
Publ. Math. Debrecen

79/1-2 (2011), 171–180

DOI: 10.5486/PMD.2011.4999

Nilpotency class of symmetric units of group algebras

By ZSOLT BALOGH (Nýıregyháza) and TIBOR JUHÁSZ (Eger)
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Abstract. Let F be a field of odd prime characteristic p, G a group, U the group

of units in the group algebra FG, and U+ the subgroup of U generated by the elements

of U fixed by the anti-automorphism of FG which inverts all elements of G. It is known

that U is nilpotent if G is nilpotent and the commutator subgroup G′ has p-power order,
and then the nilpotency class of U is at most the order of G′; this bound is attained

if and only if G′ is cyclic and not a Sylow subgroup of G. Adalbert Bovdi and János

Kurdics proved the ‘if’ part of this last statement by exhibiting a nontrivial commutator

of the relevant weight. For the special case when G is a nonabelian torsion group (so G′

cannot possibly be a Sylow subgroup), the present paper identifies such a commutator

in U+, showing (Theorem 1) that the same bound is attained even by the nilpotency

class of this subgroup. We do not know what happens when G′ is not a Sylow subgroup

but G is not torsion.

It can happen that U+ is nilpotent even though U is not. The torsion groups G

which allow this are known (from the work of Gregory T. Lee) to be precisely the direct

products of a finite p-group P , a quaternion group Q of order 8, and an elementary

abelian 2-group. Theorem 2: in this case, the nilpotency class of U+ is strictly smaller

than the nilpotency index of the augmentation ideal of the group algebra FP , and this

bound is attained whenever P is a powerful p-group. The nonabelian group P of order 27

and exponent 3 is not powerful, yet the G = P × Q formed with this P also leads to

a U+ attaining the general bound, so here a necessary and sufficient condition remains

elusive.

Mathematics Subject Classification: 16S34, 16U60, 16W10, 16N40, 20F18.
Key words and phrases: group ring, involution, symmetric units, nilpotency class.
This research was supported by NKTH-OTKA-EU FP7 (Marie Curie action) co-funded grant

No. MB08A-82343.



172 Zsolt Balogh and Tibor Juhász

1. Introduction

Let G be a group and let g1, . . . , gn ∈ G. By the symbol (g1, . . . , gn) we

denote the commutator of the elements g1, . . . , gn which is defined inductively as

(g1, . . . , gn) = ((g1, . . . , gn−1), gn) with (g1, g2) = g−1
1 g−1

2 g1g2. As usual, for the

subsets X,Y of G by the commutator (X,Y ) we mean the subgroup generated

by all commutators (x, y) with x ∈ X, y ∈ Y . This allows us to define the lower

central series of a nonempty subset H of G: let γn+1(H) = (γn(H), H) with

γ1(H) = H. We say that H is nilpotent if γn(H) = 1 for some n. It is not so

hard to show the equivalence of the following statements: (i) H is a nilpotent

subset; (ii) H satisfies the group identity (g1, g2, . . . , gn) = 1 for some n ≥ 2; (iii)

〈H〉 is a nilpotent group (see [14]). For a nilpotent subset H ⊆ G the number

cl(H) = min{n ∈ N0 : γn+1(H) = 1} is called the nilpotency class of H.

Let R be an associative ring with unity. Then R can be considered as a

Lie ring with the Lie commutator defined by [x, y] = xy − yx for all x, y ∈ R.

For X,Y ⊆ R, by [X,Y ] we denote the additive subgroup generated by all Lie

commutators [x, y] with x ∈ X, y ∈ Y . The upper Lie powers of a nonempty

subset S of R are defined inductively: set [S]1 = S and for n ≥ 2 let [S]n be the

associative ideal of R generated by all Lie commutators [x, y] with x ∈ [S]n−1,

y ∈ S. S is said to be upper Lie nilpotent if some upper Lie power of S vanishes;

the minimal n for which [S]n = 0 is called the upper Lie nilpotency index of S

(in notation tL(S)). Denote by U(S) the set of units in the subset S and suppose

that it is nonempty. By the equality (x, y) = 1+x−1y−1[x, y], where x, y ∈ U(S),

it is easy to see that γn(U(S)) ⊆ 1+ [S]n for all n ≥ 2, which implies that the set

of units of an upper Lie nilpotent subset S is nilpotent, and cl(U(S)) ≤ tL(S)−1.

