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Construction of periodic solutions of differential
equations with impulse effect

By N. I. RONTO (Kiev–Miskolc) and Á. TUZSON (Miskolc)

Abstract. In this paper we establish both the convergency and the error estima-
tion of the trigonometric collocation method for forming a periodic solution of a system
of differential equations of the form

dx/dt = f(t,x) =

(
f1(1,x) , t ∈ [0, τ) ,

f2(t,x) , t ∈ (τ, T ] ,

where f(t,x) is a piecewise continuous function and

x(0) = x(T ) ,

S1 x(τ + 0) + S2 x(τ − 0) = g .

In order to do this the Green function is also constructed for the linear boundary value
problem with one impulse effect

dx/dt =

(
A1(t)x , t ∈ [a, τ)

A2(t)x , t ∈ (τ, b] ,

B1 x(a) +B2 x(b) = 0 ,

S1 x(τ + 0) + S2 x(τ − 0) = 0 ,

with piecewise continuous coefficients.

1. Introduction

The algebraic and trigonometric collocation methods together with
other numerical methods can effectively be applied for forming approxi-
mate solutions of broad classes of two-point, multipoint, periodic, linear
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and nonlinear boundary value problems of ordinary differential equations
with retarded argument (see [1], [2]).

The study of the extension of the collocation method in case of impulse
effect problems is of theoretical and practical interest. Though the theory
of differential equations with impulse effect developed intensively in the
last decade, most of the papers are devoted to qualitative problems as
existence, asymptotical behaviour and stability, and only a few of them to
the construction of the solutions (see [3], [4], [5], [6]).

In this paper for the sake of simplicity the T -periodic boundary value
problem with one impulse effect is studied. We shall show the application
of the trigonometric collocation method to T -periodic systems with im-
pulse effect. Assuming the existence of a periodic solution the solvability
of the equations determining the coefficients of the approximate solution is
established.We shall also give the speed of convergence of the approximate
solution.

We note that in case of a finite number of impulse effects similar
results are valid.

We are going to solve the system

(1)
dx

dt
= f(t, x) =

{
f1(t, x) , t ∈ [0, τ),
f2(t, x) , t ∈ (τ, T ],

with piecewise continuous right-hand side under the conditions

S1x(τ + 0) + S2x(τ − 0) = g, det S1,S2 6= 0(2)

x(0) = x(T ) .(3)

This boundary value problem is a reduction of the problem of T -periodic
solutions of (1)–(2) in t ∈ R with impulse effect acting at each t = τ+kT
(k = 0± 1,±2, . . . ).

Let the vector functions fi(t,x) = (fi1(t,x), . . . , fin(t,x)) and the

Jacobian-matrices Ai(t,x) =
(

∂fi(t, x)
∂x

)
, (i = 1, 2 ) be defined and con-

tinuous in the domains

(4)
f1 : [0, τ ]×D → Rn ,

f2 : [τ, T ]×D → Rn ,

where D is a bounded and closed set in the n–dimensional Euclidean space
Rn and the right-hand side of (1) is a periodic function in t of period T

f1(0, x) = f2(T, x) .

We denote by Cτ [0, T ] = Cτ the space of piecewise continuous vector-
functions

(5) x(t) =

{
x1(t) , t ∈ [0, τ) ,

x2(t) , t ∈ (τ, T ] ,
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in [0, T ] having a point of discontinuity of the first kind at t = τ

x(τ + 0)− x(τ − 0) = x2(τ)− x1(τ),

where

x1(t) = (x11(t), . . . , x1n(t)) ∈ C[0, τ ] ,

x2(t) = (x21(t), . . . , x2n(t)) ∈ C[τ, T ] .

We define the following uniform norms in C[0, τ ] , C[τ, T ]

|x1|C[0,τ ] = max
i=1,... ,n

max
t∈[0,τ ]

|x1i(t)| ,
|x2|C[τ,T ] = max

i=1,... ,n
max

t∈[τ,T ]
|x2i(t)| ,

|x|Cτ [0,T ] = |x|Cτ = max(|x1|C[0,τ ], |x2|C[τ,T ]) .

Consider the vector functions x(t) in (5) in the space of quadratically
summable vector functions L2

τ [0, T ] = L2
τ in the interval [0, T ] with the

norm
|x|L2

τ [0,T ] = |x|L2
τ

= |x1|L2[0,τ ] + |x2|L2[τ,T ] =

=




τ∫

0

|x1(t)|2dt




1
2

+




T∫

τ

|x2(t)|2dt




1
2

.

The Green functions will be needed, too, to prove the convergence
of the trigonometric collocation method applied to set up the solution of
(1)–(3).

2. The Green function for systems with impulse
effect and piecewise continuous coefficients

Consider a homogeneous two-point boundary value problem with one
impulse effect

dx

dt
= A(t)x, t 6= τ , t ∈ [a, b] , x ∈ Rn ,(6)

S1x (τ + 0) + S2x (τ − 0) = 0, , τ ∈ (a, b) , detS1, S2 6= 0 ,(7)

B1x(a) + B2x(b) = 0 ,(8)

where A(t) is a piecewise continuous n×n matrix in [a, b] the elements of
which may have discontinuity of the first kind at t = τ

A(t) =

{
A1(t) , t ∈ [a, τ) ,

A2(t) , t ∈ (τ, b] .
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B1,B2 are n× n constant matrices.
Let Φ1 be the fundamental matrix of the following system of homo-

geneous differential equations without impulse effect, normalized at t = a

(9)
dx

dt
= A1(t)x , t ∈ [a, τ) , Φ1(a) = E ,

and Φ2(t) the fundamental matrix of the system

(10)
dx

dt
= A2(t)x , t ∈ (τ, b] .

