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Descending maps between slashed tangent bundles

By IOAN BUCATARU (Iasi) and MATIAS F. DAHL (Helsinki)

Abstract. Suppose TM \{0} and TM̃ \{0} are slashed tangent bundles of smooth

manifolds M and M̃ , respectively. In this paper we first give a differential-topological

characterization of those diffeomorphisms F : TM \{0} → TM̃ \{0} that can be written

as F = (Dφ)|TM\{0} for a diffeomorphism φ : M → M̃ . When this is the case we say

that F descends. Using the characterization we obtain two geometric results. First, if M

is equipped with two sprays, we obtain sufficient conditions that imply that F descends

to a totally geodesic map. Second, if M has two Riemann metrics, we obtain sufficient

conditions for F to descend to an isometry.

1. Introduction

In this paper we study the following differential-topological problem:

(∗) Suppose M and M̃ are smooth manifolds, and suppose that F is a diffeo-

morphism between slashed tangent bundles

F : TM \ {0} → TM̃ \ {0}. (1)

Characterize those maps F that can be written as F = (Dφ)|TM\{0} for a

diffeomorphism φ : M → M̃ , where Dφ is the tangent map of φ. When

F = (Dφ)|TM\{0} one say that map F descends to a map φ : M → M̃ [8].
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Problem (∗) is related to anisotropic boundary rigidity problems on Riemannian

manifolds [8], [27], [23]. It can also be seen as a differential-topological compo-

nent of the geodesic conjugacy problem in Riemann geometry, which asks the

following: If F : TM \{0} → TM̃ \{0} maps integral curves of one Riemann met-

ric into integral curves of another Riemann metric, what additional assumptions

are required for F to be induced by an isometry. For an overview, see [2].

Let us first note that if f is a diffeomorphism between (unslashed) cotangent

bundles

f : T ∗M → T ∗M̃,

the analogous problem is well understood. Namely, f descends into a diffeomor-

phism ψ : M̃ → M if and only if f preserves the canonical 1-forms on T ∗M and

T ∗M̃ , respectively. This result characterizes diffeomorphic symplectomorphisms

between cotangent bundles that arise from diffeomorphisms between the base

manifolds. The result can be seen as a consequence of Euler’s theorem for homo-

geneous functions. Alternatively, f defines a map betweenM and M̃ since f maps

zero covectors to zero covectors [1], [11], [17], [21], [9]. When f is only defined

between slashed cotangent bundles this characterization is no longer valid [29].

In this work we study maps F as in equation (1). Hence F is defined and

smooth only for non-zero vectors. In this case the problem is more difficult since

we can not use the zero section to define a map φ : M → M̃ . We can neither

use Euler’s theorem for homogeneous functions to deduce that F is linear in

the fibre variable. Our first main result is Theorem 3.1. It states that if F is

a diffeomorphism F : TM \ {0} → TM̃ \ {0}, then F = (Dφ)|TM\{0} for a

diffeomorphism φ : M → M̃ if and only if

DF = κ̃2 ◦DF ◦ κ2, (2)

where κ2 and κ̃2 are the canonical involutions on TTM and TTM̃ (Section 2.2).

One can interpret Theorem 3.1 as an analogue to Poincaré’s lemma for diffeo-

morphisms; if the derivative of diffeomorphism F satisfies algebraic condition (2),

then F can be written as the derivative of another diffeomorphism. This gives a

solution to Problem (∗).
As an application of Theorem 3.1 we prove Theorems 6.2 and 7.3, which

give sufficient geometric conditions for a map to descend. Assuming that M has

two sprays, Theorem 6.2 gives sufficient conditions that imply that F descends

to a totally geodesic map φ : M → M (Section 5.2). Assuming further that

the sprays are induced by two Riemann metrics, we obtain Theorem 7.3, which

gives sufficient conditions that imply that F descends to an isometry φ : M → M .
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There are two key assumptions in both theorems. The first key assumption is that

F maps non-zero Jacobi fields into non-zero Jacobi fields. This means that both

theorems essentially describe to what extent Jacobi fields determine the spray

(or Riemann metric) [18]. Let us point out that Jacobi fields and curvature are

related. However, they are also different, since the covariant derivative is needed

to relate one to the other. For results on the relation between curvature and

the Riemann metric, see [14], [31], and the Cartan–Ambrose–Hicks theorem [7].

For the real-analytic case, see also [13] and [22]. The second key assumption is

that one of the Riemann metrics in Theorem 7.3, say g, (or one of the sprays

in Theorem 6.2) has a trapping hypersurface Σ ⊂ M , that is, a hypersurface

that intersects all geodesics of g. The existence of such a surface imposes a

global restriction on the behaviour of geodesics. For example, there can be no

closed geodesics that do no intersect Σ. This concept is analogous to non-trapping

manifolds with boundary [10], which is a natural setting when studying boundary

rigidity problems.

Lastly we note that if F satisfies the assumptions in Theorem 7.3, then F

necessarily maps integral curves into integral curves (see Step 1 in the proof of

Theorem 6.2). Hence Theorem 7.3 is also a contribution to understanding the

geodesic conjugacy problem. We emphasize that in Theorem 7.3, there are no

local assumptions on curvature, and the base manifold M can have any dimension

dimM ≥ 2.

