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Star order on operator and function algebras

By MARTIN BOHATA (Prague)

Abstract. The paper deals with the star order on proper ∗-algebras. Many results

on the star order on matrix algebras and algebras of bounded operators acting on a

Hilbert space are generalized to the C∗-algebraic context. We characterize the star order

on partial isometries in proper ∗-algebras in terms of their initial and final projections.

As a corollary, we present a new characterization of infinite C∗-algebras. Further, main

results concern the infimum and supremum problem for the star order on a C∗-algebra
C(X) of all continuous complex-valued functions on a Hausdorff topological space X.

We show that if X is locally connected or hyperstonean, then any upper bounded set in

C(X) has an infimum and a supremum in the star order.

1. Introduction

It was shown by Drazin [5] that the equations

a∗a = a∗b and aa∗ = ba∗

define a partial order on a proper *-semigroup. This order is now known as

the star order (or, in abbreviation, *-order). The star order has been intensely

studied on algebras of matrices which has led to many interesting results of a

matrix analysis and its applications [2], [3], [7], [13]. Recently, the study of the

star order has been extended from matrices to a more general case of the set

B(H ) of all bounded operators on a Hilbert space H by Antezana and others

[1]. It has not only brought new infinite dimensional results but it has also put

older facts on the star order for matrices into a new perspective. We would like
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to continue this research line to C*-algebras and *-algebras. C*-algebras are

simultaneous extension of both matrix algebras and the algebra B(H ). On the

other hand, C*-algebras together with algebras of continuous functions constitute

important examples of *-algebras which have inspired general theory in many

aspects. Having this in mind, the main goal of this paper is to study the star

order on general *-algebras with a special attention devoted to C*-algebras and

algebras of continuous functions in the background.

The present work may be viewed as a part of a recent effort to study vari-

ous types of order on matrices and operators, which has attracted many authors.

In particular, the spectral order and the Gudder order are being intensively in-

vestigated at the present. They were introduced on the self-adjoint operators

in B(H ) by Olson [15] and Gudder [6], respectively. It was proved in [15],

[16] that the set of all self-adjoint operators in B(H ) endowed with the spectral

order as well as Gudder order is a so-called boundedly complete poset. (By a

boundedly complete poset, we mean a poset L such that every bounded subset of

L has an infimum and a supremum.) Furthermore, maps preserving these orders

were investigated by Dolinar, Hamhalter, Molnár, and Šemrl in papers

[4], [9], [14]. We shall see later in Proposition 2.1 that the Gudder order is in

fact the restriction of the star order which was pointed out by Pulmannová and

Vinceková in [16].

Let us now recall basic terminology and fix the notation. By a *-algebra A we

shall mean an associative (not necessarily commutative) complex algebra with the

*-operation satisfying the following conditions: (i) a∗∗ = a, (ii) (ab)∗ = b∗a∗, (iii)
(a+b)∗ = a∗+b∗, and (iv) (αa)∗ = αa∗ for all a, b ∈ A and α ∈ C. A *-algebra A
is called proper if a∗a = 0 implies a = 0 for any a ∈ A. In the sequel, the symbol A
will always denote a proper *-algebra. The important example of such an algebra

A is a C*-algebra and a *-algebra C(X) of continuous complex-valued functions

on a Hausdorff topological space X. (For basic elements of operator algebra

theory we refer the reader to [8], [11].) The algebra A carries the multiplicative

structure of the proper *-semigroup and so, following Drazin [5], we can define

a partial order on A as follows.

Definition 1.1. We say that a ∈ A is less than or equal to b ∈ A in the star

order, written a ¹ b, if

a∗a = a∗b and aa∗ = ba∗.

We write a ≺ b whenever a ¹ b and a 6= b.

The paper is organized as follows. The basic properties of the star order are

summarized in Section 2. A number of them generalize the well known results
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for B(H ) and matrix algebras. We observe that the star order is preserved by

a *-homomorphism. This simple observation is especially useful in the case of

an abelian C*-algebra C because this algebra is *-isomorphic to an algebra of

continuous complex-valued functions vanishing at infinity on a locally compact

Hausdorff topological space called the spectrum of C. It motivates the investiga-

tion of the star order on function algebras in last two sections. We show that the

star order on C*-algebras is well behaved with respect to the function calculus.

A similar result was proved for the star order on B(H ) in [1] and also for the

Gudder order in [6].

In Section 3, we discuss the star order on partial isometries in general proper

*-algebras. Partial isometries play a significant role in the geometry of Hilbert

spaces and in the theory of operator algebras. It is well known, for example, that

the set of extreme points of the unit ball of a unital C*-algebra consists of partial

isometries. Further, partial isometries are important ingredients in the polar de-

composition of operators. Using the polar decomposition it was shown in [1] that

the star order on B(H ) can be investigated on the set of partial isometries and

on the set of positive elements separately. So the star order on partial isomet-

ries is an important component of the star order on general elements, which has

motivated our interest. In this paper, we study the connection between the star

order on partial isometries and properties of their initial and final projections.

This way we describe the structure of the set of partial isometries which lie below

or above a given partial isometry. In particular, we show that a proper *-algebra

admits an infinite projection if and only if there are appropriate partial isometries

u1 and u2 such that u1 ≺ u2. This gives a characterization of infinite C*-algebras

and von Neumann algebras in terms of the star order.

