Title: Primitive sets with large counting functions
Author(s): Greg Martin and Carl Pomerance

A set of positive integers is said to be primitive if no element of the set is a multiple of another. If \mathcal{S} is a primitive set and $S(x)$ is the number of elements of \mathcal{S} not exceeding x, then a result of Erdős implies that $\int_{2}^{\infty}\left(S(t) / t^{2} \log t\right) d t$ converges. We establish an approximate converse to this theorem, showing that if F satisfies some mild conditions and $\int_{2}^{\infty}\left(F(t) / t^{2} \log t\right) d t$ converges, then there is a primitive set \mathcal{S} with $S(x) \asymp F(x)$.

Address:

Greg Martin
Department of Mathematics
University of British Columbia
Room 121, 1984 Mathematics Road
Vancouver, BC
Canada V6T 1Z2

Address:

Carl Pomerance
Department of Mathematics
Dartmouth College
Hanover, NH 03755
USA

