A note on Euler's φ-function

By WŁADYSŁAW NARKIEWICZ (Wrocław)

This paper is dedicated to Kálmán Györy, János Pintz, Attila Pethő and András Sárközy on the occasion of their round birthdays

Abstract

For a large class of multiplicative arithmetic functions f a method is given to determine the value of the leading coefficient in the asymptotical formula for the number of integers $n \leq x$ with $f(n)$ prime to a given integer. This is applied to Euler's φ-function, generalizing the result of [6].

1. Introduction

For an integer-valued arithmetic function f and an integer $N \geq 2$ denote by $F_{N}(f ; x)$ the number of integers $n \leq x$ satisfying $(f(n), N)=1$. If N is a prime, then $F_{N}(f ; x)$ counts the integers $n \leq x$ with $N \nmid f(n)$.

It has been shown in 1964 by E. J. Scourfield ([4]) that for the function $\varphi(n)$ and odd primes q one has

$$
\begin{equation*}
F_{q}(\varphi, x)=(c(q)+o(1)) \frac{x}{\log ^{1 /(q-1)} x} \tag{1}
\end{equation*}
$$

with some positive constant $c(q)$. This has been later put in a more general context in [2], [3] (see also [5]). The value of the coefficient $c(q)$ has been determined by B. K. Spearman and K. S. Williams [6] in 2006. The purpose of this note is to show that the approach utilized in [2], [3], [5] can be used to obtain the

[^0]value of the leading coefficient in a similar asymptotic formula for a large class of integer-valued multiplicative functions, without restricting the integer q to be a prime.

2. Notation

By χ we shall denote multiplicative characters $\bmod N, L(s, \chi)$ will be the corresponding Dirichlet L-function and χ_{0} the principal character. The letter p in formulas will be reserved for prime numbers. For $(k, N)=1$ and $\Re s>1$ put

$$
\begin{equation*}
g(N, k ; s)=\sum_{p \equiv k \bmod N} \frac{1}{p^{s}}-\frac{1}{\varphi(N)} \log \frac{1}{s-1} . \tag{2}
\end{equation*}
$$

We shall need a simple formula for the value of

$$
g(N, k ; 1)=\lim _{s \rightarrow 1+0} g(N, k ; s)
$$

It belongs to the folklore, but we sketch the proof for the convenience of the readers.

Lemma 1. If $(N, k)=1$, then

$$
g(N, k ; 1)=\frac{1}{\varphi(N)} \sum_{\chi \neq \chi_{0}} \overline{\chi(k)} \log L(1, \chi)-\frac{\alpha(N)}{\varphi(N)}-\beta(N, k)
$$

where

$$
\alpha(N)=\log \frac{N}{\varphi(N)}
$$

and

$$
\beta(N, k)=\sum_{j=2}^{\infty} \frac{1}{j} \sum_{p^{j} \equiv k \bmod N} \frac{1}{p^{j}} .
$$

Proof. For characters $\chi \bmod N$ and $\Re s>1$ one has

$$
\log L(\chi, s)=\sum_{p} \frac{\chi(p)}{p^{s}}+\sum_{j=2}^{\infty} \frac{1}{j} \sum_{p} \frac{\chi^{j}(p)}{p^{j s}}, \quad \sum_{p} \frac{\chi_{0}(p)}{p^{s}}=\sum_{p} \frac{1}{p^{s}}-\sum_{p \mid N} \frac{1}{p^{s}}
$$

and

$$
\log \frac{1}{s-1}+r(s)=\log \zeta(s)=\sum_{p} \frac{1}{p^{s}}+\sum_{j=2}^{\infty} \frac{1}{j} \sum_{p} \frac{1}{p^{j s}},
$$

where $r(s)$ is regular for $\Re s \geq 1$ and vanishes at $s=1$.
Thus

$$
\sum_{p} \frac{\chi_{0}(p)}{p^{s}}=\log \frac{1}{s-1}+r(s)-\sum_{p \mid N} \frac{1}{p^{s}}-\sum_{j=2}^{\infty} \frac{1}{j} \sum_{p} \frac{1}{p^{j s}}
$$