Lemma 1. Let the homogeneous boundary value problem (6)–(8)
have only trivial solution in the space Cτ [a, b]

(11) x(t) =

{
x1(t) ≡ 0 , t ∈ [a, τ) ,

x2(t) ≡ 0 , t ∈ (τ, b]

(especially the continuous solution x(t) ≡ 0). Then the matrices S1,S2,
B1,B2 and the fundamental matrices Φ1(t),Φ2(t) of the homogeneous
system (9),(10) fulfill the inequality

(12) det D 6= 0 , D = B1 −B2Φ2(b)Φ−1
2 (τ)S2Φ1(τ) .

Proof. It is known that the solution x(t) of the system (9) passing
through the point x = x(a) in case t = a can be written in the form

(13) x(t) = Φ1(t)Φ1(a)x(a) = Φ1(t)x(a) , t ∈ [a, τ) .

From (7) with (13) we obtain that

(14) x(τ + 0) = −S−1
1 S2x(τ − 0) = −S−1

1 S2Φ1(τ)x(a) .

Hence, the solution of (10) under the initial condition (14) is

x(t) = Φ2(t)Φ−1
2 (τ)x(τ) = −Φ2(t)Φ−1

2 (τ)S−1
1 S2Φ1(τ)x(a) , t ∈ (τ, b] .

On the ground of this relation and the boundary condition (8) we obtain

[B1 −B2Φ2(b)Φ−1
2 (τ)S2Φ1(τ)]x(a) = 0 .

Since the boundary value problem (6)–(8) has only trivial solution (11),
hence x(a) ≡ 0 and relation (12) is valid. This completes the proof.

Corollary. If (12) holds for the linear boundary value problem with
one impulse effect described in (6)–(8) then this problem possesses only
trivial solution (11).
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Definition. Let a matrix function G(t, s) of two variables t, s be de-
fined for all t, s ∈ [a, b] , t, s 6= τ , t 6= s as

(15) G(t, s) =

{
G1(t, s) , t ∈ [a, s) ,

G2(t, s) , t ∈ (s, b] ,

where

(16) G1(t, s) =





G
(1)
1 (t, s) , t ∈ [a, τ) , s ∈ (t, τ) ,

G
(2)
1 (t, s) , t ∈ [a, τ) , s ∈ (τ, t) ,

G
(3)
1 (t, s) , t ∈ (τ, b] , s ∈ (t, b] ,

(17) G2(t, s) =





G
(1)
2 (t, s) , t ∈ [a, τ) , s ∈ [a, t) ,

G
(2)
2 (t, s) , t ∈ (τ, b] , s ∈ [a, τ) ,

G
(3)
2 (t, s) , t ∈ (τ, b] , s ∈ (τ, b] .

G(t, s) is the Green function of the homogeneous boundary value
problem (6)–(8) if it satisfies the following conditions:
1. for all fixed s ∈ [a, b] , s 6= τ G(t, s) as a function of the variable t

satisfies the homogeneous differential equation (6) for all t ∈ [a, b],
t 6= s 6= τ

dG(t, s)
dt

= A(t)G(t, s) , s ∈ [a, b] , t 6= s 6= τ ,(18)

i.e.

dG(t, s)
dt

= A1(t)G(t, s) , s ∈ [a, b] ,

s 6= τ ; t ∈ [a, τ) , t 6= s ,(19)

dG(t, s)
dt

= A2(t)G(t, s) , s ∈ [a, b] ,

s 6= τ ; t ∈ (τ, b] , t 6= s ;

2. for t = a , t = b and for all fixed s ∈ [a, b] , s 6= τ G(t, s) satisfies the
boundary condition (8)

(20) B1G(a, s) + B2G(b, s) = 0 , s ∈ [a, b] , s 6= τ ;

3. for t = s 6= τ G(t, s) has discontinuity of the first kind
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(21) G(s + 0, s)−G(s− 0, s) = E , s ∈ (a, b) , s 6= τ ;

4. for t = τ and for all fixed s ∈ [a, b] , s 6= τ G(t, s) satisfies the impulse
effect condition (7)

(22) S1G(τ + 0, s) + S2G(τ − 0, s) = 0 , s ∈ [a, b] , s 6= τ .

It comes from (16) and (17) that the Green function in (15) con-
structed to (6)–(8) is a piecewise continuous function represented by six
functions, as it is shown in the Figure below.