Last two sections deal with the infimum and supremum problem (i.e., the

question of the existence of an infimum and a supremum) for the star order. This

problem has been solved in the affirmative for the Gudder order in [6], [16]. For

example, it was shown that the infimum of two elements in the Gudder order

always exists. However, the supremum of two elements exists if and only if they

have a common upper bound. Similar results concerning infimum have also been

proved for the star order on B(H ) and matrix algebras in [1], [7]. The main

goal of our work is to investigate the infimum and supremum problem for the

star order on a *-algebra C(X) of all continuous complex-valued functions on a

Hausdorff topological space X. (We do not assume that X is locally compact and

so we study a more general case than abelian C*-algebras.) In Section 4, we show

that the infimum problem has a positive solution in two seemingly opposite cases:

(1) X is a locally connected space; (2) X is an extremely disconnected space.
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More specifically, we show that any set in C(X) has an infimum in the star order

provided that X is a locally connected space, which covers the important case of

the algebra C([0, 1]). Applying this result to an abelian C*-algebra, we obtain

that the infimum problem has a positive answer for all abelian C*-algebras with

locally connected spectra. On the other hand, it is shown that the infimum of

any set in C(X) exists if X is an extremely disconnected topological space. This

gives a positive solution of the infimum problem for abelian von Neuman algebras.

In concluding Section 5, we prove that the star order supremum of a subset A

of C(X) exists for X locally connected or hyperstonean if and only if there is

an upper bound for the set A. In summary, the algebras specified above, when

endowed with the star order, have a structure of boundedly complete poset.

2. Basic properties

The star order is closely related to the concept of the *-orthogonality which

was first discovered by Hestenes [10] in the context of matrix algebras. We say

that a, b ∈ A are *-orthogonal, written a⊥b, if a∗b = ba∗ = 0. It is easy to see that

the *-orthogonality is a symmetric binary relation which, for self-adjoint elements,

coincides with the usual notion of orthogonality. Let C be a C*-algebra acting on

a Hilbert space. We shall denote the range of operator a ∈ C by R(a) and the

corresponding projection onto the closure R(a) by pa. By a projection we always

mean an idempotent self-adjoint element. Clearly, the projection onto R(a) is an

element of the second commutant C′′ of the C*-algebra C. The null space of a

will be denoted by N (a). The *-orthogonality on C*-algebras acting on Hilbert

spaces has natural characterizations in terms of ranges and range projections. In

particular, the following conditions are equivalent: (i) a⊥b, (ii) R(b) ⊆ N (a∗)
and R(a∗) ⊆ N (b), and (iii) papb = pa∗pb∗ = 0.

Proposition 2.1. If a, b are elements of A, then the following conditions

are equivalent:

(i) a ¹ b.

(ii) There is an element c of A such that a⊥c and b = c+ a.

Proof. (i)⇒(ii). If c = b − a, then, using a∗a = a∗b and aa∗ = ba∗, it is

clear that ca∗ = a∗c = 0. Furthermore, b = a+ (b− a) = a+ c.

(ii)⇒(i). If there is c such that ca∗ = a∗c = 0 and b = a+c, then, multiplying

b = a+ c by a∗ from the left, we obtain a∗b = a∗a+ a∗c = a∗a. In the same way,

we can prove that aa∗ = ba∗. ¤
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Let us note that the equivalence of (i) and (ii) in the previous theorem was

first proved by Hestenes [10] for matrix algebras. Further, the condition (ii)

is a natural extension of definition of the Gudder type order (see [6]). Let us

recall that the Gudder order, ≤G, has been defined on the bounded self-adjoint

operators acting on a Hilbert space H by a ≤G b, if (b− a)b = 0. The condition

(ii) also provides the useful insight into the star order. Loosely speaking, a ¹ b

means that a is an orthogonal part of b. Moreover, we can see that the second

orthogonal part c = b− a of b also satisfies c ¹ b because the *-orthogonality is a

symmetric relation.

The following proposition is a minor modification of the results known for

the Gudder order [6] and the star order on B(H ) [1].

Proposition 2.2. Let C be a C*-algebra acting on a Hilbert space H and

let a, b ∈ C. Then the following conditions are equivalent:

(i) a ¹ b.

(ii) aξ = bξ for any ξ ∈ R(a∗) and a∗ζ = b∗ζ for any ζ ∈ R(a).

(iii) a = bpa∗ and a∗ = b∗pa.

Proof. (i)⇒(ii). If a ¹ b then aa∗ψ = ba∗ψ for any ψ ∈ H . Therefore

aξ = bξ for all ξ ∈ R(a∗). Analogously, a∗ζ = b∗ζ for all ζ ∈ R(a).

(ii)⇒(iii). By (ii), we immediately have apa∗ξ = bpa∗ξ and a∗paξ = b∗paξ
for all ξ ∈ H . Further, apa∗ = (pa∗a∗)∗ = a and a∗pa = (paa)

∗ = a∗ and so (iii)

holds.

