Nilpotency class of symmetric units of group algebras

> By ZSOLT BALOGH (Nyíregyháza) and TIBOR JUHÁSZ (Eger)

Dedicated to Professor Adalbert Bovdi on his 75th birthday

Abstract

Let F be a field of odd prime characteristic p, G a group, U the group of units in the group algebra $F G$, and U^{+}the subgroup of U generated by the elements of U fixed by the anti-automorphism of $F G$ which inverts all elements of G. It is known that U is nilpotent if G is nilpotent and the commutator subgroup G^{\prime} has p-power order, and then the nilpotency class of U is at most the order of G^{\prime}; this bound is attained if and only if G^{\prime} is cyclic and not a Sylow subgroup of G. Adalbert Bovdi and János Kurdics proved the 'if' part of this last statement by exhibiting a nontrivial commutator of the relevant weight. For the special case when G is a nonabelian torsion group (so G^{\prime} cannot possibly be a Sylow subgroup), the present paper identifies such a commutator in U^{+}, showing (Theorem 1) that the same bound is attained even by the nilpotency class of this subgroup. We do not know what happens when G^{\prime} is not a Sylow subgroup but G is not torsion.

It can happen that U^{+}is nilpotent even though U is not. The torsion groups G which allow this are known (from the work of Gregory T. Lee) to be precisely the direct products of a finite p-group P, a quaternion group Q of order 8 , and an elementary abelian 2-group. Theorem 2: in this case, the nilpotency class of U^{+}is strictly smaller than the nilpotency index of the augmentation ideal of the group algebra $F P$, and this bound is attained whenever P is a powerful p-group. The nonabelian group P of order 27 and exponent 3 is not powerful, yet the $G=P \times Q$ formed with this P also leads to a U^{+}attaining the general bound, so here a necessary and sufficient condition remains elusive.

[^0]
1. Introduction

Let G be a group and let $g_{1}, \ldots, g_{n} \in G$. By the symbol $\left(g_{1}, \ldots, g_{n}\right)$ we denote the commutator of the elements g_{1}, \ldots, g_{n} which is defined inductively as $\left(g_{1}, \ldots, g_{n}\right)=\left(\left(g_{1}, \ldots, g_{n-1}\right), g_{n}\right)$ with $\left(g_{1}, g_{2}\right)=g_{1}^{-1} g_{2}^{-1} g_{1} g_{2}$. As usual, for the subsets X, Y of G by the commutator (X, Y) we mean the subgroup generated by all commutators (x, y) with $x \in X, y \in Y$. This allows us to define the lower central series of a nonempty subset H of G : let $\gamma_{n+1}(H)=\left(\gamma_{n}(H), H\right)$ with $\gamma_{1}(H)=H$. We say that H is nilpotent if $\gamma_{n}(H)=1$ for some n. It is not so hard to show the equivalence of the following statements: (i) H is a nilpotent subset; (ii) H satisfies the group identity $\left(g_{1}, g_{2}, \ldots, g_{n}\right)=1$ for some $n \geq 2$; (iii) $\langle H\rangle$ is a nilpotent group (see [14]). For a nilpotent subset $H \subseteq G$ the number $\operatorname{cl}(H)=\min \left\{n \in \mathbb{N}_{0}: \gamma_{n+1}(H)=1\right\}$ is called the nilpotency class of H.

Let R be an associative ring with unity. Then R can be considered as a Lie ring with the Lie commutator defined by $[x, y]=x y-y x$ for all $x, y \in R$. For $X, Y \subseteq R$, by $[X, Y]$ we denote the additive subgroup generated by all Lie commutators $[x, y]$ with $x \in X, y \in Y$. The upper Lie powers of a nonempty subset S of R are defined inductively: set $[S]_{1}=S$ and for $n \geq 2$ let $[S]_{n}$ be the associative ideal of R generated by all Lie commutators $[x, y]$ with $x \in[S]_{n-1}$, $y \in S . S$ is said to be upper Lie nilpotent if some upper Lie power of S vanishes; the minimal n for which $[S]_{n}=0$ is called the upper Lie nilpotency index of S (in notation $t^{L}(S)$). Denote by $U(S)$ the set of units in the subset S and suppose that it is nonempty. By the equality $(x, y)=1+x^{-1} y^{-1}[x, y]$, where $x, y \in U(S)$, it is easy to see that $\gamma_{n}(U(S)) \subseteq 1+[S]_{n}$ for all $n \geq 2$, which implies that the set of units of an upper Lie nilpotent subset S is nilpotent, and $\operatorname{cl}(U(S)) \leq t^{L}(S)-1$.