Lemma 2. Let the homogeneous two-point boundary value problem
with impulse effect (6)–(8) have only zero solution (11). Then the Green
function G(t, s) to (6)–(8), given by (15)–(17) and fulfilling the conditions
(18)–(22), is uniquely defined.
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Proof. The function having the form (15)–(17) and satisfying the
conditions (18)–(22) can be directly constructed. Since G(t, s) in t satisfies
(18) , (19) for all fixed s ∈ [a, b] , t 6= s 6= τ in each subdomain of [a, b]×[a, b],
the functions in (16) , (17) necessarily have the following representation

(23)

G
(1)
1 (t, s) = Φ1(t)C

(1)
1 (s) , t ∈ [a, τ) , s ∈ (t, τ) ,

G
(2)
1 (t, s) = Φ1(t)C

(2)
1 (s) , t ∈ [a, τ) , s ∈ (τ, b] ,

G
(3)
1 (t, s) = Φ2(t)C

(3)
1 (s) , t ∈ (τ, b] , s ∈ (t, b] ,

G
(1)
2 (t, s) = Φ1(t)C

(1)
2 (s) , t ∈ [a, τ) , s ∈ [a, t) ,

G
(2)
2 (t, s) = Φ2(t)C

(2)
2 (s) , t ∈ (τ, b] , s ∈ [a, τ) ,

G
(3)
2 (t, s) = Φ2(t)C

(3)
2 (s) , t ∈ (τ, b] , s ∈ (τ, b] ,

where C
(j)
i (s) ( i = 1, 2 , j = 1, 2, 3 ) are still unknown matrices depending

on s. To find the matrices C
(j)
i substitute (23) into (20)–(22)

(24)

B1Φ1(a)C(1)
1 (s) + B2Φ2(b)C

(2)
2 (s) = 0 ,

B1Φ1(a)C(2)
1 (s) + B2Φ2(b)C

(3)
2 (s) = 0 ,

Φ1(s)C
(1)
2 (s)−Φ1(s)C

(1)
1 (s) = E ,

Φ2(s)C
(3)
2 (s)−Φ2(s)C

(3)
1 (s) = E ,

S1Φ2(τ)C(2)
2 (s) + S2Φ1(τ)C(1)

2 (s) = 0 ,

S1Φ2(τ)C(3)
1 (s) + S2Φ1(τ)C(2)

1 (s) = 0 .

From (24) and the condition (12) of Lemma 1 one obtains

(25)

C
(1)
1 (s) = (D−1B1 −E)Φ−1

1 (s) ,

C
(2)
1 (s) = −D−1B2Φ2(b)Φ−1

2 (s) ,

C
(3)
1 (s) = Φ−1

2 (τ)S−1
1 S2Φ1(τ)D−1B2Φ2(b)Φ−1

2 (s) ,

C
(1)
2 (s) = D−1B1Φ−1

1 (s) ,

C
(2)
2 (s) = −Φ−1

2 (τ)S−1
1 S2Φ1(τ)D−1B1Φ−1

1 (s) ,

C
(3)
2 (s) = [E + Φ−1

2 (τ)S−1
1 S2Φ1(τ)D−1B2Φ2(b)]Φ−1

2 (s) .

Substituting (25) into (23), the Green function of the boundary value
problem with impulse effect, described in (6)–(8), is expressed in terms of
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the fundamental matrices of the system (9), (10) without impulse effect.
This completes the proof.

Now, instead of (6), consider an inhomogeneous system of differential
equations with impulse effect and piecewise continuous coefficients

(26)
dx

dt
= A(t)x + g(t) , t 6= τ ,

where g(t) ∈ Cτ [a, b] , i.e.

(27)
dx

dt
= A1(t)x + g1(t) , t ∈ [a, τ) ,

(28)
dx

dt
= A2(t)x + g2(t) , t ∈ (τ, b] .

We shall study the above equations completed with either homoge-
neous conditions (7), (8) or the following inhomogeneous impulse effect
and two-point boundary condition

S1x(τ + 0) + S2x(τ − 0) = q , q ∈ Rn(29)

B1x(a) + B2x(b) = d , d ∈ Rn .(30)

Lemma 3. Let the boundary value problem with impulse effect (6)–
(8) have only the (11) zero solution. Then for any piecewise continuous
g(t) ∈ Cτ [a, b]
1. There exists a unique solution x(t) of the semi-homogeneous boundary

value problem with one impulse effect (26), (7), (8) in Cτ [a, b], that
can be given as

(31) x(t) =

b∫

a

G(t, s)g(s)ds ,

in detail

(32) x1(t) = Φ1(t)
[ t∫

a

C
(1)
2 (s)g1(s)ds +

τ∫

t

C
(1)
1 (s)g1(s)ds+

+

b∫

τ

C
(2)
1 (s)g2(s)ds

]
, t ∈ [a, τ) ,
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(33) x2(t) = Φ2(t)
[ τ∫

a

C
(2)
2 (s)g1(s)ds +

t∫

τ

C
(3)
2 (s)g2(s)ds+

+

b∫

t

C
(3)
1 (s)g2(s)ds

]
, t ∈ (τ, b] ,

where G(t, s) is the Green function given in (15)–(17), (23), (25) and
satisfying the (6)–(8) homogeneous boundary value problem.

2. There exists a unique solution x(t) of the (26), (29), (30) inhomoge-
neous boundary value problem with one impulse effect in Cτ [a, b]

(34) x(t) = H(t) +

b∫

a

G(t, s)g(s)ds ,

where H(t) ∈ Cτ [a, b] and

(35) H(t) =





H1(t) =Φ1(t)D−1[d−B2Φ2(b)Φ−1
2 (τ)S−1

1 g] ,

t ∈ [a, τ ] ,

H2(t) =Φ2(t)Φ−1
2 (τ)S−1

1 [(E+

+ S2Φ1(τ)D−1B2Φ2(b)Φ−1
2 (τ)S−1

1 )g−
− S2Φ1(τ)D−1d] , t ∈ (τ, b] .