(iii)⇒(i). If (iii) holds, then

a∗b = b∗pab = b∗papab = a∗a,

ba∗ = bpa∗b∗ = bpa∗pa∗b∗ = aa∗. ¤

The next proposition describes the basic properties of the star order. Some

of them were published in the case of A being a matrix algebra in [7]. The proof

follows directly from the definition of the star order and will be omitted. Let

us recall that by a *-homomorphism we shall mean an algebraic homomorphism

preserving the involution.

Proposition 2.3. Let a, b be elements of A.

(i) a ¹ b if and only if a∗ ¹ b∗.

(ii) a ¹ b if and only if λa ¹ λb for any λ ∈ C \ {0}.
(iii) If a ¹ b and the element x ∈ A commutes with a and b, then ax ¹ bx.

(iv) If u, v ∈ A are unitary elements, then a ¹ b if and only if uav ¹ ubv.
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(v) If a is a normal element and a ¹ b, then a∗b = ba∗. If, in addition, at least

one of elements a and b is self-adjoint, then a commutes with b.

(vi) If Φ : A → B is a *-homomorphism between proper *-algebras and a ¹ b,

then Φ(a) ¹ Φ(b).

Further simple features of the star order will be discussed in a series of the

following propositions. In particular, we show that the set of all upper bounds

of a given element is convex. Further, we show that the star order is “preserved”

by a tensor product. Finally, we shall discuss the behavior of the star order with

respect to the strong-operator limit.

Proposition 2.4. Let a, b1, and b2 be elements of A. If a ¹ b1 and a ¹ b2,

then a ¹ λb1 + (1− λ)b2 for every λ ∈ C.
Proof. If a ¹ b1 and a ¹ b2, then

a∗(λb1 + (1− λ)b2) = λa∗b1 + (1− λ)a∗b2 = λa∗a+ (1− λ)a∗a = a∗a.

Similarly, (λb1 + (1− λ)b2)a
∗ = aa∗. ¤

Proposition 2.5. Let C be a C*-algebra. If ai, bi ∈ C (i = 1, 2) and ai ¹ bi,

then a1 ⊗ a2 ¹ b1 ⊗ b2 in C ⊗ C.
Proof. From ai ¹ bi and elementary properties of the tensor product, it

follows that

(a1 ⊗ a2)
∗(b1 ⊗ b2) = (a∗1b1)⊗ (a∗2b2) = (a∗1a1)⊗ (a∗2a2) = (a1 ⊗ a2)

∗(a1 ⊗ a2).

Similarly, (b1 ⊗ b2)(a1 ⊗ a2)
∗ = (a1 ⊗ a2)(a1 ⊗ a2)

∗. ¤

Proposition 2.6. Let C be a C*-algebra acting on a Hilbert space. Suppose

that (bα) is a net of elements from C whose limit in the strong-operator topology

is b ∈ C. If a ¹ bα for all α, then a ¹ b.

Proof. If a ¹ bα for all α, then a∗a = a∗bα and aa∗ = bαa
∗. Since the

multiplication is separately continuous in the strong-operator topology, a∗a = a∗b
and aa∗ = ba∗. ¤

We have seen in Proposition 2.3(v) that if a ¹ b (a, b ∈ A) and a is self-

adjoint, then a commutes with b. If we restrict our attention to C*-algebras,

we can strengthen this result even for normal elements. Note that the following

proposition and theorem were proved for the case of B(H ) in [1]. The extension

to C*-algebras is straightforward. Nevertheless, we give alternative proofs based

on C*-algebraic viewpoint.
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Proposition 2.7. Let C be a C*-algebra and let a and b be elements of C.
If a is normal and a ¹ b, then a commutes with b.

Proof. By Gelfand-Naimark theorem, there is a faithful representation π

of C on a Hilbert space H . If a ¹ b, it follows from Proposition 2.3(vi) that

π(a) ¹ π(b). Since a is normal, π(a) has to be normal and so the corresponding

range projection pπ(a) satisfies pπ(a) = pπ(a)∗ . Using this and Proposition 2.2(iii),

we obtain

π(a) = π(b)pπ(a) = pπ(a)π(b).

Therefore

π(a)π(b) = π(b)pπ(a)π(b) = π(b)π(a).

Consequently, a commutes with b. ¤

Theorem 2.8. Let C be a unital C*-algebra and let a and b be normal

elements of C such that a ¹ b. Suppose that f : σ(b)∪{0} → C, where σ(b) is the
spectrum of b, is a continuous function satisfying f(0) = 0. Then f(a) ¹ f(b).

Proof. Since a is normal and a ¹ b, it follows from Proposition 2.7 that a

and b commute. Therefore a, b, and the unit element 1 of C generate a unital

abelian C*-algebra which is *-isomorphic to an algebra C(X) of all continuous

complex-valued functions on a compact Hausdorff topological space X. Let Φ be

a corresponding *-isomorphism from the subalgebra of C onto C(X). Since the

spectrum of a continuous function is the range of the function, we obtain from

simple properties of the star order on functions (see, for example, Proposition 4.1

below) that σ(a) ⊆ σ(b) ∪ {0}, where σ(a) and σ(b) are the spectra of a and b,

respectively. Further, Proposition 2.3(vi) implies that Φ(a) ¹ Φ(b). In addition,

it can be proved (see Proposition 4.1) that Φ(a) ¹ Φ(b) if and only if Φ(a) =

χSupp(Φ(a))Φ(b), where χSupp(Φ(a)) is the characteristic function of Supp(Φ(a)) =