Let F be a field and let G be a group. For the noncommutative group algebra $F G$ the equivalence of the following statements follows from [12], [16]: (i) $F G$ is upper Lie nilpotent; (ii) char $F=p>0, G$ is nilpotent and its commutator subgroup G^{\prime} has p-power order; (iii) $F G$ is modular and $U(F G)$ is nilpotent. As the reader can see in [2], [3], [9], [17], [18], [19], significant developments have been achieved concerning the study of the nilpotency class of $U(F G)$, however a complete description is not yet known.

Let $*$ be the canonical involution on $F G$; that is, the F-linear extension of the anti-automorphism of G sending each element to its inverse. We will denote by S^{+}the set of symmetric elements of $S \subseteq F G$; that is, $S^{+}=\left\{x \in S: x^{*}=x\right\}$. A number of interesting results on the symmetric units of group rings can be found, for example, in the articles [4], [6], [7], [14], [15] and in the book [13]. This paper is devoted to the study of the nilpotency class of $U^{+}(F G)$. Assume first that $F G$ is
a modular group algebra with a nilpotent unit group. Then $U^{+}(F G)$ is nilpotent as well, but we do not know if $\operatorname{cl}\left(U^{+}(F G)\right)$ reaches $\operatorname{cl}(U(F G))$ all the time or not. Furthermore, $F G$ is upper Lie nilpotent, and by $[20], t^{L}(F G) \leq\left|G^{\prime}\right|+1$. This gives that $\left|G^{\prime}\right|$ is an upper bound on $\operatorname{cl}(U(F G))$ and so on $\operatorname{cl}\left(U^{+}(F G)\right)$. We prove the following theorem.

Theorem 1. Let $F G$ be the group algebra of a torsion group G over a field F of characteristic $p>2$ such that $U(F G)$ is nilpotent. Then $\operatorname{cl}\left(U^{+}(F G)\right)=\left|G^{\prime}\right|$ if and only if G^{\prime} is cyclic.

We cannot expect that this theorem remains true for non-torsion groups. Indeed, by Theorem 4.3 of [3], if G^{\prime} is a cyclic group of order $p^{n}>2$ and $\operatorname{Syl}_{p}(G)=$ G^{\prime}, then $\operatorname{cl}\left(U^{+}(F G)\right) \leq \operatorname{cl}(U(F G))=\left|G^{\prime}\right|-1$. It is obvious that G^{\prime} cannot possibly be a Sylow subgroup whenever G is torsion.

Corollary 1. Let $F G$ be the group algebra of a torsion group G over a field F of characteristic $p>2$ such that $U(F G)$ is nilpotent. If G^{\prime} is cyclic, then $\operatorname{cl}\left(U^{+}(F G)\right)=\operatorname{cl}(U(F G))$.

Now assume that $U^{+}(F G)$ is nilpotent, but $U(F G)$ is not. According to [14], if char $F=p \neq 2$ and G is a torsion group, then $G \cong Q_{8} \times E \times P$, where Q_{8} is the quaternion group of order $8, E$ is an elementary abelian 2 -group and P is a finite p-group as long as $p>0$, otherwise $P=1$. For the non-torsion case the characterization is only known when F is infinite by [15]. It is easy to verify that if P is trivial, then the elements of $U^{+}(F G)$ commute for any field F, so $\operatorname{cl}\left(U^{+}(F G)\right)=1$. Our next result is about the case when P is nontrivial. In order to state it, we require a couple of definitions. By the augmentation ideal of a group algebra $F G$ we mean the ideal in $F G$, generated by the set $\{g-1 \mid g \in G\}$, and it will be denoted by $\omega(F G)$. In [10] it was proved that $\omega(F G)$ is nilpotent if and only if G is a finite p-group and char $F=p$. In this case, the nilpotency index of $\omega(F G)$ will be denoted by $t_{N}(G)$. We also recall that a finite p-group G is called powerful if either p is odd and $G^{\prime} \subseteq G^{p}$, or $p=2$ and $G^{\prime} \subseteq G^{4}$.