Applying Dirichlet's formula

$$
\varphi(N) \sum_{p \equiv k \bmod N} p^{-s}=\sum_{\chi} \overline{\chi(k)} \sum_{p} \frac{\chi(p)}{p^{s}}
$$

one arrives at

$$
\begin{aligned}
\varphi(N) \sum_{p \equiv k \bmod N} p^{-s}= & \log \frac{1}{s-1}+r(s)-\sum_{p \mid N} \frac{1}{p^{s}}-\sum_{j=2}^{\infty} \frac{1}{j} \sum_{p} \frac{1}{p^{j s}} \\
& +\sum_{\chi \neq \chi_{0}} \overline{\chi(k)} \log L(s, \chi)-\sum_{j=2}^{\infty} \frac{1}{j} \sum_{p} \frac{1}{p^{j s}} \sum_{\chi \neq \chi_{0}} \overline{\chi(k)} \chi\left(p^{j}\right)
\end{aligned}
$$

In view of

$$
\sum_{\chi \neq \chi_{0}} \chi(a)= \begin{cases}-1 & \text { if } a \not \equiv 1 \bmod N \text { and }(a, N)=1 \\ \varphi(N)-1 & \text { if } a \equiv 1 \bmod N \\ 0 & \text { if }(a, N)>1\end{cases}
$$

we get

$$
\begin{aligned}
& \varphi(N) \sum_{p \equiv k \bmod N} p^{-s}=\log \frac{1}{s-1}+r(s)-\sum_{p \mid N} \frac{1}{p^{s}}-\sum_{j=2}^{\infty} \frac{1}{j} \sum_{p} \frac{1}{p^{j s}} \\
& +\sum_{\chi \neq \chi_{0}} \overline{\chi(k)} \log L(s, \chi)+\sum_{j=2}^{\infty} \frac{1}{j} \sum_{p \nmid N} \frac{1}{p^{j s}}-\varphi(N) \sum_{j=2}^{\infty} \frac{1}{j} \sum_{p^{j} \equiv k \bmod N} \frac{1}{p^{j s}},
\end{aligned}
$$

and this leads to
$\varphi(N) g(N, k ; 1)=\sum_{\chi \neq \chi_{0}} \overline{\chi(k)} \log L(1, \chi)\left(\sum_{j=1}^{\infty} \frac{1}{j} \sum_{p \mid N} \frac{1}{p^{j}}+\varphi(N) \sum_{j=2}^{\infty} \frac{1}{j} \sum_{p^{j} \equiv k \bmod N} \frac{1}{p^{j}}\right)$.
It remains to observe that

$$
\sum_{j=1}^{\infty} \frac{1}{j} \sum_{p \mid N} \frac{1}{p^{j}}=\sum_{p \mid N} \log \frac{1}{1-1 / p}=\log \prod_{p \mid N} \frac{1}{1-1 / p}=\log \frac{N}{\varphi(N)}
$$

We shall need also the following lemma:
Lemma 2. If $m \geq 2$ and $(k, N)=1$, then for $\Re s>1 / m$ one has

$$
\lim _{s \rightarrow 1 / m+0}\left(\sum_{p \equiv k \bmod N} \frac{1}{p^{s m}}-\frac{1}{\varphi(N)} \log \frac{1}{s-1 / m}\right)=g(N, k ; 1)-\frac{\log m}{\varphi(N)}
$$

Proof. Follows from (2) and the equality

$$
\log (m s-1)=\log (s-1 / m)+\log m
$$

For shortness we shall write

$$
T(y)=\sum_{j=2}^{\infty} \frac{(-1)^{j+1}}{j} y^{-j}=\log (1+1 / y)-1 / y
$$

and

$$
V(y)=\sum_{j=2}^{\infty} \frac{1}{j y^{j}}=\log \frac{1}{1-1 / y}-1 / y
$$

Moreover we put

$$
\Phi(n)=\prod_{p \mid n}\left(1-\frac{1}{p-1}\right)
$$

and for $(N, k)=1$ and $\Re s>1$

$$
Z(N, k ; s)=\prod_{p \equiv k \bmod N} \frac{1}{1-p^{-s}}
$$

3. Multiplicative functions

We shall deal with integer-valued multiplicative functions $f(n)$ which are po-lynomial-like, i.e. have the property that for $i=1,2, \ldots$ and every prime p one has $f\left(p^{i}\right)=V_{i}(p)$, where V_{1}, V_{2}, \ldots are polynomials with integral coefficients.