Proof. The functions (32), (33) satisfy the equations (27), (28), re-
spectively, and conditions (7), (8). Since the integrand in (31) is continu-
ously differentiable in the intervals [a, t] , [t, τ ] , [τ, b], we get

dx1(t)
dt

=

t∫

a

∂G(t, s)
∂t

g1(s) ds + G(t, s)|
s=t−0

g1(t)+

+

τ∫

t

∂G(t, s)
∂t

g1(s) ds−G(t, s)|
s=t+0

g1(t) +

b∫

τ

∂G(t, s)
∂t

g1(s) ds =

=

b∫

a

∂G(t, s)
∂t

g(s) ds + g1(t) .
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Thus for each t ∈ [a, τ)

dx1(t)
dt

−A1(t)x1 =

=

b∫

a

∂G(t, s)
∂t

g(s) ds−A1(t)

b∫

a

G(t, s)g(s) ds + g1(t) =

=

b∫

a

[
∂G(t, s)

∂t
−A1(t)G(t, s)

]
g(s) ds + g1(t) = g1(t) .

In a similar way one can show that the function in (33) satisfies equation
(28) for all t ∈ (τ, b]. The homogeneous conditions (7), (8) are also fulfilled
by the function (31)

S1

b∫

a

G(τ + 0, s)g(s) ds + S2

b∫

a

G(τ − 0, s)g(s)ds =

=

b∫

a

[S1G(τ + 0, s) + S2G(τ − 0, s)]g(s) ds = 0 ,

B1

b∫

a

G(a, s)g(s) ds + B2

b∫

a

G(b, s)g(s) ds =

=

b∫

a

[B1G(a, s) + B2G(b, s)]g(s) ds = 0 .

Since the second term on the right hand side of (34) satisfies the inho-
mogeneous equation (26) and the homogeneous conditions (7), (8): the
functions H1(t) , H2(t) in (34), as solutions of the homogeneous equa-
tions of (9), (10), have to satisfy the inhomogeneous conditions (29), (30).
Choosing H1(t) ,H2(t) in the form

H1(t) = Φ1(t)p1 , H2(t) = Φ2(t)p2 ,

the above requirements can be fulfilled by suitably chosen constant vectors
p1 , p2. Thus

S1Φ2(τ)p2 + S2Φ1(τ)p1 = q ,

B1Φ1(a)p1 + B2Φ2(b)p2 = d ,
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and we obtain

p1 =D−1(d−B2Φ2(b)Φ−1
2 (τ)S−1

1 q) ,

p2 =Φ−1
2 (τ)S−1

1 [(E + S2Φ1(τ)D−1B2Φ2(b)Φ−1
2 (τ)S−1

1 )q−
− S2Φ1(τ)D−1d] .

Consequently, H1(t) , H2(t) have the form given in (35).

The uniqueness of the solutions (31) and (34) follows from the fact
that the homogeneous problem (6)–(8) possesses only the trivial solution
(see [7]). This completes the proof.

3. Convergence of the trigonometric collocation
method applied to systems with impulse effect

In accordance with the trigonometric collocation method (see [1]) the
approximate solution of the periodic boundary value problem with an im-
pulse effect (1)–(3) in Cτ [0, T ] is sought in the form of trigonometric poly-
nomials of order m. Thus

(36) xm(t) =





x1m(t) = a
(1)
0 +

m∑

k=1

(a(1)
k cos kωt + b

(1)
k sin kωt) ,

t ∈ [0, τ) ,

x2m(t) = a
(2)
0 +

m∑

k=1

(a(2)
k cos kωt + b

(2)
k sin kωt) ,

t ∈ (τ, T ] ,

where ω =
2π

T
and a

(i)
k = (a(i)

1k , . . . , a
(i)
nk) (i = 1, 2 , k = 0, 1, . . . ,m ),

b
(i)
k = (b(i)

1k , . . . , b
(i)
nk) (i = 1, 2 , k = 1, . . . , m ) are the unknown (4m + 2)

vector coefficients.

It is possible to reduce the number of unknown coefficients by substi-
tuting (36) into the conditions (3) and (2). Consequently, a

(1)
1 , a

(1)
0 can
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be expressed as:

(36’)

a
(1)
1 = ã

(1)
1 = (1− cosωτ)−1[(E + S−1

2 S1)a
(2)
0 +

+
m∑

k=1

(E + S−1
2 S1 cos kωτ)a(2)

k − S−1
2 q+

+
m∑

k=2

(−1 + cos kωτ)a(1)
k +

m∑

k=1

[S−1
2 S1b

(2)
k + b

(1)
k ] sin kωτ ] ,

a
(1)
0 = ã

(1)
0 = [E − (1− cosωτ)−1(E + S−1

2 S1)]a
(2)
0 +

+
m∑

k=1

[E − (1− cos ωτ)−1(E + S−1
2 S1 cos kωτ)]a(2)

k −

−
m∑

k=2

[1 + (1− cos ωτ)−1(−1 + cos kωτ)]a(1)
k +

+ (1− cosωτ)−1S−1
2 q − (1− cos ωτ)−1

m∑

k=1

[S−1
2 S1b

(2)
k +

+ Eb
(1)
k ] sin kωτ .