Theorem 2. Let F be a field of characteristic $p>2$, and let G be a torsion group with a nontrivial Sylow p-subgroup P such that $U^{+}(F G)$ is nilpotent but $U(F G)$ is not. Then $\mathrm{cl}\left(U^{+}(F G)\right) \leq t_{N}(P)-1$. In addition, if P is powerful, then the equality holds.

We should remark that the assumption P to be powerful is not necessary for the equality. Using the LAGUNA [5] software package in the GAP [21] computer algebra system, it is easy to verify that if P is the noncommutative group of
order 27 with exponent 3 and char $F=3$, then the equality holds, although this group is not powerful.

It is well known that if P has order p^{n}, then $1+n(p-1) \leq t_{N}(P) \leq p^{n}$, with equality on the left (right) hand side if and only if P is elementary abelian (resp. cyclic). Furthermore, if P is the direct product of cyclic groups of order $p^{m_{i}}$ $(1 \leq i \leq n)$, then $t_{N}(P)=1+\sum_{i=1}^{n}\left(p^{m_{i}}-1\right)$. In general, there is a formula for $t_{N}(P)$ which gives its exact value in terms of the orders of the so-called dimension subgroups of P. In the case when P is powerful, its dimension subgroups are its powers.

The identities

$$
\begin{gathered}
a b-1=(a-1)(b-1)+(a-1)+(b-1) \\
{[a b, c]=a[b, c]+[a, c] b \quad \text { and } \quad[a, b c]=b[a, c]+[a, b] c}
\end{gathered}
$$

$[a, b]=b a((a, b)-1) \quad$ and $\quad(a, b)=1+a^{-1} b^{-1}[a, b] \quad$ (here a, b are units),
hold for all elements a, b, c of an arbitrary associative ring R, and they will be used freely. We denote by $\zeta(G)$ and $\zeta(F G)$ the centers of the group G and the group algebra $F G$, respectively. Throughout this paper by p we always mean an odd prime and by F a field of characteristic p.

2. Proof of Theorem 1

First of all, we collect and examine those Lie commutators of associative powers of the augmentation ideal that we need in the proof. By definition, $\omega(F G)^{0}=F G$.

Lemma 1. Let G be a finite p-group such that $\gamma_{3}(G) \subseteq\left(G^{\prime}\right)^{p}$. Then for all $k, l, m, n \geq 1$

$$
\begin{aligned}
& {\left[\omega\left(F G^{\prime}\right)^{m}, \omega(F G)^{l}\right] \subseteq \omega(F G)^{l-1} \omega\left(F G^{\prime}\right)^{m+1}} \\
& {\left[\omega(F G)^{k}, \omega(F G)^{l}\right] \subseteq \omega(F G)^{k+l-2} \omega\left(F G^{\prime}\right)} \\
& {\left[\omega(F G)^{k} \omega\left(F G^{\prime}\right)^{m}, \omega(F G)^{l}\right] \subseteq \omega(F G)^{k+l-2} \omega\left(F G^{\prime}\right)^{m+1}} \\
& {\left[F G \omega\left(F G^{\prime}\right)^{m}, \omega(F G)^{l}\right] \subseteq F G \omega\left(F G^{\prime}\right)^{m+1}}
\end{aligned}
$$

Proof. The first two inclusions were proved in [1], and they are followed by the last two, because

$$
\begin{gathered}
{\left[\omega(F G)^{k} \omega\left(F G^{\prime}\right)^{m}, \omega(F G)^{l}\right]} \\
\subseteq \omega(F G)^{k}\left[\omega\left(F G^{\prime}\right)^{m}, \omega(F G)^{l}\right]+\left[\omega(F G)^{k}, \omega(F G)^{l}\right] \omega\left(F G^{\prime}\right)^{m}
\end{gathered}
$$

and

$$
F G \omega\left(F G^{\prime}\right)^{m}=\omega(F G) \omega\left(F G^{\prime}\right)^{m}+\omega\left(F G^{\prime}\right)^{m}
$$