2. Preliminaries

By a manifold M we mean a topological Hausdorff space with countable

base that is locally homeomorphic to Rn with C∞-smooth transition maps and

n = dimM ≥ 1. All objects are assumed to be C∞-smooth where defined.

The next sections collect results about iterated tangent bundles we will need.

For a more detailed discussion and references we refer to [4], [5].

2.1. Iterated tangent bundles. If M is a manifold, let TM be the tangent

bundle of M . For r ≥ 0, the rth iterated tangent bundle T rM is defined induc-

tively by setting T rM = M when r = 0, and T rM = T (T r−1M) when r ≥ 1.

Let πr be the canonical projection operators πr : T r+1M → T rM when r ≥ 0.

Occasionally we also write πTTM→M , πTM→M , . . . instead of π0 ◦π1, π0, . . . . Un-

less otherwise specified, we always use canonical local coordinates (induced by

local coordinates on M) for iterated tangent bundles. If xi are local coordina-

tes for M , we denote induced local coordinates for TM , TTM , and TTTM by
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(x, y), (x, y,X, Y ) and (x, y,X, Y, u, v, U, V ). As above, we usually leave out in-

dices for local coordinates and write (x, y) instead of (xi, yi). For p ∈ M let

TpM = π−1
0 (p).

For r ≥ 1, we treat T rM as a vector bundle over the manifold T r−1M with

the vector space structure induced by projection πr−1 : T rM → T r−1M . Thus,

if {xi : i = 1, . . . , 2r−1n} are local coordinates for T r−1M , and (x, y) are local

coordinates for T rM , then vector addition and scalar multiplication are given by

(x, y) + (x, ỹ) = (x, y + ỹ), (3)

λ · (x, y) = (x, λy). (4)

For r ≥ 0, a vector field on an open set B ⊂ T rM is a smooth map X : B →
T r+1M such that πr ◦X = idB . The set of all vector fields on B is denoted by

X(B). Suppose that γ is a smooth map γ : (−ε, ε)k → T rM where k ≥ 1 and

r ≥ 0. If γ(t1, . . . , tk) = (zi(t1, . . . , tk)) in local coordinates (zi) for T rM , then

the derivative of γ with respect to variable tj is the map ∂tjγ : (−ε, ε)k → T r+1M

defined by ∂tjγ = (zi, ∂zi/∂tj). When k = 1 we also write γ′ = ∂tγ and say that

γ′ is the tangent of γ. If f : T rM → T sM̃ (r, s ≥ 0) is a map between iterated

tangent bundles

(f ◦ c)′(t) = Df ◦ c′(t), t ∈ I. (5)

Unless otherwise stated we always assume that I is an open interval in R (and

we do not exclude unbounded intervals).

If ξ ∈ T rM for r ≥ 2, then there exists a map V : (−ε, ε)2 → T r−2M such

that

ξ = ∂t∂sV (t, s)|t=s=0. (6)

2.2. Canonical involution. On the iterated tangent bundle T rM where r ≥ 2

the canonical involution is the unique diffeomorphism κr : T rM → T rM such

that

∂s∂tc(t, s) = κr ◦ ∂t∂sc(t, s) (7)

for all smooth maps c : (−ε, ε)2 → T r−2M . Let also κ1 = idTM . In local

coordinates for TTM and TTTM , it follows that

κ2(x, y,X, Y ) = (x,X, y, Y ),

κ3(x, y,X, Y, u, v, U, V ) = (x, y, u, v,X, Y, U, V ).

For any r ≥ 1, we have

πr ◦ κr+1 = Dπr−1, (8)

πr−1 ◦ πr ◦ κr+1 = πr−1 ◦ πr. (9)
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If φ is a map φ : M → M̃ , then equations (5), (6), and (7) imply that

κ̃2 ◦DDφ ◦ κ2 = DDφ. (10)

As in equation (10) we denote involution operators on T rM and T rM̃ by κr and

κ̃r, respectively. Similarly, we denote projection operators by πr and π̃r.

2.3. Slashed tangent bundles. The slashed tangent bundle for M is defined

as the open set of non-zero vectors,

TM \ {0} = {ξ ∈ TM : ξ 6= 0}.

For r ≥ 2 we generalize and define

T rM \ {0} = {ξ ∈ T rM : (DπT r−1M→M )(ξ) ∈ TM \ {0}}.

When r ≥ 2, κr restricts to a diffeomorphism

κr : T rM \ {0} → T (T r−1M \ {0}). (11)

If F is a map F : TM \ {0} → TM̃ \ {0}, then

κ̃3 ◦DDF ◦ κ3 = DDF on TT (TM \ {0}). (12)

3. A differential-topological characterization

Theorem 3.1 below is the first main result in this paper. The theorem is a

differential-topological characterization of descending maps between slashed tan-

gent bundles.

Theorem 3.1. Suppose M and M̃ are smooth manifolds. If F is a smooth

map F : TM \ {0} → TM̃ \ {0}, then the following conditions are equivalent:

(i) There exists a smooth map φ : M → M̃ such that

F = (Dφ)|TM\{0}.