Let F be a field and let G be a group. For the noncommutative group algebra

FG the equivalence of the following statements follows from [12], [16]: (i) FG is

upper Lie nilpotent; (ii) charF = p > 0, G is nilpotent and its commutator

subgroup G′ has p-power order; (iii) FG is modular and U(FG) is nilpotent. As

the reader can see in [2], [3], [9], [17], [18], [19], significant developments have

been achieved concerning the study of the nilpotency class of U(FG), however a

complete description is not yet known.

Let ∗ be the canonical involution on FG; that is, the F -linear extension of the

anti-automorphism of G sending each element to its inverse. We will denote by

S+ the set of symmetric elements of S ⊆ FG; that is, S+ = {x ∈ S : x∗ = x}. A
number of interesting results on the symmetric units of group rings can be found,

for example, in the articles [4], [6], [7], [14], [15] and in the book [13]. This paper is

devoted to the study of the nilpotency class of U+(FG). Assume first that FG is
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a modular group algebra with a nilpotent unit group. Then U+(FG) is nilpotent

as well, but we do not know if cl(U+(FG)) reaches cl(U(FG)) all the time or not.

Furthermore, FG is upper Lie nilpotent, and by [20], tL(FG) ≤ |G′| + 1. This

gives that |G′| is an upper bound on cl(U(FG)) and so on cl(U+(FG)). We prove

the following theorem.

Theorem 1. Let FG be the group algebra of a torsion group G over a field

F of characteristic p > 2 such that U(FG) is nilpotent. Then cl(U+(FG)) = |G′|
if and only if G′ is cyclic.

We cannot expect that this theorem remains true for non-torsion groups.

Indeed, by Theorem 4.3 of [3], if G′ is a cyclic group of order pn > 2 and Sylp(G) =

G′, then cl(U+(FG)) ≤ cl(U(FG)) = |G′| − 1. It is obvious that G′ cannot

possibly be a Sylow subgroup whenever G is torsion.

Corollary 1. Let FG be the group algebra of a torsion group G over a field

F of characteristic p > 2 such that U(FG) is nilpotent. If G′ is cyclic, then

cl(U+(FG)) = cl(U(FG)).

Now assume that U+(FG) is nilpotent, but U(FG) is not. According to [14],

if charF = p 6= 2 and G is a torsion group, then G ∼= Q8 × E × P , where Q8

is the quaternion group of order 8, E is an elementary abelian 2-group and P

is a finite p-group as long as p > 0, otherwise P = 1. For the non-torsion case

the characterization is only known when F is infinite by [15]. It is easy to verify

that if P is trivial, then the elements of U+(FG) commute for any field F , so

cl(U+(FG)) = 1. Our next result is about the case when P is nontrivial. In order

to state it, we require a couple of definitions. By the augmentation ideal of a

group algebra FG we mean the ideal in FG, generated by the set {g−1 | g ∈ G},
and it will be denoted by ω(FG). In [10] it was proved that ω(FG) is nilpotent

if and only if G is a finite p-group and charF = p. In this case, the nilpotency

index of ω(FG) will be denoted by tN (G). We also recall that a finite p-group G

is called powerful if either p is odd and G′ ⊆ Gp, or p = 2 and G′ ⊆ G4.

Theorem 2. Let F be a field of characteristic p > 2, and let G be a torsion

group with a nontrivial Sylow p-subgroup P such that U+(FG) is nilpotent but

U(FG) is not. Then cl(U+(FG)) ≤ tN (P )−1. In addition, if P is powerful, then

the equality holds.