We can also easily observe that

$$
\begin{equation*}
g^{m}-1 \equiv m(g-1) \quad\left(\bmod \omega(F G)^{2}\right) \tag{1}
\end{equation*}
$$

for every $g \in G$ and integer m.
Let now G be a finite p-group with derived subgroup $G^{\prime}=\langle x\rangle$, and let $a, b \in G$ such that $(a, b)=x$. It is easy to check (see e.g. [11] p. 252) that

$$
\begin{equation*}
\left[a^{m}, b^{s}\right] \equiv m s \cdot b^{s} a^{m}(x-1) \quad\left(\bmod F G \omega\left(F G^{\prime}\right)^{2}\right) \tag{2}
\end{equation*}
$$

For $n \geq 2$ denote by I_{n} the ideal $\omega(F G)^{3} \omega\left(F G^{\prime}\right)^{n-1}+F G \omega\left(F G^{\prime}\right)^{n}$ of $F G$. In the next lemma we need the congruences

$$
\begin{align*}
& {\left[(a-1)(b-1),(a-1)\left(a^{-1}-1\right)\right] \equiv 2(a-1)^{2}(x-1) \quad\left(\bmod I_{2}\right)} \\
& {\left[(a-1)\left(a^{-1}-1\right),(b-1)\left(b^{-1}-1\right)\right] \equiv 4(a-1)(b-1)(x-1) \quad\left(\bmod I_{2}\right)} \\
& {\left[(a-1)^{2},(b-1)\left(b^{-1}-1\right)\right] \equiv-4(a-1)(b-1)(x-1) \quad\left(\bmod I_{2}\right)} \tag{3}
\end{align*}
$$

Now we prove the first one, the last two can be obtained analogously. Applying (2) we can calculate that

$$
\begin{aligned}
& {\left[(a-1)(b-1),(a-1)\left(a^{-1}-1\right)\right]} \\
& \quad=(a-1)^{2}\left[b, a^{-1}\right]+(a-1)[b, a]\left(a^{-1}-1\right) \\
& \quad \equiv(a-1)^{2} b a^{-1}(x-1)-(a-1) b a(x-1)\left(a^{-1}-1\right) \quad\left(\bmod I_{2}\right)
\end{aligned}
$$

Furthermore,

$$
\begin{aligned}
& (a-1)^{2} b a^{-1}(x-1)-(a-1) b a(x-1)\left(a^{-1}-1\right) \\
& \quad=(a-1)^{2}\left(b a^{-1}-1\right)(x-1)+(a-1)^{2}(x-1) \\
& \quad-(a-1)(b a-1)(x-1)\left(a^{-1}-1\right)-(a-1)(x-1)\left(a^{-1}-1\right)
\end{aligned}
$$

Clearly, $(a-1)^{2}\left(b a^{-1}-1\right)(x-1) \in \omega(F G)^{3} \omega\left(F G^{\prime}\right) \subseteq I_{2}$, and using the fact that the value of the product $(g-1)(h-1)(x-1)$ is independent of the order of its factors modulo I_{2}, we have that $(a-1)(b a-1)(x-1)\left(a^{-1}-1\right)$ is also belongs to I_{2}. Hence, applying (1) we have

$$
\begin{gathered}
{\left[(a-1)(b-1),(a-1)\left(a^{-1}-1\right)\right] \equiv(a-1)^{2}(x-1)-(a-1)(x-1)\left(a^{-1}-1\right)} \\
\equiv 2(a-1)^{2}(x-1) \quad\left(\bmod I_{2}\right)
\end{gathered}
$$

Lemma 2. Let G be a finite p-group with cyclic derived subgroup. Then

$$
\operatorname{cl}\left(U^{+}(F G)\right) \geq\left|G^{\prime}\right|
$$

Proof. Let us choose the elements x, a and b in G such that $x=(a, b)$ and $\langle x\rangle=G^{\prime}$. We are going to prove that for $n \geq 2$ there exist $z_{n} \in \gamma_{n}\left(U^{+}(F G)\right)$ such that

$$
z_{n} \equiv\left\{\begin{array}{lll}
1+\alpha_{n}(a-1)^{2}(x-1)^{n-1} & \left(\bmod I_{n}\right) & \text { if } n \text { is odd } \tag{4}\\
1+\alpha_{n}(a-1)(b-1)(x-1)^{n-1} & \left(\bmod I_{n}\right) & \text { if } n \text { is even }
\end{array}\right.
$$

where $\alpha_{n} \in F \backslash\{0\}$.
For $n \geq 1$ let

$$
u_{n}= \begin{cases}(a-1)\left(a^{-1}-1\right) & \text { if } n \text { is odd } \\ (b-1)\left(b^{-1}-1\right) & \text { if } n \text { is even }\end{cases}
$$