(ii) On TTM \ {0} ∩ T (TM \ {0}),

DF = κ̃2 ◦DF ◦ κ2.

What is more, if F is a diffeomorphism, and φ exists, then φ is a diffeomorphism.
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Let us make three remarks about Theorem 3.1 assuming that φ exists. First,

when φ exists, it is unique, and the following diagram commutes:

TM \ {0} F //

π0

²²

TM̃ \ {0}
π̃0

²²
M

φ
// M̃

Second, since F is a map between slashed tangent bundles, φ is necessarily an

immersion. Thus, if dimM = dim M̃ , the inverse function theorem implies that φ

is a local diffeomorphism. Third, if φ is a diffeomorphism, then equation F = Dφ

extends F into a (smooth) diffeomorphism F : TM → TM̃ .

Theorem 3.1 is a direct consequence of the next two lemmas; implication (ii)

⇒ (i) follows by Lemma 3.2, the last claim follows by Lemma 3.3, and the easy

implication (i) ⇒ (ii) follows by equation (10).

Lemma 3.2. Let F be a smooth map F : TM \{0} → TM̃ \{0} that satisfies
condition (ii) in Theorem 3.1, and let φ be the set-valued map φ : M → P (M̃),

φ(p) = π̃0 ◦ F (TpM \ {0}), p ∈ M,

where P (M̃) is the power set of M̃ . Then

(i) φ defines a smooth single-valued map φ : M → M̃ ,

(ii) F = (Dφ)|TM\{0}.

Proof. To show that φ is single-valued we show that map

C : TpM \ {0} → M̃ ,

C(ξ) = π̃0 ◦ F (ξ), ξ ∈ TpM \ {0},

is constant when p ∈ M is fixed. If ξ, η ∈ TpM \ {0} we can find a w ∈ TTM \
{0} ∩ T (TM \ {0}) such that π1(w) = ξ and Dπ0(w) = η. Using equations (8)

and (9), and the assumption on DF we have

C(ξ) = π̃0 ◦ F ◦ π1(w) = π̃0 ◦ π̃1 ◦DF (w) = π̃0 ◦ π̃1 ◦ κ̃2 ◦DF ◦ κ2(w)

= π̃0 ◦ π̃1 ◦DF ◦ κ2(w) = π̃0 ◦ F ◦ π1 ◦ κ2(w) = C(η),

and φ defines a single-valued map φ : M → M̃ . If p ∈ M , and U is a non-vanishing

vector field U ∈ X(B) defined in a neighborhood B ⊂ M of p, then

φ(x) = π̃0 ◦ F ◦ U(x), x ∈ B,
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and φ is smooth near p. To prove (ii), let ξ ∈ TpM \ {0}, and let U be a

non-vanishing vector field defined near p such that U(p) = ξ. Starting from

Dφ(ξ) = D(π̃0 ◦ F ◦ U)(ξ), a similar calculation used to prove that map C is

constant shows that Dφ(ξ) = F (ξ). ¤
Lemma 3.3. If F : TM \ {0} → TM̃ \ {0} is a diffeomorphism, and F =

(Dφ)|TM\{0} for a smooth map φ : M → M̃ , then φ is a diffeomorphism.

Proof. Since F is a diffeomorphism, we have dimM = dim M̃ , and by the

inverse function theorem, φ is a local diffeomorphism. If ξ ∈ TTM̃ \{0}∩T (TM̃ \
{0}), then there exists a ζ ∈ T (TM \ {0}), such that ξ = DF (ζ). If ζ = γ′(0) for
a curve γ : (−ε, ε) → TM \ {0}, equation (5) yields 0 6= Dπ̃0(ξ) = Dφ ◦Dπ̃0(ζ).

Hence ζ ∈ TTM \ {0} ∩ T (TM \ {0}), so DF (ζ) = κ̃2 ◦DF ◦ κ2(ζ), and

κ2 ◦D(F−1) ◦ κ̃2(ξ) = D(F−1)(ξ).

By Lemma 3.2, there is a smooth map ρ : M̃ → M such that F−1 = Dρ|
TM̃\{0}.

Since ρ ◦ φ = id|M and φ ◦ ρ = id |
M̃
, it follows that φ is a diffeomorphism. ¤

4. Sprays

The motivation for studying sprays is that they provide a unified framework

for studying geodesics for Riemannian metrics, Finsler metrics, and non-linear

connections. See [6], [24], [25]. Following [4], [5] we next define a spray on an

iterated tangent bundle T rM .

Definition 4.1. Let r ≥ 0. Then a spray on T rM is a vector field S ∈
X(T r+1M \ {0}) such that κr+2 ◦S = S and [S,Cr+1] = S, where Cr ∈ X(T rM),

r ≥ 1 is the Liouville vector field defined by

Cr(ξ) = ∂t(ξ + tξ)|t=0, ξ ∈ T rM.

If (x, y,X, Y ) are local coordinates for T r+2M then a spray S can be writ-

ten as

S(x, y) = (x, y, y,−2Gi(x, y)) = yi
∂

∂xi
− 2Gi(x, y)

∂

∂yi
(13)

for locally defined component functions Gi : T r+1M \{0} → R that are positively

2-homogeneous. That is,

Gi(λy) = λ2Gi(y), λ > 0.