Then the approximate solution

(37) xm(t) =





x1m(t) = ã
(1)
0 + ã

(1)
1 cos ωt +

m∑

k=2

a
(1)
k cos kωt+

+
m∑

k=1

b
(1)
k sin kωt , t ∈ [0, τ) ,

x2m(t) = a
(2)
0 +

m∑

k=1

(a(2)
k cos kωt + b

(2)
k sin kωt) ,

t ∈ (τ, T ] ,

satisfies (3) and (2) and there remain 4m unknown vector coefficients (m
is a finite number)

(38)
a

(1)
2 , . . . , a(1)

m ; b
(1)
1 , . . . , b(1)

m ;

a
(2)
0 , a

(2)
1 , . . . , a(2)

m ; b
(2)
1 , . . . , b(2)

m .

The unknown coefficients in (38) can be defined by the trigonometric col-
location method if one requires the approximate solution (37) to fulfill (1)
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in 4m equidistant points in the intervals [0, τ) , (τ, T ] . Thus

(39)





dx1m(ti)
dt

= f1(ti, x1m(ti)) ,

dx2m(t̃j)
dt

= f2(t̃j , x2m(t̃j)) ,

where

(40)
ti =(2i− 1)

τ

4m
, i = 1, 2, . . . , 2m,

t̃j =τ + (2j − 1)
T − τ

4m
, j = 1, 2, . . . , 2m.

Let us consider a homogeneous periodic boundary value problem with
one impulse effect

(41)

dx

dt
+ Qx = 0 , t 6= τ , t ∈ [0, T ] ,

S1x(τ + 0) + S2x(τ − 0) = 0 ,

x(0)− x(T ) = 0 ,

where x(t) is a function of the form (5) in Cτ [0, T ] and Q is a certain
constant n × n matrix chosen in such a manner that (41) has only the
trivial solution (11). In this case the matrix D in (12) takes the form

(42) D = E − e(τ−T )QS−1
1 S2e−τQ ,

and, because of the choice of Q , detD 6= 0 is fulfilled, too. Thus there
exists a uniquely determined Green function G(t, s) to the problem (41).
Putting into use (15)–(17), (23), (25), (42) we obtain Φ1(t) = Φ2(t) =
e−tQ , B1 = E , B2 = −E and

G1(t, s) =





e−tQ(D−1 −E)esQ , t ∈ [0, τ) , s ∈ (t, τ) ,

e−tQD−1e(s−T )Q , t ∈ [0, τ) , s ∈ (τ, T ] ,

−e−tQeτQS−1
1 S2e−τQD−1e(s−T )Q , t ∈ (τ, T ] , s ∈ (t, T ] ,

(43)

G2(t, s) =





e−tQD−1esQ , t ∈ [0, τ) , s ∈ [0, t) ,

− e(τ−t)QS−1
1 S2e−τQD−1esQ ,

t ∈ (τ, T ] , s ∈ [0, τ) ,

e−tQ[E − eτQS−1
1 S2e−τQD−1e−TQ]esQ ,

t ∈ (τ, T ] , s ∈ (τ, T ] .
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It follows from (32), (34) that for any piecewise continuous function
v(t) ∈ Cτ [0, T ]

(44) v(t) =

{
v1(t) , t ∈ [0, τ) ,

v2(t) , t ∈ (τ, T ] ,

the solution of the inhomogeneous boundary value problem with one im-
pulse effect

dx

dt
+ Qx = v(t) , t 6= τ ,

S1x(τ + 0) + S2x(τ − 0) = q ,(45)

x(0)− x(T ) = 0 ,

in the intervals t ∈ [0, τ) , t ∈ (τ, T ] takes the form

(46)

x1(t) =

b∫

a

G̃1(t, s)v(s) ds + H1(t) , t ∈ [0, τ) ,

H1(t) = e−tQD−1e(τ−T )QS−1
1 q ,

x2(t) =

b∫

a

G̃2(t, s)v(s) ds + H2(t) , t ∈ (τ, T ] ,

H2(t) = e(τ−t)QS−1
1 (E − S2e−τQD−1e(τ−T )QS−1

1 )q .

Here G̃1(t, s) , G̃2(t, s) mean the following rearranged form of G1(t, s),
G2(t, s):

(47)

G̃1(t, s) =





e−tQD−1esQ , t ∈ [0, τ) , s ∈ [0, t) ,

e−tQ(D−1 −E)esQ , t ∈ [0, τ) , s ∈ (t, τ) ,

e−tQD−1e(s−T )Q , t ∈ [0, τ) , s ∈ (τ, T ] ,

G̃2(t, s) =





− e(τ−t)QS−1
1 S2e−τQD−1esQ ,

t ∈ (τ, T ] , s ∈ [0, τ) ,

e−tQ[E − eτQS−1
1 S2e−τQD−1e−TQ]esQ ,

t ∈ (τ, T ] , s ∈ (τ, t) ,

− e−tQeτQS−1
1 S2e−τQD−1e(s−T )Q ,

t ∈ (τ, T ] , s ∈ (t, T ] .
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Theorem. Suppose that

(48) x = x0(t) =

{
x0

1(t) , t ∈ [0, τ) ,

x0
2(t) , t ∈ (τ, T ]

is a piecewise continuously differentiable solution of the T–periodic bound-
ary value problem with one impulse effect, described in (1)–(3). The func-
tions fi(t, x) in (4) and the Jacobian matrices Ai(t,x) are defined and
continuous in

(49) t ∈ [0, τ ] , t ∈ [τ, T ] , |x− x0(t)|Cτ
≤ δ , δ > |H|Cτ

.