Evidently, u_{n} is a nilpotent symmetric element and so $1+u_{n}$ is a symmetric unit for all n. Applying (3) we have

$$
\begin{aligned}
\left(1+u_{1}, 1+u_{2}\right) & =1+\left(1+u_{1}\right)^{-1}\left(1+u_{2}\right)^{-1}\left[u_{1}, u_{2}\right] \\
& =1+\left(\left(1+u_{1}\right)^{-1}\left(1+u_{2}\right)^{-1}-1\right)\left[u_{1}, u_{2}\right]+\left[u_{1}, u_{2}\right] \\
& \equiv 1+4(a-1)(b-1)(x-1) \quad\left(\bmod I_{2}\right)
\end{aligned}
$$

which confirms (4) for $n=2$. Assume by induction the truth of (4) for some i $(i \geq 2)$; i.e., there exist $\mu \in I_{i}$ and $\alpha_{i} \in F \backslash\{0\}$ such that

$$
z_{i}=1+\alpha_{i} v_{i}(x-1)^{i-1}+\mu \in \gamma_{i}\left(U^{+}(F G)\right)
$$

where either $v_{i}=(a-1)^{2}$ or $v_{i}=(a-1)(b-1)$ when i is odd or even, respectively. Applying Lemma 1 and (3) we have

$$
\begin{aligned}
\left(z_{i}, 1+u_{i+1}\right)= & 1+z_{i}^{-1}\left(1+u_{i+1}\right)^{-1}\left[z_{i}, u_{i+1}\right] \\
= & 1+\left(z_{i}^{-1}\left(1+u_{i+1}\right)^{-1}-1\right)\left(\left[\alpha_{i} v_{i}(x-1)^{i-1}, u_{i+1}\right]+\left[\mu, u_{i+1}\right]\right) \\
& +\left[\alpha_{i} v_{i}(x-1)^{i-1}, u_{i+1}\right]+\left[\mu, u_{i+1}\right] \\
\equiv & 1+\alpha_{i}\left[v_{i}, u_{i+1}\right](x-1)^{i-1} \equiv 1+\alpha_{i+1} v_{i+1}(x-1)^{i} \quad\left(\bmod I_{i+1}\right)
\end{aligned}
$$

where $\alpha_{i+1}=-4 \alpha_{i}$ if i is odd, else $\alpha_{i+1}=2 \alpha_{i}$. Thus, (4) is true for all $n \geq 2$.
We finish the proof by showing that z_{m} is not zero for $m=\left|G^{\prime}\right|$. To this we show that the element $y=v_{m}(x-1)^{m-1}$ does not belong to I_{m}. Since now
$m=\left|G^{\prime}\right|$, so $F G \omega\left(F G^{\prime}\right)^{m}=0$ and $I_{m}=\omega(F G)^{3} \omega\left(F G^{\prime}\right)^{m-1}$. According to [10], the element $x-1$ is of weight $t \geq 2$, so y has weight $2+t(m-1)$, which means that $y \in \omega(F G)^{2+t(m-1)} \backslash \omega(F G)^{3+t(m-1)}$. Since $\omega(F G)^{i}$ has an F-basis consisting of regular elements of weight not less than i, the inclusion $\omega(F G)^{3} \omega\left(F G^{\prime}\right)^{m-1} \subseteq$ $\omega(F G)^{3+t(m-1)}$ holds. Therefore y cannot be in I_{m}.