A curve c : I → T rM is regular if c′(t) ∈ T r+1M \ {0} for all t ∈ I. That is,

curve c is regular if and only if its projection πT rM→M ◦ c : I → M is regular.
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Definition 4.2. If S is a spray on T rM for r ≥ 0, a regular curve c : I → T rM

is a geodesic if

c′′ = S ◦ c′.
That is, a regular curve c is a geodesic of spray S if and only if c′ is an integral

curve of S. Conversely, suppose that γ : I → T r+1M \ {0} is an integral curve

of S, whence γ′ = S ◦ γ. Since κr+2 ◦ S = S, there is a geodesic c : I → T rM ,

c = πr ◦ γ such that γ = c′.
Any geodesic c : I → T rM of a spray S is uniquely determined by c′(t0) for

one t0 ∈ I. The geodesic flow of a spray S is defined as the flow of S as a vector

field, and a spray is complete if S is complete as a vector field.

If S is locally written as in equation (13) and c(t) = (xi(t)), then c is a

geodesic if and only if

ẍi(t) + 2Gi ◦ c′(t) = 0.

4.1. Jacobi fields. We define Jacobi fields for a spray using the complete lift

following [4], [5]. See also [16], [20], [30].

Definition 4.3. The complete lift of a spray S on M is the spray Sc ∈
X(TTM \ {0}) on TM given by

Sc = Dκ2 ◦ κ3 ◦DS ◦ κ2. (14)

Suppose that S is locally given by equation (13). Then Sc is locally given by

Sc =
(
x, y,X, Y,X, Y,−2Ai(x, y,X, Y ),−2Bi(x, y,X, Y )

)

= Xi ∂

∂xi
+ Y i ∂

∂yi
− 2Ai(x, y,X, Y )

∂

∂Xi
− 2Bi(x, y,X, Y )

∂

∂Y i
,

where Ai and Bi are vertical and complete lifts of functions Gi [5],

Ai(x, y,X, Y ) = Gi(x,X),

Bi(x, y,X, Y ) =
∂Gi

∂xa
(x,X)ya +

∂Gi

∂ya
(x,X)Y a.

Spray Sc is complete if and only if spray S is complete.

Definition 4.4. Suppose S is a spray on M . A Jacobi field for S is a geodesic

J : I → TM of Sc.

If J : I → TM is a Jacobi field for S, then curve c : I → M , c = π0 ◦ J is

a geodesic for S and we say that J is a Jacobi field along c. Next we show that

Definition 4.4 coincides with the usual characterization of Jacobi fields in terms

of geodesic variations. For proofs and discussions, see [4], [5].
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Definition 4.5. Suppose S is a spray on M , and c : I → M is a geodesic

for S. Then a geodesic variation of c is a smooth map V : I × (−ε, ε) → M such

that

(i) V (t, 0) = c(t) for all t ∈ I,

(ii) t 7→ V (t, s) is a geodesic for all s ∈ (−ε, ε).

Suppose that I is a closed interval. Then we say that a curve J : I → TM is

a Jacobi field if we can extend J into a Jacobi field defined on an open interval.

Similarly, a map V : I × (−ε, ε) → M is a geodesic variation if there is a geodesic

variation V ∗ : I∗ × (−ε∗, ε∗) → M such that V = V ∗ on the common domain

of V and V ∗ and I ⊂ I∗.

Proposition 4.6. Let S be a spray on M , let J : I → TM be a curve, where

I is open or closed, and let c : I → M be the curve c = π0 ◦ J .
(i) If J can be written as

J(t) = ∂sV (t, s)|s=0, t ∈ I (15)

for a geodesic variation V : I× (−ε, ε) → M , then J is a Jacobi field along c.

(ii) If I is compact and J is a Jacobi field along c, then there exists a geodesic

variation V : I × (−ε, ε) → M such that equation (15) holds.

Remark 4.7 (Zero Jacobi field). If c : I → M is a geodesic for a spray S,

then the zero Jacobi field along c is the Jacobi field J : I → TM that is locally

induced by the constant geodesic variation V (t, s) = c(t). Globally,

J(t) = Dπ0 ◦ C1 ◦ c′(t), t ∈ I.

If zeroes of a Jacobi fields converge, then the Jacobi field is a zero Jacobi field.

5. Maps that preserve structure

Throughout this section we assume that S and S̃ are sprays on manifolds

M and M̃ , respectively. We proceed by studying maps that preserve (i) integral

curves, (ii) geodesics, and (iii) Jacobi fields. In Section 7.1 we will also study

maps between Riemann manifolds that preserve inner products.
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5.1. Maps that preserve integral curves. We say that a map

F : TM \ {0} → TM̃ \ {0}

preserves integral curves if F ◦γ : I → TM̃ \{0} is an integral curve of S̃ whenever

γ : I → TM \ {0} is an integral curve of S. When such a map F exists, we say

that sprays S and S̃ are conjugate. Condition (iii) in the next proposition shows

that this corresponds to the usual definition of geodesic conjugacy in Riemann

geometry [8], [27], [2].

Proposition 5.1. Suppose F is a smooth map F : TM \ {0} → TM̃ \ {0}.
Then the following conditions are equivalent:

(i) F preserves integral curves.