{x ∈ X|Φ(a)(x) 6= 0}. Using the assumption f(0) = 0, we obtain

f
∣∣
σ(a)

◦ Φ(a) = f
∣∣
σ(a)

◦ (χSupp(Φ(a))Φ(b)) = (f
∣∣
σ(b)

◦ Φ(b))χSupp(Φ(a))

which implies f |σ(a) ◦Φ(a) ¹ f |σ(b) ◦Φ(b). Since f |σ(a) ◦Φ(a) = Φ(f |σ(a)(a)) and
f |σ(b) ◦Φ(b) = Φ(f |σ(b)(b)) (see Proposition 4.4.7 in [11]), we have Φ(f |σ(a)(a)) ¹
Φ(f

∣∣
σ(b)

(b)). From this it follows, by Proposition 2.3(vi), that f(a) ¹ f(b). ¤

As a direct consequence of the preceding theorem, it can be shown that the

modulus of an element preserves the star order on a unital C*-algebra C. The

proof is based on the same arguments which have been applied in the case B(H )

(see [1]) and therefore will be omitted. Recall that the modulus |a| of an element

a ∈ C is defined by |a| = √
a∗a.
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Corollary 2.9. Let C be a unital C*-algebra and a, b be elements of C. If

a ¹ b, then |a| ¹ |b|.

3. Star order and partial isometries

In this section, we study the star order on partial isometries of the algebra A.

Recall that u ∈ A is called partial isometry if u = uu∗u. The following statement,

first pointed out by Drazin [5], says that any element less than or equal to a

partial isometry has to be a partial isometry.

Proposition 3.1. If u, v are elements ofA, u ¹ v, and v is a partial isometry,

then u is also partial isometry.

Proof. Since v is a partial isometry, v = vv∗v. By u ¹ v, we have

u∗u = u∗v = u∗vv∗v = u∗uu∗u.

Thanks to this

(u− uu∗u)∗(u− uu∗u) = u∗u− u∗uu∗u− u∗uu∗u+ u∗uu∗uu∗u = 0.

Hence u = uu∗u. ¤

It is easy to see that u ∈ A is a partial isometry if and only if u∗u is a

projection. Indeed, if u is a partial isometry, then u∗u = u∗uu∗u. The converse

implication was shown in the course of the proof of the previous result. Another

equivalent condition is that uu∗ is a projection. The projection u∗u is called

initial projection of u and uu∗ is called final projection of u. We can interpret

the next proposition as an analogue of Proposition 2.2 for partial isometries in A
where the range projections are replaced by initial and final projections.

Proposition 3.2. Let u, v ∈ A be partial isometries. Then u ¹ v if and

only if u = fv = ve, where e = u∗u and f = uu∗.

Proof. If u ¹ v, then

u = uu∗u = uu∗v = fv,

u = uu∗u = vu∗u = ve.

Conversely, if u = fv = ve, then

u∗u = u∗fv = u∗uu∗v = u∗v,

uu∗ = veu∗ = vu∗uu∗ = vu∗. ¤
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Projections e and f in A are said to be equivalent, written e ∼ f , if there is

a partial isometry u in A such that u∗u = e and uu∗ = f . It turns out that the

order of partial isometries implies the equivalence of certain projections and also

the order of the corresponding initial as well as final projections. Let us note that

it follows immediately from the definition of the star order that the projections e

and f satisfy e ¹ f if and only if e ≤ f , where e ≤ f is the standard order on

projections defined by ef = e.

Theorem 3.3. Suppose that ui ∈ A (i = 1, 2) are partial isometries such

that u∗
i ui = ei and uiu

∗
i = fi. If u1 ¹ u2, then

e1 ≤ e2, f1 ≤ f2, and e2 − e1 ∼ f2 − f1.

Proof. From u1 ¹ u2, it follows that u∗
1u1 = u∗

1u2 and u1u
∗
1 = u2u

∗
1. By

this and Proposition 3.2, we have

e1e2 = e1u
∗
2u2 = u∗

1u2 = u∗
1u1 = e1,

f1f2 = f1u2u
∗
2 = u1u

∗
2 = u1u

∗
1 = f1.

Therefore e1 ≤ e2 and f1 ≤ f2. Using Proposition 2.1 and Proposition 3.1, we

see that u = u2 − u1 is a partial isometry satisfying u ¹ u2. Now we show that

u∗u = e2 − e1 and uu∗ = f2 − f1. We have

u∗u = (u2 −u1)
∗(u2 −u1) = u∗

2u2 −u∗
2u1 −u∗

1u2 + u∗
1u1 = u∗

2u2 −u∗
1u1 = e2 − e1,

uu∗ = (u2 −u1)(u2 −u1)
∗ = u2u

∗
2 −u2u

∗
1 −u1u

∗
2 + u1u

∗
1 = u2u

∗
2 −u1u

∗
1 = f2 −f1.

Thus e2 − e1 ∼ f2 − f1. ¤

In the following theorem, partial isometries, which are above a given partial

isometry, are characterized in terms of initial and final projections. A similar

result for partial isometries which are below a fixed partial isometry is proved in

Theorem 3.5.