Let the following impulsive variational system of the equation (1) with
respect to x0(t)

(50)
dx

dt
= F (t,x0(t))x , t 6= τ ,

where

F (t, x0(t)) =

{
A1(t,x0(t)) , t ∈ [0, τ) ,

A2(t,x0(t)) , t ∈ (τ, T ] ,

possess only the trivial T−periodic solution (11) under condition (7).
Then:

1. There exists α > 0 such that in the ball

(51) |ẋ + Qx− (ẋ0 + Qx0)|L2
τ
≤ α ,

the solution x0(t) of the periodic boundary value problem with one
impulse effect is unique;

2. With sufficiently large m (m ≥ m0) the system of equations (39), de-
rived from the trigonometric collocation method, has a solution. This
solution gives the coefficients (38) determining the unique approxi-
mate T–periodic solution xm(t) in (37) valid in the domain (51).

3. The sequence of approximations xm(t) for all t 6= τ converges uni-

formly and
dxm(t)

dt
also converges in the metric of L2

τ [0, T ] as m →∞

to x0(t) and
dx0(t)

dt
, respectively, with

|xm(t)− x0(t)|Cτ ≤ c1Em(v0) ,(52)

∣∣∣∣
dxm(t)

dt
− dx0(t)

dt

∣∣∣∣
L2

τ

≤ c2Em(v0) ,(53)
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where c1, c2 are m–independent constants; Em(v0) = max(Em(v0
1),

Em(v0
2)) , and Em(v0

i ) (i = 1, 2) are the best uniform approximations

of the periodic continuation of v0
i =

dx0
i (t)
dt

+ Qx0
i (t), (i = 1, 2),

among trigonometric polynomials of order not higher than m.

Proof. On the basis of the matrices in (47) we introduce the oper-
ators G̃1 , G̃2 acting on the function v(t) of the form (44)

(54)

G̃1 : G̃1v(t) =

T∫

0

G̃1(t, s)v(s) ds , t ∈ [0, τ) ,

G̃2 : G̃2v(t) =

T∫

0

G̃2(t, s)v(s) ds , t ∈ (τ, T ] .

It follows easily from the properties of the matrices G̃1(t, s) , G̃2(t, s) that
G̃1 , G̃2 are completely continuous as operators from L2

τ [0, T ] into Cτ [0, T ] .
Since G̃1 and G̃2 are bounded operators we can choose in the space L2

τ [0, T ]
a ball with centre at

v0(t) =
dx0

dt
+ Qx0(t)

with radius

(55) ‖ v − v0 ‖L2
τ
≤ δ1 ,

such that the functions x1(t) , x2(t) in (46) satisfy (49). Now define an
operator K on the ball (55) as

(56) Kv(t) =





K1v(t) = f1(t,H1(t) + G̃1v(t)) + Q[G̃1v(t) + H1(t)] ,

t ∈ [0, τ) ,

K2v(t) = f2(t,H2(t) + G̃2v(t)) + Q[G̃2v(t) + H2(t)] ,

t ∈ (τ, T ] ,

where H1(t) , H2(t) are the functions defined in (46). Since f1(t,x),
f2(t,x) are continuous and G̃1 , G̃2 completely continuous, the operators
K1 , K2 are completely continuous in the ball (55).

Denote by P1 , P2 the linear continuous operators embedding the
spaces C[0, τ ] , C[τ, T ] into the spaces L2[0, τ ], L2[τ, T ], respectively, and
by P1m , P2m the linear operators juxtaposing each continuous, periodic
continued function with its trigonometric interpolation polynomial of or-
der m.
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Make the exchange of variables in (1)–(3) and in (39) as follows

dx

dt
+ Qx = v(t) , t 6= τ ,

dxm

dt
+ Qxm = vm , t 6= τ ,

where

vm(t) =

{
v1m(t) , t ∈ [0, τ) ,

v2m(t) , t ∈ (τ, T ] .

Then, on the base of (45), (46), (54), (56), in L2
τ [0, T ] (1)–(3) is equivalent

to the operator equation

(57) v = PKv ,

and the system of determining equations (39) is reduced to

(58) Pmvm = PmKvm ,

where

PKv =

{
P1K1v , t ∈ [0, τ) ,

P2K2v , t ∈ (τ, T ] ,

PmKvm =

{
P1mK1vm , t ∈ [0, τ) ,

P2mK2vm , t ∈ (τ, T ] .

Here the solution (48) of the boundary value problem (1)–(3) and the
solution v0(t) of the operator equation (57) are connected as follows:

(59)

v0
1(t) =

dx0
1(t)
dt

+ Qx0
1(t) , t ∈ [0, τ) ,

v0
2(t) =

dx0
2(t)
dt

+ Qx0
2(t) , t ∈ (τ, T ] ,

x0
1(t) = G̃1v

0(t) + H1(t) , t ∈ [0, τ) ,

x0
2(t) = G̃2v

0(t) + H2(t) , t ∈ (τ, T ] .