(ii) S̃ ◦ F = DF ◦ S on TM \ {0}.
(iii) If Φt and Φ̃t are geodesic flows of S and S̃, respectively, then the following

diagram commutes:

TM \ {0} F //

Φt

²²

TM̃ \ {0}

Φ̃t

²²
TM \ {0}

F
// TM̃ \ {0}

5.2. Maps that preserve geodesics. We say that a map

φ : M → M̃

is a totally geodesic map if φ ◦ c : I → M̃ is a geodesic for S̃ whenever c : I → M

is a geodesic for S [13, Chapter 6].

In Definition 4.2, we assume that geodesics are regular curves. If φ is a totally

geodesic map, we can therefore restrict Dφ to a map Dφ : TM \{0} → TM̃ \{0}.
Hence every totally geodesic map φ is an immersion, and if dimM = dim M̃ , then

φ is also a local diffeomorphism. The definition of a totally geodesic map does

not depend on derivatives of φ. However, if φ : M → M̃ is a homeomorphism, it

follows that φ is a diffeomorphism [3].

Proposition 5.2. Suppose φ : M → M̃ is a smooth immersion. Then φ

is a totally geodesic map if and only if restriction Dφ : TM \ {0} → TM̃ \ {0}
preserves integral curves.
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5.3. Maps that preserve Jacobi fields. We say that a map

F : TM \ {0} → TM̃ \ {0}

preserves Jacobi fields if for any Jacobi field J : I → TM \ {0} without zeroes,

J̃(t) = F ◦ J(t), t ∈ I (16)

is a Jacobi field J̃ : I → TM̃ \ {0} without zeroes.

In the above definition, we only apply F to Jacobi fields without zeroes. The

next proposition shows that we can still map Jacobi fields with isolated zeroes.

Proposition 5.3. Suppose S̃ is complete, dimM ≥ 2, and F is a map

F : TM \{0} → TM̃ \{0} that preserves Jacobi fields. If J : R→ TM is a Jacobi

field for S that is not identically zero, then there exists a Jacobi field J̃ : R→ TM̃

for S̃ such that

J̃ ′(t) = DF ◦ J ′(t), t ∈ R \ Z, (17)

where Z = {t ∈ R : J(t) = 0}.
The proof of Proposition 5.3 is slightly technical and is given in Appendix A.

The idea of the proof is to approximate a Jacobi field J with an isolated zero by

a variation of Jacobi fields without zeroes (see Lemma A.1). Then F maps each

non-zero Jacobi field in the variation into a non-zero Jacobi field, and a continuity

argument shows that there exists a Jacobi field J̃ as in equation (17).

Proposition 5.4. Suppose that map F : TM \ {0} → TM̃ \ {0} preserves

integral curves, and suppose that J : I → TM is a Jacobi field for S. Then curve

J̃ : I → TM̃ ,

J̃ ′(t) = κ̃2 ◦DF ◦ κ2 ◦ J ′(t), t ∈ I

is a Jacobi field for S̃.

Proof. Equation (11) shows that curve J̃ ′ : I → TTM̃ \ {0} is smooth.

Proposition 5.1 and equations (11), (12) and (14) imply that

S̃c ◦ (κ̃2 ◦DF ◦ κ2) = D(κ̃2 ◦DF ◦ κ2) ◦ Sc on TTM \ {0},

and κ̃2 ◦DF ◦ κ2 maps integral curves of Sc into integral curves of S̃c. ¤

The next proposition is analogous to Proposition 5.2.

Proposition 5.5. Suppose φ : M → M̃ is a smooth immersion. Then φ

is a totally geodesic map if and only if restriction Dφ : TM \ {0} → TM̃ \ {0}
preserves Jacobi fields.
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Proof. If φ is totally geodesic, then Propositions 5.2 and 5.4 imply that

Dφ preserves Jacobi fields. For the converse direction, suppose that Dφ preserves

Jacobi fields and c : I → M is a geodesic for S. Then c′ is a Jacobi field for S, so

(Dφ)◦c′ is a Jacobi field for S̃, and c̃ = π̃0 ◦(φ◦c)′ = φ◦c is a geodesic c̃ : I → M̃

for S̃. ¤

6. Descending maps for sprays

In this section we prove Theorem 6.2, which gives sufficient conditions for a

map F : TM \{0} → TM \{0} to descend to a totally geodesic map between two

sprays. To formulate the assumptions in Theorem 6.2 we need the concept of a

trapping hypersurface. This term is adapted from the concept of a non-trapping

manifold with boundary.

Definition 6.1. Suppose S is a spray on a manifoldM . A hypersurface Σ ⊂ M

is a trapping hypersurface for S if for any y ∈ TM \ {0} there exists a geodesic

c : I → M such that c′(0) = y and c(t) ∈ Σ for some t ∈ I.

The existence of a trapping hypersurface Σ imposes a global restriction on

the behavior of geodesics. Namely, every geodesic has to intersect Σ. An interp-

retation is that if geodesics describe propagation of light, then the whole manifold

is visible from the trapping hypersurface.