Theorem 3.4. Suppose that ei, fi ∈ A (i = 1, 2) are projections. Let u1

be a partial isometry such that u∗
1u1 = e1 and u1u

∗
1 = f1. Then the following

conditions are equivalent:

(ii) There is a partial isometry u2 such that u∗
2u2 = e2, u2u

∗
2 = f2, and u1 ¹ u2.

(ii) e1 ≤ e2, f1 ≤ f2, and e2 − e1 ∼ f2 − f1.
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Proof. (i)⇒(ii) follows immediately from the previous theorem.

(ii)⇒(i). If e2 − e1 ∼ f2 − f1, then there is a partial isometry v such that

v∗v = e2 − e1 and vv∗ = f2 − f1. Since

(u∗
1v)

∗(u∗
1v) = v∗u1u

∗
1v = v∗f1v = v∗f1vv∗v = v∗f1(f2−f1)v = v∗(f1−f1)v = 0,

(vu∗
1)

∗(vu∗
1) = u1v

∗vu∗
1 = u1(e2 − e1)u

∗
1 = u1e1(e2 − e1)u

∗
1 = u1(e1 − e1)u

∗
1 = 0,

we have u∗
1v = vu∗

1 = 0. Now we set u2 = u1 + v. It is easily seen (e.g., by

Proposition 2.1) that u1 ¹ u2. Moreover,

u∗
2u2 = (u1 + v)∗(u1 + v) = u∗

1u1 + u∗
1v + v∗u1 + v∗v = e1 + e2 − e1 = e2,

u2u
∗
2 = (u1 + v)(u1 + v)∗ = u1u

∗
1 + u1v

∗ + vu∗
1 + vv∗ = f1 + f2 − f1 = f2.

Thanks to this u2 is a partial isometry with required properties. ¤

Theorem 3.5. Suppose that ei, fi ∈ A (i = 1, 2) are projections. Let u2

be a partial isometry such that u∗
2u2 = e2 and u2u

∗
2 = f2. Then the following

conditions are equivalent:

(i) There is a partial isometry u1 such that u∗
1u1 = e1, u1u

∗
1 = f1, and u1 ¹ u2.

(ii) e1 ≤ e2, f1 ≤ f2, and u2e1 = f1u2.

Proof. (i)⇒(ii). It follows from Theorem 3.3 that e1 ≤ e2 and f1 ≤ f2.

Since u1 ¹ u2, we obtain, by Proposition 3.2, that f1u2 = u2e1.

(ii)⇒(i). Let us set u1 = u2e1. Then

u∗
1u1 = e1u

∗
2u2e1 = e1e2e1 = e1,

u1u
∗
1 = u2e1e1u

∗
2 = u2e1u

∗
2 = f1u2u

∗
2 = f1f2 = f1.

Thus u1 is a partial isometry and, by Proposition 3.2, u1 ¹ u2. ¤

Let us remark that, in the light of Proposition 3.1, the previous theorem

describes the set of all elements underneath a given partial isometry.

A projection e ∈ A is called infinite projection if e ∼ e0 < e for some

projection e0 in A. The following theorem describes the connection between

infinite projections and the star order on partial isometries.

Theorem 3.6. Assume that A has a unit element 1 and fi ∈ A (i = 1, 2)

are projections. Then the following conditions are equivalent:

(i) f2 ∼ f1 < f2.
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(ii) There are partial isometries ui ∈ A (i = 1, 2) such that u1 ≺ u2, u1u
∗
1 =

u∗
2u2 = f1, and u2u

∗
2 = f2.

Proof. (i)⇒(ii). By f2∼f1, there is a partial isometry u2 such that u∗
2u2=f1

and u2u
∗
2 = f2. Put e = u∗

2f1u2. Now we show that e is a projection. Indeed,

e∗ = e. Furthermore,

e2 = u∗
2f1u2u

∗
2f1u2 = u∗

2f1f2f1u2 = u∗
2f1u2.

Thus e is a projection. Further we show that e < f1. Since

u∗
2(1− f1)u2 = ((1− f1)u2)

∗((1− f1)u2),

we have u∗
2(1− f1)u2 ≥ 0. Now suppose that u∗

2(1− f1)u2 = 0. Then

0 = u2u
∗
2(1− f1)u2u

∗
2 = f2(1− f1)f2 = f2 − f1,

which is a contradiction with f1 < f2. Therefore u
∗
2(1−f1)u2 = u∗

2u2−u∗
2f1u2 > 0

and so e < f1. Now let us put u1 = u2e. It remains to show that u1 is a

partial isometry with the required properties. We can compute u1 = u2u
∗
2f1u2 =

f2f1u2 = f1u2. Further,

u∗
1u1 = eu∗

2u2e = ef1e = e,

u1u
∗
1 = f1u2u

∗
2f1 = f1f2f1 = f1.

Hence u1 is a partial isometry. Using Proposition 3.2, we obtain that u1 ¹ u2.

Since f1 < f2, we have u1 6= u2.