There exists an analogous connection between the solutions of the
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operator equation (58) and the approximate solution (37), (39):

(60)

v1m(t) =
dx1m(t)

dt
+ Qx1m(t) , t ∈ [0, τ) ,

v2m(t) =
dx2m(t)

dt
+ Qx2m(t) , t ∈ (τ, T ] ,

x1m(t) = G̃1vm(t) + H1(t) , t ∈ [0, τ) ,

x2m(t) = G̃2vm(t) + H2(t) , t ∈ (τ, T ] .

Since v1m(t),v2m(t) are trigonometric polynomials of order m, the opera-
tor equation in (58) can be rewritten as

(61) vm = PmKvm =

{
P1mK1vm , t ∈ [0, τ) ,

P2mK2vm , t ∈ (τ, T ] .

Thus the operator equations (57), (61), that are equivalent to the
initial problem (1)–(3) and to the system of determining equations (39),
respectively, have been constructed. To complete the proof of our Theo-
rem, i.e. to establish the solvability of (39) and the validity of (52), (53),
as the equation (50) fulfills the required conditions, we can use the anal-
ogy with the method suggested in [8] and elaborated in [9], where the
author obtained the same results in case of periodic systems of ordinary
differential equations without impulse effect.

4. Examples

At first let us consider a very simple scalar differential equation

dx

dt
=

{
f1(t, x) = x2 − 2 cos t · x− 2 sin t , t ∈ [0, π) ,

f2(t, x) = x2 − (2 + sin t) · x + cos t , t ∈ (π, 2π] ,
(62)

x(0) = x(2π) ,(63)

x(π + 0)− x(π − 0) = 4 .(64)

The approximate solution of the above problem is sought in the form of
a trigonometric polynomial as described in (37), with m = 2 and ω = 1.
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Then from (36’) and (37)

ã
(1)
0 = a

(2)
0 + a

(2)
2 − a

(1)
2 − 1

2
q ,

ã
(1)
1 = a

(2)
1 +

1
2
q ,

(65)





x12(t) = (a(2)
0 + a

(2)
2 − a

(1)
2 − 2) + (a(2)

1 + 2) cos t+

+ a
(1)
2 cos 2t + b

(1)
1 sin t + b

(1)
2 sin 2t , t ∈ [0, π) ,

x22(t) = a
(2)
0 + a

(2)
1 cos t + b

(2)
1 sin t + a

(2)
2 cos 2t+

+ b
(2)
2 sin 2t , t ∈ (π, 2π] .

The points (40) are

(66)
t1 =

π

8
, t2 =

3π

8
, t3 =

5π

8
, t4 =

7π

8
,

t̃1 =
9π

8
, t̃2 =

11π

8
, t̃3 =

13π

8
, t̃4 =

15π

8
.

Thus the determining equations from (39):

(67)





−(a(2)
1 + 2) sin ti − 2a

(1)
2 sin 2ti + b

(1)
1 cos ti + 2b

(1)
2 cos 2ti =

= [(a(2)
0 + a

(2)
2 − a

(1)
2 − 2) + (a(2)

1 + 2) cos ti+

+ a
(1)
2 cos 2ti + b

(1)
1 sin ti + b

(1)
2 sin 2ti]2−

− 2 cos ti[(a
(2)
0 + a

(2)
2 − a

(1)
2 − 2)+

+ (a(2)
1 + 2) cos ti + a

(1)
2 cos 2ti + b

(1)
1 sin ti + b

(1)
2 sin 2ti]−

− 2 sin ti , i = 1, 2, 3, 4 ,

−a
(2)
1 sin t̃j + b

(2)
1 cos t̃j − 2a

(2)
2 sin 2t̃j + 2b

(2)
2 sin 2t̃j =

=(a(2)
0 + a

(2)
1 cos t̃j + b

(2)
1 sin t̃j + a

(2)
2 cos 2t̃j + b

(2)
2 sin 2t̃j)2−

− (2 + sin t̃j)(a
(2)
0 + a

(2)
1 cos t̃j + b

(2)
1 sin t̃j + a

(2)
2 cos 2t̃j+

+ b
(2)
2 sin 2t̃j) + cos t̃j , j = 1, 2, 3, 4 .

An exact solution of (62)–(64) is the following

x =

{
x1(t) = 2 cos t , t ∈ [0, π) ,

x2(t) = 2 + sin t , t ∈ (π, 2π] .
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initial
value

approximate
value

initial
value

approximate
value

a
(1)
0 − −1.5 · 10−11 a

(2)
0 1.9 2.0

a
(1)
1 − 2.0 a

(2)
1 0.0 1.2 · 10−12

a
(1)
2 −0.1 8.7 · 10−12 a

(2)
2 0.1 −6.8 · 10−12

b
(1)
1 −0.1 3.0 · 10−12 b

(2)
1 1.1 1.0

b
(1)
2 0.1 1.0 · 10−12 b

(2)
2 0.1 −7.5 · 10−12

The unknown coefficients (65), satisfying (67), are in the following
table.