For a fixed integer $N \geq 3$ and $i=1,2, \ldots$ put

$$
R_{i}(f, N)=\left\{x \bmod N:\left(x V_{i}(x), N\right)=1\right\}
$$

and denote by $m=m(f, N)$ the smallest integer i for which the set is nonempty, if such integer exists.

For $\Re s>1$ put

$$
F(f, N ; s)=\sum_{n=1}^{\infty} \frac{\chi_{0}(f(n))}{n^{s}}
$$

Expanding $F(f, N ; s)$ in an Euler product one gets

$$
F(f, N ; s)=g(s) G(s)
$$

with

$$
\begin{equation*}
g(s)=\prod_{p \mid N}\left(1+\sum_{j=1}^{\infty} \frac{\chi_{0}\left(f\left(p^{j}\right)\right)}{p^{j s}}\right) \tag{3}
\end{equation*}
$$

being regular for $\Re s>0$ and

$$
G(s)=\prod_{p \nmid N}\left(1+\sum_{j=m}^{\infty} \frac{\chi_{0}\left(f_{j}(p)\right)}{p^{j s}}\right) .
$$

Since

$$
\left|1+\frac{\chi_{0}\left(f\left(p^{m}\right)\right)}{p^{m s}}\right| \geq \frac{1}{2}
$$

the product

$$
\begin{equation*}
H(s)=\prod_{p \nmid N} \frac{1+\sum_{j=m}^{\infty} \chi_{0}\left(f\left(p^{j}\right)\right) p^{-j s}}{1+\chi_{0}\left(f\left(p^{m}\right)\right) p^{-m s}} \tag{4}
\end{equation*}
$$

is regular for $\Re s \geq 1 / m$.
Moreover

$$
\begin{gathered}
\prod_{p \nmid N}\left(1+\frac{\chi_{0}\left(f\left(p^{m}\right)\right)}{p^{m s}}\right)=\prod_{p \nmid N}\left(1+\frac{\chi_{0}\left(V_{m}(p)\right)}{p^{m s}}\right) \\
=\exp \left(\sum_{p \nmid N} \log \left(1+\frac{\chi_{0}\left(V_{m}(p)\right)}{p^{m s}}\right)\right)=\exp \left(\sum_{p \nmid N} \frac{\chi_{0}\left(V_{m}(p)\right)}{p^{m s}}+h(s)\right),
\end{gathered}
$$

where

$$
\begin{equation*}
h(s)=\sum_{p \nmid N} \chi_{0}\left(V_{m}(p)\right) \sum_{r=2}^{\infty} \frac{(-1)^{r+1}}{r} \frac{1}{p^{m r s}} \tag{5}
\end{equation*}
$$

is regular for $\Re s \geq 1 / m$.
This implies the equality

$$
\begin{equation*}
G(s)=H(s) \exp \left(\sum_{p \nmid N} \frac{\chi_{0}\left(V_{m}(p)\right)}{p^{m s}}+h(s)\right), \tag{6}
\end{equation*}
$$

valid for $\Re s>1 / m$.
Now write $R_{m}(f, N)=\left\{r_{1}<r_{2}<\cdots<r_{t}\right\}$, observe that

$$
\sum_{p \nmid N} \frac{\chi_{0}\left(V_{m}(p)\right)}{p^{m s}}=\sum_{j=1}^{t} \sum_{p \equiv r_{j} \bmod N} \frac{1}{p^{m s}}
$$

and apply Lemma 2 to arrive at

$$
\sum_{p \nmid N} \frac{\chi_{0}\left(V_{m}(p)\right)}{p^{m s}}=\frac{t}{\varphi(N)} \log \frac{1}{s-1 / m}+\sum_{j=1}^{t} g\left(N, r_{j} ; 1\right)-\frac{t \log m}{\varphi(N)}+\gamma(s)
$$

where $\gamma(s)$ is regular for $\Re s \geq 1 / m$ and $\gamma(1 / m)=0$.
The last equality and (6) give now

$$
F(f, N ; s)=A(s) /(s-1 / m)^{B}
$$

where

$$
\begin{equation*}
A(s)=g(s) H(s) \exp \left(h(s)+\sum_{j=1}^{t} g\left(N, r_{j} ; 1\right)-\frac{t \log m}{\varphi(N)}+\gamma(s)\right) \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
B=t / \varphi(N) \tag{8}
\end{equation*}
$$