One way to construct a spray with a trapping hypersurfaces one can start

with two sprays on a manifold B with boundary ∂B. Using a smooth double one

can glue together two copies of B by identifying their boundary points. This

gives a smooth manifold M without boundary that contains two copies of the

interior of B and one copy of boundary ∂B. See [12], [15], or [19]. Assuming that

the two sprays are nontrapping (see [10] for the Riemann case), and assuming

that they satisfy suitable compatibility conditions on the boundary, one can glue

together the sprays into a spray on M such that boundary ∂B ⊂ M is a trapping

hypersurface. For example, any great circle on the 2-sphere with the induced

Euclidean metric is a trapping hypersurface.

Theorem 6.2. Suppose S and S̃ are complete sprays on a manifold M with

dimM ≥ 2. Furthermore, suppose that there exists a smooth map F : TM\{0} →
TM \ {0} and a trapping hypersurface Σ ⊂ M for S such that

(i) F maps Jacobi fields for S into Jacobi fields for S̃ (see Section 5.3),
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(ii) for all p ∈ Σ,

S(y) = S̃(y), y ∈ TpM \ {0}, (18)

DF (ξ) = ξ, ξ ∈ T (TpM \ {0}). (19)

Then there exists a smooth map φ : M → M such that

(i) F = (Dφ)|TM\{0},

(ii) φ is a totally geodesic map (that maps geodesics for S into geodesics for S̃).

What is more, if F is a diffeomorphism, then φ is a diffeomorphism.

In the proof below, Subcase B also proves Subcase A. However, Subcase A

is included as it illustrates the main argument with minimal technical detail.

Proof. The proof is divided into two steps:

Step 1: Map F maps integral curves of S into integral curves of S̃.

Let c′ : R→ TM \ {0} be an integral curve of S, where c is a geodesic c : R→ M

of S. Then c′ is a non-zero Jacobi field for S, and by assumption 6.2, J = F ◦ c′,
J : R → TM \ {0} is a Jacobi field of S̃ without zeroes. Since Σ is trapping,

there exists a t0 ∈ R such that c(t0) ∈ Σ. By equations (5) and (19), we have

J ′(t0) = c′′(t0). If η : R → TM \ {0} is the integral curve of S̃ determined by

η(t0) = c′(t0), then η′(t0) = S̃ ◦ η(t0) = J ′(t0) by equation (18). Thus Jacobi

fields η and J coincide and J is an integral curve of S̃.

Step 2: If ξ ∈ TTM \ {0} ∩ T (TM \ {0}) we claim that

DF (ξ) = κ2 ◦DF ◦ κ2(ξ). (20)

If equation (20) holds, Theorem 3.1 implies that F = (Dφ)|TM\{0} for a map

φ : M → M , whence assumption 6.2 and Proposition 5.5 imply that φ is totally

geodesic. (Alternatively, one can use Step 1 and Proposition 5.2.) The last claim

follows by Theorem 3.1.

To prove equation (20), let J : R→ TM be the Jacobi field with J ′(0) = ξ,

and let c : R→ M be the geodesic c = π0 ◦J . Since Σ is a trapping hypersurface,

there is a t0 ∈ R such that c(t0) ∈ Σ.

Subcase A: J(t0) 6= 0.

Propositions 5.3 and 5.4 imply that there exist Jacobi fields J1, J2 : R→ TM for

S̃ such that

J ′
1(t) = DF ◦ J ′(t), when t ∈ R and J(t) 6= 0,

J ′
2(t) = κ2 ◦DF ◦ κ2 ◦ J ′(t), when t ∈ R.
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Since J(t0) 6= 0, we have

J ′(t0) ∈ T (Tc(t0)M \ {0}),

and since t 7→ J(t) is regular, we also have

κ2 ◦ J ′(t0) ∈ T (Tc(t0)M \ {0}).

Since c(t0) ∈ Σ, equation (19) implies that J ′(t0) = J ′
1(t0) = J ′

2(t0). Hence

J1 = J2. Since J(0) 6= 0, it follows that

DF (ξ) = J ′
1(0) = J ′

2(0) = κ2 ◦DF ◦ κ2(ξ).

Subcase B: J(t0) arbitrary.

Let j : R× (−ε, ε) → TM , be the map

j(t, s) = J(t) + sc′(t), (t, s) ∈ R× (−ε, ε).

Now j(·, s) is a Jacobi field (with only isolated zeroes) for all s ∈ (−ε, ε). If

s ∈ (−ε, ε) \ {0}, Propositions 5.3 and 5.4 imply that there exist Jacobi fields

j1(·, s), j2(·, s) : R→ TM for S̃ such that

∂tj1(t, s) = DF ◦ ∂tj(t, s), when t ∈ R and j(t, s) 6= 0,

∂tj2(t, s) = κ2 ◦DF ◦ κ2 ◦ ∂tj(t, s), when t ∈ R.

Let ε > 0 be such that j(t0, s) 6= 0 and j(0, s) 6= 0 for all s ∈ (−ε, ε) \ {0}. Then

∂tj(t0, s) ∈ T (Tc(t0)M \ {0}), s ∈ (−ε, ε) \ {0},

and since t 7→ j(t, s) is regular, we also have

κ2 ◦ ∂tj(t0, s) ∈ T (Tc(t0)M \ {0}), s ∈ (−ε, ε) \ {0}.