Proof of Theorem 1. According to [8], if G^{\prime} is not cyclic, then $t^{L}(F G)<$ $\left|G^{\prime}\right|+1$, which forces the inequality $\operatorname{cl}\left(U^{+}(F G)\right)<\left|G^{\prime}\right|$. Conversely, if G^{\prime} is cyclic, we can choose the elements x, a and b in G such that $x=(a, b)$ and $\langle x\rangle=G^{\prime}$. As a finitely generated torsion nilpotent group, $N=\langle a, b\rangle$ is finite, and it is the direct product of its Sylow subgroups. Let us denote by P the Sylow p-subgroup of N. Since G^{\prime} is a p-group we have $P^{\prime}=N^{\prime}=G^{\prime}$. Now if G^{\prime} is cyclic, then by Lemma 2 we are done, because

$$
\left|G^{\prime}\right|=\left|P^{\prime}\right| \leq \operatorname{cl}\left(U(F P)^{+}\right) \leq \operatorname{cl}\left(U^{+}(F G)\right) .
$$

3. Proof of Theorem 2

Assume that G is a torsion group such that $U^{+}(F G)$ is nilpotent but $U(F G)$ is not. Then $G \cong Q_{8} \times E \times P$, where $E^{2}=1$ and P is a finite p-group. In what follows we suppose that P is nontrivial. Set $N=Q_{8} \times E$ and $\mathfrak{I}(P)=F G \omega(F P)$. Obviously, $\mathfrak{J}(P)$ is a nilpotent ideal, so the set $\{1+x: x \in \mathfrak{I}(P)\}$ is a normal subgroup of the unit group $U(F G)$.

The upper bound $t_{N}(P)-1$ on $\operatorname{cl}\left(U^{+}(F G)\right)$ is a consequence of the next lemma.

Lemma 3. $t^{L}\left(F G^{+}\right) \leq t_{N}(P)$.
Proof. As it is well known, $F G^{+}$is generated as an F-space by the set

$$
S=\left\{g+g^{-1}: g \in G\right\} .
$$

Now, in our case

$$
S=\left\{a\left(h+a^{2} h^{-1}\right): a \in N, h \in P\right\} .
$$

Since

$$
a\left(h+a^{2} h^{-1}\right)=a(h-1)+a^{3}\left(h^{-1}-1\right)+a+a^{3}
$$

and the element $a+a^{3}$ is central in $F G$, so we obtain that

$$
F G^{+} \subseteq \Im(P)+\zeta(F G)
$$

Hence by induction one can easily get that $\left[F G^{+}\right]_{n} \subseteq \mathfrak{I}(P)^{n}$ for all $n \geq 2$, which forces the desired inequality.

Proof of Theorem 2. It remains to show that if P is powerful, then $\operatorname{cl}\left(U^{+}(F G)\right) \geq t_{N}(P)-1$. Denote by c the generator element of N^{2}. We are going to prove by induction that for any $a \in N \backslash \zeta(N)$ and $h_{1}, \ldots, h_{n} \in P$ there exists $u \in \gamma_{n}\left(U^{+}(F G)\right)$ such that

$$
u \equiv 1-a(1-c)\left(h_{1}-1\right) \cdots\left(h_{n}-1\right) \quad\left(\bmod \Im(P)^{n+1}\right)
$$

Indeed, for any $a \in N \backslash \zeta(N)$ and $h \in P$ we have

$$
\begin{aligned}
1-a(h-1)-a^{3}\left(h^{-1}-1\right) & \equiv 1-a(h-1)+a^{3}(h-1) \\
& =1-a(1-c)(h-1) \quad\left(\bmod \mathfrak{I}(P)^{2}\right)
\end{aligned}
$$

and we are done for $n=1$.
Assume the statement for some $n \geq 1$. Let $a \in N \backslash \zeta(N), h_{1}, \ldots, h_{n}, h_{n+1} \in P$ and choose $a_{1}, a_{2} \in N \backslash \zeta(N)$ such that $\left(a_{1}, a_{2}\right) \neq 1$ and $a_{1} a_{2}=a$. Then, by the induction, there exist $u \in \gamma_{n}\left(U^{+}(F G)\right)$ and $v \in U^{+}(F G)$ such that

$$
\begin{aligned}
u & \equiv 1-a_{1}(1-c)\left(h_{1}-1\right) \cdots\left(h_{n}-1\right) \quad\left(\bmod \Im(P)^{n+1}\right) \\
v & \equiv 1-a_{2}(1-c)\left(h_{n+1}-1\right) \quad\left(\bmod \Im(P)^{2}\right)
\end{aligned}
$$