Now we show that (ii) ⇒ (i). From u1 ≺ u2 we have, applying Theorem 3.3,

e ≤ f1, f1 ≤ f2, and f1 − e ∼ f2 − f1, where e is the initial projection of u1. If

we suppose that f1 = f2, then, using Proposition 3.2, we can compute

u1 = f1u2 = f2u2 = u2,

which is a contradiction. Thus f1 < f2. ¤

Our results developed in the general context of proper *-algebras may be

applied to a comparison theory of C*-algebras and von Neumann algebras. This

enables us, for example, to characterize infiniteness of C*-algebras in Murray-von

Neumann comparison theory. Let us recall that an element u of a unital C*-

algebra is called coisometry if uu∗ = 1. A unital C*-algebra is called infinite if

its unit element 1 is infinite.

Corollary 3.7. A unital C*-algebra C is infinite if and only if there are

a partial isometry u1 ∈ C and a coisometry u2 ∈ C such that u1 ≺ u2 and

u1u
∗
1 = u∗

2u2.
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4. Infimum problem for function algebras

Let C(X) be a *-algebra of all continuous complex-valued functions on a

Hausdorff topological space X and f ∈ C(X). We shall denote Supp(f) = {x ∈
X|f(x) 6= 0} and Null(f) = {x ∈ X|f(x) = 0}. The characteristic function of a

set M is denoted by χM . Let us remark that, in the case of C(X), the definition

of f ¹ g (f, g ∈ C(X)) is reduced to only one equation ff = fg, where f is the

complex conjugate of f . This definition can be expressed in useful equivalent ways

which are summarized in the following proposition analogous to Proposition 2.1

and Proposition 2.2. A similar result for random variables can be found in [6].

Proposition 4.1. If f, g ∈ C(X), then the following conditions are

equivalent:

(i) f ¹ g.

(ii) f(x) = g(x) for all x ∈ Supp(f).

(iii) f = gχSupp(f).

(iv) There is a function h ∈ C(X) such that fh = 0 and g = f + h.

Proof. (i)⇔(iv) is a special case of Proposition 2.1.

(i)⇒(ii). If f ¹ g, then f(x)f(x) = f(x)g(x) for any x ∈ X. Consequently,

f(x) = g(x) for x ∈ Supp(f).

(ii)⇒(iii). If x ∈ Supp(f), then

f(x) = g(x) = g(x)χSupp(f)(x).

If x ∈ Null(f), then

f(x) = 0 = g(x)χSupp(f)(x).

Since X = Supp(f) ∪Null(f), we obtain f = gχSupp(f).

(iii)⇒(iv) We have

ff = fgχSupp(f) = fχSupp(f)g = fg. ¤

Motivated by the condition (iii) in the preceding proposition, let us concent-

rate on the question of when the function χMf , where f ∈ C(X) and M is an

open subset of X, is continuous.

Proposition 4.2. Let X be a Hausdorff topological space and let M ⊆ X

be open. Assume that f : X → C is continuous. Then χMf is a continuous

function if and only if f vanishes on ∂M .
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Proof. Suppose that χMf is a continuous function. Let z be an element of

∂M . Then there is a net (xα) such that xα ∈ M and xα → z. Moreover, z /∈ M

because M is an open set. Since χMf is a continuous function, we have

f(xα) = (χMf)(xα) → (χMf)(z) = 0.

As f is a continuous function, f(xα) → f(z). Hence f(z) = 0.

For the converse implication suppose now that f vanishes on ∂M . Let us

put g = χMf . It is easy to see that g|M and g|X\M are continuous functions. It

implies (see, for example, [18, Theorem 7.6]) that the function g = χMf = χMf

is continuous. ¤

Consider the functions f1, f2 ∈ C(X). Now we would like to describe the set

of all elements g ∈ C(X) satisfying g ¹ f1 and g ¹ f2 since the infimum f1 ∧ f2
is a maximal element of this set. Denote

Ω = {x ∈ X|f1(x) = f2(x), f1(x) 6= 0},
M = {M |M ⊆ Ω, χMf1 ∈ C(X)}.

It is clear, by Proposition 4.1, that g has the form g = χMf1, where M ∈ M.

Conversely, any element M of M uniquely determines the function g satisfying

g ¹ f1 and g ¹ f2. Therefore we can investigate the set M instead of the set of

all common lower bounds for f1 and f2. Note that M is a nonempty set because

∅ ∈ M.

Lemma 4.3. If M is an element of M, then M is an open set.

Proof. If M ∈ M, then χMf1 is a continuous function and therefore

Null(χMf1) is closed. Moreover, Supp(χMf1) = M . From this it follows that

M = X \Null(χMf1) is an open set. ¤

Proposition 4.4. If M,N are elements of M, then M ∪ N is an element

of M.

Proof. As M and N are open, it is clear that ∂(M ∪N) ⊆ ∂M ∪ ∂N . By

Proposition 4.2, we have that f(x) = 0 for any x ∈ ∂(M ∪ N) and therefore

χM∪Nf1 is continuous. Clearly, M ∪N ⊆ Ω. Hence M ∪N ∈ M. ¤

Let us recall some topological concepts. We say that a family of neighborho-

ods of x in a topological space X is a local base at x if every neighborhood of x

contains a member of the family. A topological space X is called locally connected

if each point of X has a local base consisting of connected open sets. It can be
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shown that X is locally connected if and only if connected components of each

open set are open. The topological space X is called extremely disconnected if

closure of every open set is open. A more detailed treatment of these notions can

be found, for example, in [12], [18].