We should remark that the assumption P to be powerful is not necessary for

the equality. Using the LAGUNA [5] software package in the GAP [21] computer

algebra system, it is easy to verify that if P is the noncommutative group of
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order 27 with exponent 3 and charF = 3, then the equality holds, although this

group is not powerful.

It is well known that if P has order pn, then 1+n(p−1) ≤ tN (P ) ≤ pn, with

equality on the left (right) hand side if and only if P is elementary abelian (resp.

cyclic). Furthermore, if P is the direct product of cyclic groups of order pmi

(1 ≤ i ≤ n), then tN (P ) = 1 +
∑n

i=1(p
mi − 1). In general, there is a formula for

tN (P ) which gives its exact value in terms of the orders of the so-called dimension

subgroups of P . In the case when P is powerful, its dimension subgroups are its

powers.

The identities

ab− 1 = (a− 1)(b− 1) + (a− 1) + (b− 1);

[ab, c] = a[b, c] + [a, c]b and [a, bc] = b[a, c] + [a, b]c;

[a, b] = ba
(
(a, b)− 1

)
and (a, b) = 1 + a−1b−1[a, b] (here a, b are units),

hold for all elements a, b, c of an arbitrary associative ring R, and they will be

used freely. We denote by ζ(G) and ζ(FG) the centers of the group G and the

group algebra FG, respectively. Throughout this paper by p we always mean an

odd prime and by F a field of characteristic p.

2. Proof of Theorem 1

First of all, we collect and examine those Lie commutators of associative

powers of the augmentation ideal that we need in the proof. By definition,

ω(FG)0 = FG.

Lemma 1. Let G be a finite p-group such that γ3(G) ⊆ (G′)p. Then for all

k, l,m, n ≥ 1

[ω(FG′)m, ω(FG)l] ⊆ ω(FG)l−1ω(FG′)m+1;

[ω(FG)k, ω(FG)l] ⊆ ω(FG)k+l−2ω(FG′);

[ω(FG)kω(FG′)m, ω(FG)l] ⊆ ω(FG)k+l−2ω(FG′)m+1;

[FGω(FG′)m, ω(FG)l] ⊆ FGω(FG′)m+1.

Proof. The first two inclusions were proved in [1], and they are followed by

the last two, because

[ω(FG)kω(FG′)m, ω(FG)l]

⊆ ω(FG)k[ω(FG′)m, ω(FG)l] + [ω(FG)k, ω(FG)l]ω(FG′)m,
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and

FGω(FG′)m = ω(FG)ω(FG′)m + ω(FG′)m. ¤

We can also easily observe that

gm − 1 ≡ m(g − 1) (mod ω(FG)2) (1)

for every g ∈ G and integer m.

Let now G be a finite p-group with derived subgroup G′ = 〈x〉, and let

a, b ∈ G such that (a, b) = x. It is easy to check (see e.g. [11] p. 252) that

[am, bs] ≡ ms · bsam(x− 1) (mod FGω(FG′)2). (2)

For n ≥ 2 denote by In the ideal ω(FG)3ω(FG′)n−1 + FGω(FG′)n of FG.

In the next lemma we need the congruences

[(a− 1)(b− 1), (a− 1)(a−1 − 1)] ≡ 2(a− 1)2(x− 1) (mod I2),

[(a− 1)(a−1 − 1), (b− 1)(b−1 − 1)] ≡ 4(a− 1)(b− 1)(x− 1) (mod I2),

[(a− 1)2, (b− 1)(b−1 − 1)] ≡ −4(a− 1)(b− 1)(x− 1) (mod I2). (3)

Now we prove the first one, the last two can be obtained analogously. Applying

(2) we can calculate that

[(a− 1)(b− 1),(a− 1)(a−1 − 1)]

= (a− 1)2[b, a−1] + (a− 1)[b, a](a−1 − 1)

≡ (a− 1)2ba−1(x− 1)− (a− 1)ba(x− 1)(a−1 − 1) (mod I2).

