, limn fn0(xn−y) =

limn fn0(x
′
n − y′). On the other hand, fn0(xn − y) = f(xn − y) = f(xn)− f(y) =

ϕ(xn)− ϕ(y) →n ϕ(x+ y)− ϕ(y). Similarly, fn0(x
′
n − y′) →n ϕ(x+ y′)− ϕ(y′).

Therefore for every x ∈ Im0 ∩An0 and all y, y′ ∈ (a, b)∩H0 we have the equality

ϕ(x+ y)− ϕ(y) = ϕ(x+ y′)− ϕ(y′) (1)

SinceAn0 is dense in Im0 ,H0 is dense in (a, b) and ϕ is continuous, the equation (1)

holds for all x ∈ Im0 and y, y′ ∈ (a, b).

Fix non-empty open intervals I ⊂ Im0 and J ⊂ (a, b) such that I, J and

I + J are pairwise disjoint. Now, let ψ : R → R be a continuous function such
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that ψ(x) = ϕ(x) for x ∈ J ∪ (I + J) and ψ(x) = ϕ(x + y) − ϕ(y) for x ∈ I,

where y ∈ J . (Note that this definition does not depend on y.) Then for all x ∈ I

and y ∈ J we have the equality ψ(x+ y) = ψ(x) + ψ(y). This implies that there

exist g ∈ Add and c ∈ R such that ϕ(y) = ψ(y) = g(y) + c for y ∈ J . (See [MK,

Theorem XIII.6.1].) Since ϕ is continuous, g is continuous on J , hence there is

a ∈ R such that g(y) = ay for y ∈ R, and consequently, ϕ is linear on J . This

implies that f is linear on a non-meager set B = H0 ∩ J . ¤

Lemma 3. Suppose f ∈ Add∩CC and H1, H2 are disjoint non-meager sets.

If ϕ1 = f¹H1 and ϕ2 = f¹H2 are linear then they have the same direction.

Proof. Let ϕi(x) = aix + bi for x ∈ Hi, i = 1, 2. Let {In : n < ω} be a

sequence of all open intervals with rational end-points. Let R =
⋃

n<ω An and

fn = f¹An be continuous for all n < ω. For every h ∈ H2 there exist nh,mh < ω

such that the set (H1 + h) ∩ Anh
is nowhere meager in Imh

. There exist n0,m0

for which the set H0 = {h ∈ H2 : 〈nh,mh〉 = 〈n0,m0〉} is non-meager. Fix

x ∈ Im0 ∩An0 and h, h′ ∈ H0 with h 6= h′. Then there exist two sequences 〈xn〉n,
〈yn〉n in H1 such that xn+h, yn+h′ ∈ An0 and limn(xn+h) = x = limn(yn+h′).
Since fn0 is continuous, limn fn0(xn + h) = limn fn0(yn + h′). On the other

hand, limn fn0(xn + h) = a1(x − h) + b1 + a2h + b2 and limn fn0(yn + h′) =

a1(x − h′) + b1 + a2h
′ + b2. Thus a1(x − h) + a2h = a1(x − h′) + a2h

′ and

consequently, a1 = a2. ¤

Lemma 4. Let H be a Hamel basis in R and let f ∈ Add. If there exists

a sequence 〈fn〉n of linear functions which covers f¹H and all fn have the same

direction, then f ∈ CL.

Proof. Let fn : x 7→ ax + bn for n < ω. For any n define Hn = {x ∈
H : f(x) = fn(x)} \

⋃
i<n Hi. Then H =

⋃
n<ω Hn and Hn are pairwise disjoint.

Let T =
⋃

n<ω(Q∗)n. Notice that R =
⋃

〈q0,...,qn−1〉∈T

∑
i<n qiH ∪ {0}. Fix

〈q0, . . . , qn−1〉 ∈ T . Then
∑

i<n qiH =
∑

i<n

⋃
j<ω Hj =

⋃
s∈ωn

∑
i<n qiHs(i). It

is enough to observe that for any s ∈ ωn, f is linear on the set
∑

i<n qiHs(i). In

fact, if x ∈ ∑
i<n qiHs(i) then x =

∑
i<n qihi, where hi ∈ Hs(i), hence f(x) =

ax+ d, where d =
∑

i<n qibs(i). ¤

Theorem 5. Every additive strongly countably continuous function is coun-

tably linear.

Proof. Assume that f ∈ Add and 〈fn〉n is a sequence of continuous func-

tions, fn : R → R, such that f ⊂ ⋃
n<ω fn. For every n < ω set An = {x ∈ R :

f(x) = fn(x)}. Let N be the set of all n < ω for which the set An is non-meager.
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Notice that A =
⋃

n6∈N An is meager. Since An is non-meager for n ∈ N , The-

orem 2 yields that fn is linear on some non-meager subset of An. By Lemma 3,

all fn for n ∈ N have the same direction. Now, the set B =
⋃

n∈N An is residual,

so the Piccard Theorem implies easily that B includes a Hamel basis H. ([MK,

Theorem II.9.1], see also Theorems IX.3.2 and IX.3.6 in [MK].) By Lemma 4,

this shows that f ∈ CL. ¤

Corollary 6. Every additive and countably linear function f can be covered

by countably many linear functions with the same direction.

Finally, recall that CC \ SCC 6= ∅. (In fact, every increasing left-hand con-

tinuous function with a countable dense set of points of discontinuity is CC but

not SCC, see [GF, Example 1], c.f., [GH].)

Problem 2. Does there exist f ∈ Add ∩ CC \ SCC?
(In fact, we guess that every function f ∈ Add ∩ CC can be covered by

countably many lines, but we are unable to prove this hypothesis.)

A function f : R → R is finitely continuous if there is a decomposition of R
onto finitely many parts Ai, i < n, with f¹Ai continuous for each i < n. (See e.g.

[MM] or [MP].)

Proposition 7. Every additive and finitely continuous function f : R → R
is continuous.

Proof. Assume R =
⋃

i<n Xi and f¹Xi is continuous for each i < n. Let J0
be an non-degenerate interval such that f is bounded on J0 ∩X0. If J0 ∩X1 = ∅,
then set J1 = J0. Otherwise, let J1 be a non-degenerate subinterval of J0 such

that f is bounded on J1 ∩ X1. Proceeding in the same way we construct a

decreasing sequence of non-degenerate intervals Ji, i < n, such that f is bounded

on each of sets Ji ∩Xi. Then, since Jn−1 =
⋃

i<n(Jn−1 ∩Xi), f is bounded on

Jn−1, so f is continuous [MK, Theorem IX.1.2]. ¤
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