We have seen in Proposition 4.4 that the family M is closed under forming

finite unions. It implies that the infimum f1∧f2 exists in the case when the family

M has finitely many elements. However, the situation is more complicated if the

family M is infinite. In the sequel, we shall prove that the infimum f1 ∧ f2 exists

in locally connected spaces. Before doing this, we need some auxiliary topological

results.

Lemma 4.5. Let S be an open set in a topological space X and let U be

an open connected subset of X such that S ∩ U 6= ∅ and U \ S 6= ∅. Then there

is z ∈ ∂S such that z ∈ U .

Proof. For a contradiction, suppose that there is no z ∈ ∂S such that

z ∈ U . It implies that

∅ 6= S ∩ U = S ∩ U.

Thus S ∩U and U ∩ (X \ S) = U \ S are nonempty open disjoint sets with union

U . It is a contradiction with connectedness of U . ¤

Lemma 4.6. Let X be a locally connected Hausdorff topological space and

let N be a family of open sets in X. Assume that (xα) is a net of elements of⋃
N∈N N satisfying xα → x, where x ∈ X \⋃N∈N N . Then there is a net (yβ)

such that yβ ∈ ⋃
N∈N ∂N and yβ → x.

Proof. Let Bx be a local base at x consisting of connected open sets. If

xα → x, then for any element U ∈ Bx there is α0 such that xα is an element of U

for any α satisfying α0 ≤ α. For the given element U ∈ Bx there exists N ∈ N
such that U ∩N 6= ∅ and U \N 6= ∅ since xα ∈ ⋃

M∈N M and x ∈ X \⋃M∈N M .

By Lemma 4.5, we have that there exists a point yU ∈ ∂N such that yU ∈ U .

In this way, we can construct the net (yU ), indexed by the elements of Bx, such

that yU ∈ ⋃
N∈N ∂N and yU → x. ¤

Using the previous result, we prove the following theorem which plays a key

role in further discussion. A simple consequence of this theorem is Corollary 4.8

which implies that
⋃

M∈M M is an element of M in the case of a locally connec-

ted topological space. It ensures the existence of the infimum f1 ∧ f2 in locally

connected spaces (see Theorem 4.9).
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Theorem 4.7. Let X be a locally connected Hausdorff topological space

and let f : X → C be a continuous function. If N is a family of open sets such

that χNf is continuous for every N ∈ N , then χMf , where M =
⋃

N∈N N , is

continuous.

Proof. Let M =
⋃

N∈N N . Using Lemma 4.6, we obtain that for z ∈ ∂M

there exists a net (yα) such that yα ∈ ⋃
N∈N ∂N and yα → z. Since χNf is

continuous for any N ∈ N , we have, by Proposition 4.2, that f vanishes on⋃
N∈N ∂N . Thus 0 = f(yα) → f(z) and so f vanishes on ∂M . It follows from

Proposition 4.2 that χMf is a continuous function. ¤

Corollary 4.8. If X is a locally connected Hausdorff topological space and

N ⊆ M, then
⋃

N∈N N ∈ M.

Proof. Denote M =
⋃

N∈N N . From Theorem 4.7, it follows that χMf1 is

a continuous function. Moreover, it is clear that M ⊆ Ω. Hence M ∈ M. ¤

Theorem 4.9. Suppose that f1, f2 ∈ C(X), where X is a locally connected

Hausdorff topological space. Then f1 ∧ f2 exists in C(X). Moreover, f1 ∧ f2 =

χNf1, where N =
⋃

M∈M M .

Proof. Let us put N =
⋃

M∈M M . It follows from Corollary 4.8 that

N ∈ M and so g = χNf1 satisfies g ¹ f1, f2. Now we prove that if h ∈ C(X)

and h ¹ f1, f2, then h ¹ g. Clearly, h = χAf1 where A ∈ M. However, since

N =
⋃

M∈M M , A ⊆ N which implies, by Proposition 4.1, that h ¹ g. ¤

The next result says that the infimum exists in an abelian C*-algebra which

has locally connected spectrum. It follows immediately from Theorem 4.9 and

Proposition 2.3(vi).

Corollary 4.10. Suppose that C is an abelian C*-algebra whose spectrum

is locally connected. Let a and b be elements of C. Then a ∧ b exists.

We have seen that the infimum problem in C(X) has a positive answer when

X is locally connected. Next, we show that there is a positive answer also in the

case of an extremely disconnected space.

Theorem 4.11. Let X be an extremely disconnected Hausdorff topological

space and f1, f2 ∈ C(X). Then f1 ∧ f2 exists. Moreover, f1 ∧ f2 = χNf1, where

N =
⋃

M∈M M .