Since c(t0) ∈ Σ, equation (19) implies that ∂tj(t0, s) = ∂tj1(t0, s) = ∂tj2(t0, s) for

all s ∈ (−ε, ε) \ {0}, so j1(·, s) = j2(·, s) for all s ∈ (−ε, ε) \ {0}. Let Ξ be the

smooth curve Ξ : (−ε, ε) → TTM \ {0},

Ξ(s) = ∂tj(t, s)|t=0, s ∈ (−ε, ε).

Then

DF ◦ Ξ(s) = κ2 ◦DF ◦ κ2 ◦ Ξ(s), s ∈ (−ε, ε) \ {0}, (21)

and equation (20) follows since both sides of equation (21) are continuous for

s ∈ (−ε, ε) and since Ξ(0) = ξ. ¤
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7. Descending maps and isometries

In this section we specialize Theorem 6.2 to the case when sprays S and S̃ are

geodesic sprays of Riemann metrics. As a result we obtain Theorem 7.3, which

gives sufficient conditions for two Riemann metrics to be isometric. It is not clear

whether Theorem 7.3 also hold for Finsler metrics. However, the present proof

uses that parallel transport is norm-preserving for Riemann metrics. This result

generalize to Berwald metrics, but not to arbitrary Finsler metrics [26].

The geodesic spray of a (positive definite) Riemann metric g is the spray with

spray coefficients

Gi(x, y) =
1

2
Γi
ab(x)y

ayb,

where Γi
jk are the Christoffel symbols associated with g.

Suppose c : I → M is a geodesic for a Riemann metric g and y ∈ Tc(t)M for

some t ∈ I. Then there exists a unique curve V : I → TM such that (i) π0◦V = c,

(ii) V (t) = y, and (iii) ∇V = 0, where ∇V is covariant derivative induced by g.

We say that V : I → TM is the parallel transport of y along c and write V (s) =

Pt→s(c)(y) for s ∈ I. Thus Pt→s(c) is a linear map Pt→s(c) : Tc(t)M → Tc(s)M . If

φ : M → M̃ is a totally geodesic map between Riemann manifolds and c : I → M

is a geodesic, then φ commutes with the parallel transport, so that [28]

(Dφ)(Pt→s(c)(y)) = P̃t→s(φ ◦ c)(Dφ(y)), t, s ∈ I, y ∈ Tc(t)M. (22)

7.1. Isometric Riemann metrics. Suppose φ : M → M̃ is a map and g and

g̃ are Riemann metrics on M and M̃ , respectively. Then φ is an isometry if for

all p ∈ M ,

g(y, y) = g̃(Dφ(y), Dφ(y)), y ∈ TpM. (23)

Every isometry is a totally geodesic map [1]. To prove Theorem 7.3, we will need

the following converse result.

Proposition 7.1. Suppose M and M̃ are manifolds with Riemann metrics g

and g̃, respectively. If M is connected, φ is a totally geodesic map φ : M → M̃ ,

and equation (23) holds for one p ∈ M , then φ is an isometry.

Proof. For an open-closed argument, let

A = {q ∈ M : g(y, y) = g̃(Dφ(y), Dφ(y)) for y ∈ TqM}.

By continuity, A is closed, and by assumption, A is non-empty. To see that A is

open, let q ∈ A, and let U ⊂ M be a normal coordinate neighborhood around q.
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If r ∈ U , then there exists a geodesic c : [0, 1] → M such that c(0) = q and

c(1) = r. Then φ ◦ c : [0, 1] → M̃ is also a geodesic. Using that parallel transport

preserves Riemann norms, equation (22), and that q ∈ A, it follows that r ∈ A.

Thus A is open, and M = A. ¤

The next proposition shows that a Riemann metric is essentially determined

by its spray. This is a slight generalization of Lemma 1 on page 242 in [13].

Proposition 7.2. Suppose g and g̃ are Riemann metrics on a connected

manifold M . If g and g̃ have the same geodesic spray and g = g̃ on TpM for one

p ∈ M , then g = g̃.

Proof. This follows by taking M = M̃ and φ = id in Proposition 7.1. ¤

Theorem 7.3. Suppose M is a smooth connected manifold M with

dimM ≥ 2 and F is a smooth map F : TM \ {0} → TM \ {0}. Further-

more, suppose that g and g̃ are complete Riemann metrics on M such that g has

a trapping hypersurface Σ ⊂ M , and

(i) F maps Jacobi fields for g into Jacobi fields for g̃ (see Section 5.3),

(ii) for all p ∈ Σ,

S(y) = S̃(y), y ∈ TpM \ {0},
DF (ξ) = ξ, ξ ∈ T (TpM \ {0}),

where S and S̃ are geodesic sprays induced by g and g̃, respectively,

(iii) for one p ∈ M ,

g(y, y) = g̃(F (y), F (y)), y ∈ TpM \ {0}.

Then there exists a smooth map φ : M → M such that

(i) F = (Dφ)|TM\{0},

(ii) φ is an isometry (from g to g̃).

What is more, if F is a diffeomorphism, then φ is a diffeomorphism.