Since $u^{-1} v^{-1}-1 \in \mathfrak{I}(P)$, it is clear that

$$
\begin{equation*}
(u, v)=1+\left(u^{-1} v^{-1}-1\right)[u, v]+[u, v] \equiv 1+[u, v] \quad\left(\bmod \Im(P)^{n+2}\right) \tag{5}
\end{equation*}
$$

Further,

$$
\begin{aligned}
{\left[a_{1}(1-c)\right.} & \left.\left(h_{1}-1\right) \cdots\left(h_{n}-1\right), a_{2}(1-c)\left(h_{n+1}-1\right)\right] \\
= & a_{1}(1-c)\left[\left(h_{1}-1\right) \cdots\left(h_{n}-1\right), a_{2}(1-c)\left(h_{n+1}-1\right)\right] \\
& \quad+\left[a_{1}(1-c), a_{2}(1-c)\left(h_{n+1}-1\right)\right]\left(h_{1}-1\right) \cdots\left(h_{n}-1\right) \\
= & a_{1} a_{2}(1-c)^{2}\left[\left(h_{1}-1\right) \cdots\left(h_{n}-1\right),\left(h_{n+1}-1\right)\right] \\
& \quad+\left[a_{1}, a_{2}\right](1-c)^{2}\left(h_{n+1}-1\right)\left(h_{1}-1\right) \cdots\left(h_{n}-1\right),
\end{aligned}
$$

and using the equality $(1-c)^{2}=2(1-c)$ we get

$$
\begin{aligned}
{[u, v] \equiv } & 2 a_{1} a_{2}(1-c)\left(h_{1}-1\right) \cdots\left(h_{n}-1\right)\left(h_{n+1}-1\right) \\
& +2 a_{1} a_{2}(1-c)\left(h_{n+1}-1\right)\left(h_{1}-1\right) \cdots\left(h_{n}-1\right) \quad\left(\bmod \Im(P)^{n+2}\right)
\end{aligned}
$$

Recall that P is assumed to be powerful and $\operatorname{char} F=p \geq 3$, thus

$$
\left(h_{i}, h_{j}\right)-1 \in \omega\left(P^{\prime}\right) \subseteq \omega\left(P^{p}\right) \subseteq \omega(P)^{p} \subseteq \Im(P)^{3}
$$

and

$$
\begin{aligned}
\left(h_{i}-1\right)\left(h_{j}-1\right) & =\left(h_{j}-1\right)\left(h_{i}-1\right)+h_{j} h_{i}\left(\left(h_{i}, h_{j}\right)-1\right) \\
& \equiv\left(h_{j}-1\right)\left(h_{i}-1\right) \quad\left(\bmod \Im(P)^{3}\right)
\end{aligned}
$$

for all i, j, therefore

$$
[u, v] \equiv 4 a_{1} a_{2}(1-c)\left(h_{1}-1\right) \cdots\left(h_{n}-1\right)\left(h_{n+1}-1\right) \quad\left(\bmod \Im(P)^{n+2}\right),
$$

and by (5)

$$
(u, v) \equiv 1+4 a(1-c)\left(h_{1}-1\right) \cdots\left(h_{n+1}-1\right) \quad\left(\bmod \mathfrak{I}(P)^{n+2}\right) .
$$

Keeping in mind that p is an odd prime we can choose an integer s such that $4 s \equiv-1(\bmod p)$ and we can apply the binomial theorem to have

$$
(u, v)^{s} \equiv 1-a(1-c)\left(h_{1}-1\right) \cdots\left(h_{n+1}-1\right) \quad\left(\bmod \Im(P)^{n+2}\right) .
$$

Since $(u, v)^{s} \in \gamma_{n}\left(U^{+}(F G)\right)$ the induction is done.
For $n<t_{N}(P)$ there exist $h_{1}, \ldots, h_{n} \in P$ such that $\left(h_{1}-1\right) \cdots\left(h_{n}-1\right) \neq 0$ and we get that $\operatorname{cl}\left(U^{+}(F G)\right) \geq t_{N}(P)-1$.