Observe also that $A(s)$ cannot vanish at $s=1 / m$. Indeed, otherwise one would have either $1 \leq g(1 / m)=0$, or $H(1 / m)=0$, thus for some prime $p \nmid N$ one must have

$$
\sum_{j=m}^{\infty} \frac{\chi_{0}\left(V_{j}(p)\right)}{p^{j / m}}=-1
$$

which is obviously not possible.
Applying the Tauberian theorem of Delange ([1], [7], p. 275) to the function $F(f, N ; s)$ one gets the following assertion:

Theorem 1. Let f be a polynomial-like integral-valued multiplicative function and let $N \geq 2$ be an integer. Then

$$
\#\{n \leq x:(f(n), N)=1\}=\left(\frac{m A}{\Gamma(t / \varphi(N))}+o(1)\right) \frac{x^{1 / m}}{\log ^{1-t / \varphi(N)} x}
$$

with

$$
\begin{equation*}
A=g(1 / m) H(1 / m) \exp \left(h(1 / m)+\sum_{j=1}^{t} g\left(N, r_{j} ; 1\right)-\frac{t \log m}{\varphi(N)}\right) \tag{9}
\end{equation*}
$$

the functions $g(N, k ; s), g(s), H(s), h(s)$ being defined in (2), (3), (4) and (5), respectively, and $m=m(f, N)$.

4. Euler's function

We apply now Theorem 1 to Euler's function $\varphi(n)$.
Theorem 2. If $N \geq 3$ is an odd integer, then

$$
F_{N}(\varphi, x)=(c(N)+o(1)) \frac{x}{\log ^{a} x}
$$

where

$$
a=1-\Phi(N)
$$

and

$$
\begin{aligned}
c(N)= & \frac{1}{\Gamma(\Phi(N))}\left(\frac{\varphi(N)}{N}\right)^{\Phi(N)} \prod_{p \mid N,(p-1, N)=1}\left(1+\frac{1}{p}\right) \\
& \cdot \prod_{\chi \neq \chi_{0}} L(1, \chi)^{-\Phi\left(f_{\chi}\right)}\left(\prod_{1<d \mid N} \prod_{1<\delta \mid \varphi(d)} \prod_{k \in T_{d}(\delta)} Z(N, k ; \delta)^{\mu(d) / \delta}\right)^{-1},
\end{aligned}
$$

where f_{χ} is the conductor of χ and $T_{d}(\delta)$ denotes the set of residue classes $\bmod N$ having order $\delta \bmod d$.

Proof. Let $N=\prod_{j=1}^{s} p_{j}^{\alpha_{j}} \geq 3$ be an odd integer, let R_{1} denote the set of residue classes $k \bmod N$ satisfying $(k(k-1), N)=1$ and R let be their union. In our case we have $2 \in R_{1}(\varphi, N)=R_{1} \neq \emptyset$ hence $m=m(\varphi, N)=1$, and since the Chinese remainder theorem implies

$$
\# R_{1}(\varphi, N)=\prod_{j=1}^{s} \# R_{1}\left(\varphi, p_{j}^{\alpha_{j}}\right)
$$

hence

$$
t=\# R_{1}=\prod_{j=1}^{s}\left(p_{j}-2\right) p_{j}^{\alpha_{j}-1}=N \prod_{p \mid N}\left(1-\frac{2}{p}\right) \neq 0
$$