Furthermore,

(a− 1)2ba−1(x− 1)− (a− 1)ba(x− 1)(a−1 − 1)

= (a− 1)2(ba−1 − 1)(x− 1) + (a− 1)2(x− 1)

− (a− 1)(ba− 1)(x− 1)(a−1 − 1)− (a− 1)(x− 1)(a−1 − 1).

Clearly, (a− 1)2(ba−1 − 1)(x− 1) ∈ ω(FG)3ω(FG′) ⊆ I2, and using the fact that

the value of the product (g − 1)(h − 1)(x − 1) is independent of the order of its

factors modulo I2, we have that (a − 1)(ba − 1)(x − 1)(a−1 − 1) is also belongs

to I2. Hence, applying (1) we have

[(a− 1)(b− 1), (a− 1)(a−1 − 1)] ≡ (a− 1)2(x− 1)− (a− 1)(x− 1)(a−1 − 1)

≡ 2(a− 1)2(x− 1) (mod I2).
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Lemma 2. Let G be a finite p-group with cyclic derived subgroup. Then

cl(U+(FG)) ≥ |G′|.

Proof. Let us choose the elements x, a and b in G such that x = (a, b) and

〈x〉 = G′. We are going to prove that for n ≥ 2 there exist zn ∈ γn(U
+(FG))

such that

zn ≡
{
1 + αn(a− 1)2(x− 1)n−1 (mod In) if n is odd;

1 + αn(a− 1)(b− 1)(x− 1)n−1 (mod In) if n is even,
(4)

where αn ∈ F \ {0}.
For n ≥ 1 let

un =

{
(a− 1)(a−1 − 1) if n is odd;

(b− 1)(b−1 − 1) if n is even.

Evidently, un is a nilpotent symmetric element and so 1+un is a symmetric unit

for all n. Applying (3) we have

(1 + u1, 1 + u2) = 1 + (1 + u1)
−1(1 + u2)

−1[u1, u2]

= 1 + ((1 + u1)
−1(1 + u2)

−1 − 1)[u1, u2] + [u1, u2]

≡ 1 + 4(a− 1)(b− 1)(x− 1) (mod I2),

which confirms (4) for n = 2. Assume by induction the truth of (4) for some i

(i ≥ 2); i.e., there exist µ ∈ Ii and αi ∈ F \ {0} such that

zi = 1 + αivi(x− 1)i−1 + µ ∈ γi(U
+(FG)),

where either vi = (a−1)2 or vi = (a−1)(b−1) when i is odd or even, respectively.

Applying Lemma 1 and (3) we have

(zi, 1 + ui+1) = 1 + z−1
i (1 + ui+1)

−1[zi, ui+1]

= 1 + (z−1
i (1 + ui+1)

−1 − 1)([αivi(x− 1)i−1, ui+1] + [µ, ui+1])

+ [αivi(x− 1)i−1, ui+1] + [µ, ui+1]

≡ 1 + αi[vi, ui+1](x− 1)i−1 ≡ 1 + αi+1vi+1(x− 1)i (mod Ii+1),

where αi+1 = −4αi if i is odd, else αi+1 = 2αi. Thus, (4) is true for all n ≥ 2.

We finish the proof by showing that zm is not zero for m = |G′|. To this

we show that the element y = vm(x − 1)m−1 does not belong to Im. Since now
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m = |G′|, so FGω(FG′)m = 0 and Im = ω(FG)3ω(FG′)m−1. According to [10],

the element x−1 is of weight t ≥ 2, so y has weight 2+t(m−1), which means that

y ∈ ω(FG)2+t(m−1) \ ω(FG)3+t(m−1). Since ω(FG)i has an F -basis consisting

of regular elements of weight not less than i, the inclusion ω(FG)3ω(FG′)m−1 ⊆
ω(FG)3+t(m−1) holds. Therefore y cannot be in Im. ¤

Proof of Theorem 1. According to [8], if G′ is not cyclic, then tL(FG) <

|G′|+1, which forces the inequality cl(U+(FG)) < |G′|. Conversely, if G′ is cyclic,
we can choose the elements x, a and b in G such that x = (a, b) and 〈x〉 = G′.
As a finitely generated torsion nilpotent group, N = 〈a, b〉 is finite, and it is the

direct product of its Sylow subgroups. Let us denote by P the Sylow p-subgroup

of N . Since G′ is a p-group we have P ′ = N ′ = G′. Now if G′ is cyclic, then by