Proof. Denote N =
⋃

M∈M M . Since X is an extremely disconnected

Hausdorff topological space, N is a clopen set. Thanks to this, χN is a continuous
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function and therefore χNf1 is continuous. Put S = {x ∈ N |f1(x) 6= 0}. It is

clear that χNf1 = χSf1 and S ⊆ Ω. Hence S ∈ M and so S ⊆ N . It can be easily

verified that N ⊆ S. Therefore N = S which implies χNf1 = χNf1. The same

arguments as in the proof of Theorem 4.9 show that g = χNf1 is the infimum

f1 ∧ f2. ¤

The next consequence of Theorem 4.11 follows immediately from the fact

that an abelian AW*-algebra is *-isomorphic to C(X) where X is an extremely

disconnected compact Hausdorff topological space.

Corollary 4.12. Let C be an abelian AW*-algebra and a, b ∈ C. Then a∧ b

exists.

Note that, in the special case of abelian von Neuman algebras, the preceding

result can be proved without using Theorem 4.11. It is well known that an

abelian von Neumann algebra is *-isomorphic to L∞(Γ, µ) for which the proof is

straighforward.

The results of this section, concerning the infimum problem for two functions,

can be easily generalized to the infimum problem for an arbitrary subset of C(X).

Indeed, let (fα)α∈A be a family of elements of C(X). For fixed β ∈ A, we can

denote

Ω = {x ∈ X|fβ(x) = fα(x) for all α ∈ A \ {β}, fβ(x) 6= 0},
M = {M |M ⊆ Ω, χMfβ ∈ C(X)}

and repeat the discussion given in this section. From this, we conclude that the

infimum of an arbitrary subset of C(X) exists if X is a locally connected or an

extremely disconnected Hausdorff topological space.

5. Supremum problem for function algebras

Let us investigate the supremum problem for a *-algebra C(X) of all continu-

ous complex-valued functions on a Hausdorff topological space. In the following

theorem, we show that the supremum of f1, f2 ∈ C(X) exists if and only if there

is a common upper bound for f1 and f2.

Theorem 5.1. Let f1 and f2 be elements of C(X). The supremum f1 ∨ f2
exists if and only if there is h ∈ C(X) such that f1, f2 ¹ h.

Proof. If f1 ∨ f2 exists, then f1, f2 ¹ f1 ∨ f2.

Let us prove the reverse implication. Denote M1 = Supp(f1) and M2 =

Supp(f2). Obviously, M1 and M2 are open. If there is h ∈ C(X) such that
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f1, f2 ¹ h, then f1 = χM1
h and f2 = χM2

h. By Proposition 4.2, h vanishes

on ∂M1 ∪ ∂M2 and so the inclusion ∂(M1 ∪ M2) ⊆ ∂M1 ∪ ∂M2 implies that

g = χM1∪M2
h is continuous. Now we prove that g = f1 ∨ f2. It is clear that

f1, f2 ¹ g. If there is g̃ ∈ C(X) such that f1, f2 ¹ g̃, then h(x) = f1(x) = g̃(x)

for x ∈ M1 and h(x) = f2(x) = g̃(x) for x ∈ M2. Therefore g̃(x) = h(x) for

x ∈ M1 ∪M2. Hence g = χM1∪M2
h = χM1∪M2

g̃. Thus g ¹ g̃. ¤

We have seen in the previous theorem that, unlike the infimum problem,

there is no restriction on the topological space X in the case of the supremum

problem of two (and so finitely many) functions. In the sequel, we shall see that

the supremum problem for an arbitrary subset of C(X) has a positive answer if

X is locally connected or hyperstonean (for definition of the hyperstonean space

see, for example, [8]).

Theorem 5.2. Let X be a locally connected Hausdorff space. Suppose

that (fα)α∈A is a family of elements of C(X). Then the following conditions are

equivalent:

(i) There exists
∨

α∈A fα.

(ii) There is h ∈ C(X) such that fα ¹ h for any α ∈ A.
Proof. (i)⇒(ii). Let us put N = {N |N = Supp(fα), α ∈ A} and M =⋃

N∈N N . Since fα ¹ h for each α ∈ A, we have χNh is continuous for every

N ∈ N . By Theorem 4.7, the function g = χMh is continuous. Similarly to the

proof of Theorem 5.1, we can verify that the function g is the supremum of the

family (fα)α∈A.
(ii)⇒(i) is clear. ¤

Corollary 5.3. Suppose that C is an abelian C*-algebra with a locally con-

nected spectrum and (aα)α∈A is a family of elements of C. Then the following

conditions are equivalent:

(i) There exists
∨

α∈A aα.

(ii) There is b ∈ C such that aα ¹ b for any α ∈ A.
Let us note that we can easily prove the analogue of the preceding result in

the case of abelian von Neumann algebras (i.e., in the case of C(X), where X is

hyperstonean) using the fact that an abelian von Neumann algebra is *-isomorphic

to L∞(Γ, µ).

We say that a poset L is boundedly complete if any bounded subset of L has

an infimum and a supremum. Since a lower bound (with respect to the star order)

of any subset of C(X) is a function identically equal to zero, every subset, which
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has upper bound, is bounded. Thus, combining results of last two sections, we

obtain that the poset C(X), where X is a locally connected Hausdorff topological

space, is boundedly complete. On the other hand, it is well known (see [11],

[17]) that C(X) endowed with the usual order is boundedly complete if and only

if X is an extremely disconnected topological space. We can conclude that C(X)

endowed with the star order forms a boundedly complete poset under the quite

different condition than in the case of the usual order.
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