Acknowledgements. The authors thank the anonymous referees for some very helpful suggestions to clarify some confusing notation and to improve the exposition.

References

[1] C. Bagiński, A note on the derived length of the unit group of a modular group algebra, Comm. Algebra 30 (2002), 4905-4913.
[2] A. K. Bhandari and I. B. S. Passi, Lie-nilpotency indices of group algebras, Bull. Lond. Math. Soc. 24(1) (1992), 68-70.
[3] A. A. Bovdi and J. Kurdics, Lie properties of the group algebra and the nilpotency class of the group of units, J. Algebra 212 (1999), 28-64.
[4] V. Bovdi, On symmetric units in group algebras, Comm. Algebra 29 (2001), 5411-5422.
[5] V. Bovdi, A. B. Konovalov, A. R. Rossmanith and Cs. Schneider, Laguna - Lie AlGebras and UNits of group Algebras, Version 3.4, 2007, (http://ukrgap.exponenta.ru/laguna.htm).
[6] V. Bovdi, L. G. Kovács and S. K. Sehgal, Symmetric units in modular group algebras, Comm. Algebra 24 (1996), 803-808.
[7] V. Bovdi and M. M. Parmenter, Symmetric units in integral group rings, Publ. Math. Debrecen 50 (1997), 369-372.
[8] V. Bovdi and E. Spinelli, Modular group algebras with maximal Lie nilpotency indices, Publ. Math. Debrecen 65 (2004), 243-252.
[9] F. Catino, S. Siciliano and E. Spinelli, A note on the nilpotency class of the unit group of a modular group algebra, Math. Proc. R. Ir. Acad. 108A(1) (2008), 65-68.
[10] S. A. Jennings, The structure of the group ring of a p-group over a modular field, Trans. Amer. Math. Soc. 50 (1941), 175-185.
[11] T. Juhász, On the derived length of Lie solvable group algebras, Publ. Math. Debrecen 68 (2006), 243-256.
[12] I. I. Khripta, The nilpotency of the multiplicative group of a group ring, Mat. Zametki 11 (1972), 191-200.
$13]$ G. T. Lee, Group Identities on Units and Symmetric Units of Group Rings, Springer, London, 2010.
[14] G. T. Lee, Nilpotent symmetric units in group rings, Comm. Algebra 31 (2003), 581-608.
[15] G. T. Lee, C. Polcino Milies, and S. K. Sehgal, Group rings whose symmetric units are nilpotent, J. Group Theory 10 (2007), 685-701.
[16] I. B. S. Passi, D. S. Passman and S. K. Sehgal, Lie solvable group rings, Canad. J. Math. 25 (1973), 748-757.
[17] A. Shalev, The nilpotency class of the unit group of a modular group algebra I, Isr. J. Math. 70(3) (1990), 257-266.
[18] A. Shalev and A. Mann, The nilpotency class of the unit group of a modular group algebra II, Isr. J. Math. 70(3) (1990), 267-277.
[19] A. Shalev, The nilpotency class of the unit group of a modular group algebra III, Arch. Mat. 60 (1993), 136-145.
[20] R. K. Sharma and Vikas Bist, A note on Lie nilpotent group rings, Bull. Austral. Math. Soc. 45 (1992), 503-506.
[21] he GAP Group, GAP - Groups, Algortihms and Programming, Version 4.4.10, 2007, (http://www.gap-system.org).

ZSOLT BALOGH
INSTITUTE OF MATHEMATICS
AND INFORMATICS
COLLEGE OF NYÍREGYHÁZA
SÓSTÓI ÚT 31/B
H-4410 NYÍREGYHÁZA
HUNGARY
E-mail: baloghzs@nyf.hu

TIBOR JUHÁSZ
INSTITUTE OF MATHEMATICS
AND INFORMATICS
ESZTERHÁZY KÁROLY COLLEGE
LEANYKA UT 4
H-3300 EGER
HUNGARY
E-mail: juhaszti@ektf.hu

[^0]: Mathematics Subject Classification: 16S34, 16U60, 16W10, 16N40, 20 F 18.
 Key words and phrases: group ring, involution, symmetric units, nilpotency class.
 This research was supported by NKTH-OTKA-EU FP7 (Marie Curie action) co-funded grant No. MB08A-82343.