Lemma 2 we are done, because

|G′| = |P ′| ≤ cl(U(FP )+) ≤ cl(U+(FG)). ¤

3. Proof of Theorem 2

Assume that G is a torsion group such that U+(FG) is nilpotent but U(FG)

is not. Then G ∼= Q8 × E × P , where E2 = 1 and P is a finite p-group. In what

follows we suppose that P is nontrivial. Set N = Q8 ×E and I(P ) = FGω(FP ).

Obviously, I(P ) is a nilpotent ideal, so the set {1 + x : x ∈ I(P )} is a normal

subgroup of the unit group U(FG).

The upper bound tN (P ) − 1 on cl(U+(FG)) is a consequence of the next

lemma.

Lemma 3. tL(FG+) ≤ tN (P ).

Proof. As it is well known, FG+ is generated as an F -space by the set

S = {g + g−1 : g ∈ G}.
Now, in our case

S = {a(h+ a2h−1) : a ∈ N,h ∈ P}.
Since

a(h+ a2h−1) = a(h− 1) + a3(h−1 − 1) + a+ a3,

and the element a+ a3 is central in FG, so we obtain that

FG+ ⊆ I(P ) + ζ(FG).

Hence by induction one can easily get that [FG+]n ⊆ I(P )n for all n ≥ 2, which

forces the desired inequality. ¤
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Proof of Theorem 2. It remains to show that if P is powerful, then

cl(U+(FG)) ≥ tN (P ) − 1. Denote by c the generator element of N2. We are

going to prove by induction that for any a ∈ N \ ζ(N) and h1, . . . , hn ∈ P there

exists u ∈ γn(U
+(FG)) such that

u ≡ 1− a(1− c)(h1 − 1) · · · (hn − 1) (mod I(P )n+1).

Indeed, for any a ∈ N \ ζ(N) and h ∈ P we have

1− a(h− 1)− a3(h−1 − 1) ≡ 1− a(h− 1) + a3(h− 1)

= 1− a(1− c)(h− 1) (mod I(P )2)

and we are done for n = 1.

Assume the statement for some n ≥ 1. Let a ∈ N\ζ(N), h1, . . . , hn, hn+1 ∈ P

and choose a1, a2 ∈ N \ ζ(N) such that (a1, a2) 6= 1 and a1a2 = a. Then, by the

induction, there exist u ∈ γn(U
+(FG)) and v ∈ U+(FG) such that

u ≡ 1− a1(1− c)(h1 − 1) · · · (hn − 1) (mod I(P )n+1),

v ≡ 1− a2(1− c)(hn+1 − 1) (mod I(P )2).

Since u−1v−1 − 1 ∈ I(P ), it is clear that

(u, v) = 1 + (u−1v−1 − 1)[u, v] + [u, v] ≡ 1 + [u, v] (mod I(P )n+2). (5)

Further,

[a1(1− c)(h1 − 1) · · · (hn − 1), a2(1− c)(hn+1 − 1)]

= a1(1− c)[(h1 − 1) · · · (hn − 1), a2(1− c)(hn+1 − 1)]

+ [a1(1− c), a2(1− c)(hn+1 − 1)](h1 − 1) · · · (hn − 1)

= a1a2(1− c)2[(h1 − 1) · · · (hn − 1), (hn+1 − 1)]

+ [a1, a2](1− c)2(hn+1 − 1)(h1 − 1) · · · (hn − 1),

and using the equality (1− c)2 = 2(1− c) we get

[u, v] ≡ 2a1a2(1− c)(h1 − 1) · · · (hn − 1)(hn+1 − 1)

+ 2a1a2(1− c)(hn+1 − 1)(h1 − 1) · · · (hn − 1) (mod I(P )n+2).