Remark 1. The solution of (67) is based upon an ABS-method (see
[10], [11]).

Remark 2. Starting the ABS-method with other initial values, we got
another solution of (67), that is

a
(1)
0 = −0.24670 , a

(1)
1 = 1.85868 , a

(1)
2 = 0.03222 ,

b
(1)
1 = −0.05326 , b

(1)
2 = −0.23316 ,

a
(2)
0 = 1.50395 , a

(2)
1 = −0.14132 , a

(2)
2 = 0.28156 ,

b
(2)
1 = 0.47541 , b

(2)
2 = 0.24488 .

As a second example consider a second order differential equation

(68)
d2x

dt
=

{
x2 − ẋ2 − x− 2 sin 2t , t ∈ [0, π) ,

−x sin t + x2 − 1− 2 sin t , t ∈ (π, 2π] ,

under conditions

(69)
x(0) = x(2π) ,

ẋ(0) = ẋ(2π) ,

and for τ = π

(70) E

[
x(τ + 0)
ẋ(τ + 0)

]
−E

[
x(τ − 0)
ẋ(τ − 0)

]
=

[
2
0

]
.
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Rewriting (68) into a system of first order differential equations, we get

x(t) =





x1(t) =

[
x1,1(t)
x1,2(t)

]
, t ∈ [0, π) ,

x2(t) =

[
x2,1(t)
x2,2(t)

]
, t ∈ (π, 2π] ,

ẋ(t) =





ẋ1(t) =

[
x1,2

x2
1,1 − x2

1,2 − x1,1 − 2 sin 2t

]
, t ∈ [0, π) ,

ẋ2(t) =

[
x2,2

−x2,1 sin t + x2
2,1 − 1− 2 sin t

]
, t ∈ (π, 2π] .

The new form of (69), (70) is
[

x1,1(0)
x1,2(0)

]
=

[
x2,1(2π)
x2,2(2π)

]
,

[
x2,2(π + 0)− x1,1(π − 0)
x2,2(π + 0)− x1,2(π − 0)

]
=

[
2
0

]
.

The approximate trigonometric polynomials are

x1m(t) = a
(1)
0 +

m∑

k=1

(a(1)
k cos kt + b

(1)
k sin kt) , t ∈ [0, π) ,

x2m(t) = a
(2)
0 +

m∑

k=1

(a(2)
k cos kt + b

(2)
k sin kt) , t ∈ (π, 2π] .

The unknown coefficients are evaluated in the cases m = 2 and m = 3.
The results are shown in the following two tables.

For comparison, an exact solution of the problem is

x(t) =





x1(t) =
[

sin t + cos t
cos t− sin t

]
, t ∈ [0, π) ,

x2(t) =
[

1 + sin t
cos t

]
, t ∈ (π, 2π] .
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m = 2
initial
value

approximate
value

initial
value

approximate
value

a
(1)
0

[
1
1

] [
1.8 · 10−12

−2.5 · 10−12

]
a

(2)
0

[
1
1

] [
1.0

−1.5 · 10−12

]

a
(1)
1

[
1
1

] [
1.0
1.0

]
a

(2)
1

[
1
1

] [
−1.4 · 10−13

1.0

]

a
(1)
2

[
1
1

] [
−4.2 · 10−13

−3.0 · 10−12

]
a

(2)
2

[
1
1

] [
−2.1 · 10−13

−1.5 · 10−12

]

b
(1)
1

[
1
1

] [
1.0
−1.0

]
b
(2)
1

[
1
1

] [
1.0

−3. · 10−12

]

b
(1)
2

[
1
1

] [
−5. · 10−13

−7.9 · 10−14

]
b
(2)
2

[
1
1

] [
−2.4 · 10−13

1.4 · 10−12

]

m = 3
initial
value

approximate
value

initial
value

approximate
value

a
(1)
0

[
0.01
0.01

] [
−2.1 · 10−12

4.2 · 10−13

]
a

(2)
0

[
0.99
0.01

] [
1.0

−3.1 · 10−12

]

a
(1)
1

[
0.99
1.01

] [
1.0
1.0

]
a

(2)
1

[−0.01
0.98

] [
−3.0 · 10−12

1.0

]

a
(1)
2

[
0.01
0.01

] [
3.7 · 10−12

−3.2 · 10−12

]
a

(2)
2

[
−0.01
−0.01

] [
−1.6 · 10−12

−1.8 · 10−13

]

a
(1)
3

[
−0.01
−0.01

] [
−9.3 · 10−13

−4.8 · 10−12

]
a

(2)
3

[
0.01
0.01

] [
1.5 · 10−13

−4.6 · 10−13

]

b
(1)
1

[
1.01
−1.01

] [
1.0
−1.0

]
b
(2)
1

[−0.01
0.01

] [
1.0

−2.8 · 10−12

]

b
(1)
2

[
0.01
−0.01

] [
−1.6 · 10−12

−1.1 · 10−11

]
b
(2)
2

[
0.0
0.01

] [
−1.6 · 10−12

2.0 · 10−12

]

b
(1)
3

[
0.01
−0.01

] [
−1.2 · 10−12

2.2 · 10−12

]
b
(2)
3

[
−0.01
−0.01

] [
−1.0 · 10−13

−4.1 · 10−13

]
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