Proof. This follows from Theorem 6.2 and Proposition 7.1. ¤
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Appendix A. Proof of Proposition 5.3

For an outline of the proof below, see Section 5.3

Proof of Proposition 5.3. We can find a t0 ∈ R such that J restricts to

a Jacobi field J : I0 → TM \{0} without zeroes where I0 ⊂ R is an neighborhood

of t0. Then J̃ = F ◦ J defines a Jacobi field J̃ : I0 → TM̃ \ {0} without zeroes.

Since S̃ is complete, S̃c is complete [4], and Jacobi field J̃ extends into a Jacobi

field J̃ : R→ TM̃ . For an open-closed argument, let A = Ae ∪A0, where

Ae = {t ∈ R : J(t) 6= 0 and J̃ ′(t) = DF ◦ J ′(t)},
A0 = {t ∈ R : J(t) = 0 and (t− ε, t) ∪ (t, t+ ε) ⊂ Ae for some ε > 0}.

Set A is non-empty since I0 ⊂ Ae. To see that A is open, let us first note that Ae

is open since F maps Jacobi fields without zeroes to Jacobi fields without zeroes

and Jacobi fields are uniquely determined by their tangent at one point. Also, if

t ∈ A0, then t has a neighborhood N ⊂ R such that N \ {t} ⊂ Ae.

To see that A is closed, let ti ∈ A be a sequence such that ti → τ for some

τ ∈ R. Let us show that τ ∈ A. By Remark 4.7, we may assume that all ti ∈ Ae.

If J(τ) 6= 0, then τ ∈ Ae by continuity. If J(τ) = 0, we show that τ ∈ A0. This

is straightforward to check using uniqueness if an arbitrary neighborhood of t

contains ti:s on both sides of τ . Let us assume that ti < τ for all i ≥ 1. (The

case ti > τ is analogous.)

Let j : I × (−ε, ε) → TM be the map obtained by applying Lemma A.1

below to J . Then τ ∈ I and j(t, s) 6= 0 on for (t, s) 6= (τ, 0). Let j̃ be the map

j̃ : (I × (−ε, ε)) \ {(τ, 0)} → TM̃ \ {0}

j̃(t, s) = F ◦ j(t, s).

For each s ∈ (−ε, ε) \ {0}, j̃(·, s) : I → TM̃ \ {0} is a Jacobi field without zeroes,

and for s = 0, j̃(·, 0) : I± → TM̃ \ {0} are Jacobi fields without zeroes, where

I+ = {t ∈ I : t > τ}, I− = {t ∈ I : t < τ}.
We know that J̃ = j̃(·, 0) on I−, and τ ∈ A0 follows if J̃ = j̃(·, 0) on I+. If Φ̃

c
t is

the flow of S̃c, and t− ∈ I−, then we have

j̃(t+, 0) = lim
s→0

j̃(t+, s) = lim
s→0

π̃1 ◦ Φ̃c
t+−t−(∂tj̃(t−, s))

= π̃1 ◦ Φ̃c
t+−t−(J̃

′(t−)) = J̃(t+)

for all t+ ∈ I+. ¤
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Lemma A.1. Suppose dimM ≥ 2, J : R→ TM is a Jacobi field for spray S,

and τ ∈ R is an isolated zero for J . Then τ has a neighborhood I ⊂ R, and there

exists a map j : I × (−ε, ε) → TM such that

(i) j(t, 0) = J(t) for t ∈ I,

(ii) t 7→ j(t, s), t ∈ I, is a Jacobi field for all s ∈ (−ε, ε),

(iii) j(t, s) 6= 0 if (t, s) 6= (τ, 0).

Proof. We may assume that τ = 0. Let c be geodesic c : R→ M , c = π0◦J .
In local coordinates, we have J ′(0) = (x(0), 0, ẋ(0), J̇(0)), and let ξ ∈ Tc(0)M \{0}
be vector ξ = (x(0), J̇(0)). Then there exists an auxiliary Riemann metric on

M such that g(ξ, ξ) = 1, and since dimM ≥ 2, there exists a non-zero vector

v ∈ Tc(0)M \ {0} such that g(v, ξ) = 0 and g(v, v) = 1. Let K be a Jacobi field

K : I → TM determined by K ′(0) = (x(0), v, ẋ(0), 0), and let j be the map

j : I × R→ TM defined as

j(t, s) = J(t) + sK(t), (t, s) ∈ I × R.

Now (i) and (ii) are clear. For (iii), let us shrink I such that c : I → M is

contained in the domain of coordinates xi. Then j has local expression j(t, s) =

(xi(t), ji(t, s)), and

ji(t, s) = ξit+ vis+Ri(t, s), (t, s) ∈ I × R,

with remainder terms Ri(t, s) = o(
√
t2 + s2 ). For curve j0 : I × R→ Tc(0)M ,

j0(t, s) = (xi(0), ji(t, s)),

the Cauchy–Schwarz inequality yields

g(j0(t, s), j0(t, s)) = t2 + s2 + o(t2 + s2), (t, s) ∈ I × R,

and

(iii) follows since we can find ε > 0 such that

g(j0(t, s), j0(t, s)) ≥ 1

2
(t2 + s2)

for all (t, s) ∈ (−ε, ε)2. ¤
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