Recall that P is assumed to be powerful and charF = p ≥ 3, thus

(hi, hj)− 1 ∈ ω(P ′) ⊆ ω(P p) ⊆ ω(P )p ⊆ I(P )3
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and
(hi − 1)(hj − 1) = (hj − 1)(hi − 1) + hjhi((hi, hj)− 1)

≡ (hj − 1)(hi − 1) (mod I(P )3)

for all i, j, therefore

[u, v] ≡ 4a1a2(1− c)(h1 − 1) · · · (hn − 1)(hn+1 − 1) (mod I(P )n+2),

and by (5)

(u, v) ≡ 1 + 4a(1− c)(h1 − 1) · · · (hn+1 − 1) (mod I(P )n+2).

Keeping in mind that p is an odd prime we can choose an integer s such that

4s ≡ −1 (mod p) and we can apply the binomial theorem to have

(u, v)s ≡ 1− a(1− c)(h1 − 1) · · · (hn+1 − 1) (mod I(P )n+2).

Since (u, v)s ∈ γn(U
+(FG)) the induction is done.

For n < tN (P ) there exist h1, . . . , hn ∈ P such that (h1 − 1) · · · (hn − 1) 6= 0

and we get that cl(U+(FG)) ≥ tN (P )− 1. ¤
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[6] V. Bovdi, L. G. Kovács and S. K. Sehgal, Symmetric units in modular group algebras,
Comm. Algebra 24 (1996), 803-808.

[7] V. Bovdi and M. M. Parmenter, Symmetric units in integral group rings, Publ. Math.
Debrecen 50 (1997), 369-372.

[8] V. Bovdi and E. Spinelli, Modular group algebras with maximal Lie nilpotency indices,
Publ. Math. Debrecen 65 (2004), 243–252.



180 Z. Balogh and T. Juhász : Nilpotency class of symmetric units. . .

[9] F. Catino, S. Siciliano and E. Spinelli, A note on the nilpotency class of the unit group
of a modular group algebra, Math. Proc. R. Ir. Acad. 108A(1) (2008), 65–68.

[10] S. A. Jennings, The structure of the group ring of a p-group over a modular field, Trans.
Amer. Math. Soc. 50 (1941), 175–185.

[11] T. Juhász, On the derived length of Lie solvable group algebras, Publ. Math. Debrecen 68
(2006), 243–256.

[12] I. I. Khripta, The nilpotency of the multiplicative group of a group ring, Mat. Zametki
11 (1972), 191-200.

[13] G. T. Lee, Group Identities on Units and Symmetric Units of Group Rings, Springer,
London, 2010.

[14] G. T. Lee, Nilpotent symmetric units in group rings, Comm. Algebra 31 (2003), 581–608.

[15] G. T. Lee, C. Polcino Milies, and S. K. Sehgal, Group rings whose symmetric units
are nilpotent, J. Group Theory 10 (2007), 685–701.

[16] I. B. S. Passi, D. S. Passman and S. K. Sehgal, Lie solvable group rings, Canad. J. Math.
25 (1973), 748–757.

[17] A. Shalev, The nilpotency class of the unit group of a modular group algebra I, Isr. J.
Math. 70(3) (1990), 257–266.

[18] A. Shalev and A. Mann, The nilpotency class of the unit group of a modular group algebra
II, Isr. J. Math. 70(3) (1990), 267-277.

[19] A. Shalev, The nilpotency class of the unit group of a modular group algebra III, Arch.
Mat. 60 (1993), 136–145.

[20] R. K. Sharma and Vikas Bist, A note on Lie nilpotent group rings, Bull. Austral. Math.
Soc. 45 (1992), 503–506.

[21] he GAP Group, GAP – Groups, Algortihms and Programming, Version 4.4.10, 2007,
(http://www.gap-system.org).

ZSOLT BALOGH

INSTITUTE OF MATHEMATICS

AND INFORMATICS

COLLEGE OF NYÍREGYHÁZA
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HUNGARY

E-mail: baloghzs@nyf.hu

TIBOR JUHÁSZ
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