Since $\varphi\left(p^{j}\right)=(p-1) p^{j-1}$, the condition $\left(\varphi\left(p^{j}\right), N\right)=1$ is equivalent to either $p \nmid N$ and $(p-1, N)=1$, or $p \mid N,(p-1, N)=1$ and $j=1$. Therefore

$$
\begin{equation*}
g(1)=\prod_{p \mid N,(N, p-1)=1}\left(1+\frac{1}{p}\right), \quad H(1)=\prod_{p \in R} \frac{1}{1-1 / p^{2}}, \tag{10}
\end{equation*}
$$

and

$$
h(1)=\sum_{p \in R} T(p) .
$$

Moreover, by Lemma 1 we have

$$
\begin{equation*}
\sum_{k \in R} g(N, k ; 1)=\frac{1}{\varphi(N)} \sum_{\chi \neq \chi 0} \sum_{k \in R} \overline{\chi(k)} \log L(1, \chi)-\frac{t}{\varphi(N)} \log \frac{N}{\varphi(N)}-S \tag{11}
\end{equation*}
$$

with

$$
\begin{equation*}
S=\sum_{k \in R} \beta(N, k) . \tag{12}
\end{equation*}
$$

Write P_{d} for the set of primes $p \nmid N$, congruent to $1 \bmod d$. We can write S in the form

$$
\begin{aligned}
S= & \sum_{j \geq 2} \frac{1}{j} \sum_{p^{j} \in R} \frac{1}{p^{j}}=\sum_{j \geq 2} \frac{1}{j} \sum_{p \nmid N} \frac{1}{p^{j}}-\sum_{j \geq 2} \frac{1}{j} \sum_{p \nmid N, p^{j} \notin R} \frac{1}{p^{j}} \\
= & \sum_{p \nmid N} V(p)+\sum_{d \mid N, d>1} \mu(d) \sum_{j \geq 2} \sum_{\substack{p \nmid N \\
p^{j} \equiv 1 \bmod d}} \frac{1}{j p^{j}} \\
= & \sum_{p \nmid N} V(p)+\sum_{d \mid N, d>1} \mu(d) \sum_{j \geq 2}\left(\sum_{p^{j} \equiv 1 \bmod } d \frac{1}{j p^{j}}-\sum_{p_{p \mid N}} \frac{1}{j p^{j}}\right) \\
= & \sum_{p \nmid N} V(p)+\sum_{d \mid N, d>1} \mu(d) \sum_{j \geq 2} \frac{1}{j}\left(\sum_{p \in P_{d}} \frac{1}{p^{j}}+\sum_{\substack{p \nmid N, p \notin P_{d} d \\
p^{j} \equiv 1 \bmod d}} \frac{1}{p^{j}}\right) \\
= & \sum_{p \nmid N} V(p)+\sum_{d \mid N, d>1} \mu(d) \sum_{p \in P_{d}} V(p) \\
& +\sum_{d \mid N, d>1} \mu(d) \sum_{j \geq 2} \frac{1}{j} \sum_{\substack{p \nmid N, p \notin P_{d} \\
p^{j} \equiv 1 \bmod d}} \frac{1}{p^{j}}=A+B+C,
\end{aligned}
$$

say. Since

$$
B=\sum_{p \nmid N} V(p)\left(\sum_{d \mid(N, p-1)} \mu(d)-1\right)=-\sum_{p \nmid N,(N, p-1)>1} V(p),
$$

we get

$$
A+B=\sum_{p \in R} V(p)
$$

Now observe that if $o_{d}(p)$ denote the multiplicative order of $p \bmod d$, then $p^{j} \equiv 1 \bmod d$ holds if and only if $o_{d}(p)$ divides j. Therefore

$$
\begin{aligned}
C & =\sum_{1<d \mid N} \mu(d) \sum_{1<\delta \mid \varphi(d)} \sum_{\substack{p \nmid N \\
o_{d}(p)=\delta}} \frac{1}{\delta} \sum_{m=1}^{\infty} \frac{1}{m p^{m \delta}} \\
& =\sum_{1<d \mid N} \sum_{1<\delta \mid \varphi(d)} \frac{1}{\delta} \sum_{\substack{p \nmid N \\
o_{d}(p)=\delta}}\left(V\left(p^{\delta}\right)+\frac{1}{p^{\delta}}\right) \\
& =\sum_{1<d \mid N} \mu(d) \sum_{1<\delta \mid \varphi(d)} \frac{1}{\delta} \sum_{p, o_{d}(p)=\delta} \log \frac{1}{1-p^{-\delta}},
\end{aligned}
$$

and finally we arrive at

$$
\begin{equation*}
S=A+B+C=\sum_{p \in R} V(p)+\log \left(\prod_{1<d \mid N} \prod_{1<\delta \mid \varphi(d)} \prod_{k \in T_{d}(\delta)} Z(N, k ; \delta)^{\mu(d) / \delta}\right) \tag{13}
\end{equation*}
$$

where $T_{d}(\delta)$ denotes the set of residue classes $\bmod N$ having order $\delta \bmod d$.
Moreover for $\chi \neq \chi_{0}$ we have

$$
\sum_{k \in R_{1}} \overline{\chi(k)}=\sum_{k=1}^{N-1} \overline{\chi(k)}-\sum_{k \notin R_{1}} \overline{\chi(k)}=-\sum_{d \mid N} \mu(d) \sum_{k \equiv 1 \bmod d,(k, N)=1} \overline{\chi(k)}
$$

Let H_{d} be the subgroup of the multiplicative group $\bmod N$ consisting of residue classes congruent to $1 \bmod d$. In view of

$$
\sum_{k \equiv 1 \bmod d,(k, N)=1} \overline{\chi(k)}= \begin{cases}\varphi(N) / \varphi(d) & \text { if } d \mid f_{\chi} \\ 0 & \text { otherwise }\end{cases}
$$

we get

$$
\sum_{k \in R_{1}} \overline{\chi(k)}=-\varphi(N) \sum_{d \mid f_{\chi}} \frac{\mu(d)}{\varphi(d)}=-\varphi(N) \Phi\left(f_{\chi}\right)
$$

hence

$$
\begin{equation*}
\exp \left(\frac{1}{\varphi(N)} \sum_{\chi \neq \chi_{0}} \sum_{k \in R_{1}} \overline{\chi(k)} \log L(1, \chi)\right)=\prod_{\chi \neq \chi_{0}} L(1, \chi)^{-\Phi\left(f_{\chi}\right)} \tag{14}
\end{equation*}
$$

Observe finally that one has

$$
\begin{equation*}
H(1) \exp \left(h(1)-\sum_{p \in R} V(p)\right)=1 \tag{15}
\end{equation*}
$$

The assertion follows now from (10), (11), (12), (13), (14), (15) and Theorem 1.

References

[1] H. Delange, Généralisation du théorème de Ikehara, Ann. Sci. École Norm. Sup. (3) 78 (1954), 213-242.
[2] W. Narkiewicz, Divisibility properties of a class of multiplicative functions, Colloq. Math. 18 (1967), 219-232.
[3] W. Narkiewicz, Divisibility properties of some multiplicative functions, in: Number Theory, 1970, Coll. Math. Soc. János Bolyai Debrecen (1968), 147-159, North-Holland, Amsterdam.
[4] E. J. Scourfield, On the divisibility of $\sigma_{\nu}(n)$, Acta Arithmetica 10 (1964), 245-288.
[5] J. P. Serre, Divisibilité de certaines fonctions arithmétiques, l'Enseignement Math. 22 (1976), 227-260.
[6] B. K. Spearman and K. S. Williams, Values of the Euler phi function not divisible by a given odd prime, Arkiv Mat. 44 (2006), 166-181.
[7] G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres., Université de Nancy, 1991, English translation: Introduction to Analytic and Probabilistic Number Theory, Cambridge, 1995.

WEADYSEAW NARKIEWICZ
INSTITUTE OF MATHEMATICS
WROCEAW UNIVERSITY
PLAC GRUNWALDZKI 2-4
PL-50-384, WROCEAW
POLAND
E-mail: narkiew@math.uni.wroc.pl
(Received January 24, 2011; revised August 16, 2011)

[^0]: Mathematics Subject Classification: 11N37.
 Key words and phrases: multiplicative functions, divisibility, Euler function.

