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Integer solutions to decomposable and semi-decomposable
form inequalities

By MIN RU (Shanghai and Houston)

Dedicated to Professor K. Győry on the occasion of his 70th birthday

Abstract. In this paper, we give a survey on the recent development in the study of

the finiteness of the number of integer solutions to decomposable and semi-decomposable

form inequalities.

1. Introduction

Let F (X) = F (X0, . . . , Xm) ∈ Z[X] be a decomposable form, i.e. a homoge-

neous polynomial which factorizes into linear forms over Q̄, the algebraic closure

of the field of reational numbers Q. Assume that q = degF > 2m, and consider

the decomposable form inequality

0 < |F (x)| < c|x|λ in x = (x0, . . . , xm) ∈ Zm+1, (1.1)

where |x| = max0≤i≤m |xi|, 0 ≤ λ < q − 2m and c > 0 is a fixed constant. For

m = 1, it follows from Roth’s approximation theorem that if the linear factors

of F are pairwise non-proportional, then (1) has only finitely many solutions.

Note that when m = 1, every homogeneous polynomial is decomposable. Using
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his subspace theorem, W. M. Schmidt ([Sch1], [Sch2]) generalized this for ar-

bitrary m, under the assumptions that (i) any m + 1 of the linear factors of F

are linearly independent over Q̄, and that (ii) F is not divisible by a form with

rational coefficients of degree less than m + 1. Later H. P. Schlickewei [Schl]

extended this theorem to the case when the ground ring is an arbitrary finitely

generated subring of Q. These results have obvious applications to decomposable

form equations of the form

F (x) = G(x) in x ∈ Zm+1, (1.2)

where G ∈ Z[X] is a non-zero polynomial of degree < degF − 2m. For the

case when G is a constant, it is then reduced to the decomposable form equation

F (x0, . . . , xm) = b with b ∈ Q∗. In this case, one can use the well-known unit-

lemma to deal with it. In fact, Evertse and Győry [EG1] obtained a necessary

and sufficient condition for the equation F (x0, . . . , xm) = b with b ∈ Q∗ to have

finitely many integer solutions.

This paper intends to give a partial survey of the recent results along this

direction. In Section 2, we recall the result of Evertse and Győry [EG1] in the

study of decomposable form equations, and its generalization given by Chen–

Ru (see [CR]) to decomposable form inequalities. Section 3 reviews the sharp

result of Győry–Ru (see [GR]) about the integer solutions to decomposable

form inequalities. The final section reviews the recent result of Chen–Ru–Yan

([CRY]) on the integral solutions to semi-decomposable form inequalities.

2. Integer solutions to decomposable form equations

Let k be a finitely generated (but not necessarily algebraic) extension field

of Q. Let F (X0, . . . , Xm) be a form (homogeneous polynomial) in m ≥ 1 variables

with coefficients in k and suppose that F is decomposable, i.e. it factorizes into

linear factors over some finite extension of k. Let b ∈ k∗, where k∗ is the set of

non-zero elements of k, and consider the decomposable form equation

F (x0, . . . , xm) = b in (x0, . . . , xm) ∈ Rm+1 (2.1)

where R is a subring of k finitely generated over Z.
When m = 1, such equations are called Thue equations. The Thue equations

are named after A. Thue [Th] who proved, in the case k = Q, R = Z,m = 1, that

if F is a binary form having at least three pairwise linearly independent linear

factors in its factorization over the field of algebraic numbers, then (3) has only

finitely many solutions. Later, Lang extended Thue’s result to the general case
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when k is a finitely generated extension field of Q and R is a subring of k finitely

generated over Z. For the case m ≥ 2, after the works of Schmidt, Schlickewei,

Laurent and others, Evertse and Győry [EG1] finally obtained a necessary and

sufficient condition for (2.1) to have finitely many solutions, independently of the

choice of b and R. In §3 of [EG1], Evertse and Győry gave an equivalent form

of this condition in the case where F factors into a product of linear forms over k.

Given a field k and a set of linear forms M ⊂ k[X0, . . . , Xm], we denote by (M)k
the k-linear subspace of k[X0, . . . , Xm] generated by M. The following is the

statement of their result.

Theorem 2.1 (Evertse and Győry). Let k be a finitely generated extension

field of Q. Let F (X0, . . . , Xm) be a decomposable form in m + 1 variables with

coefficients k. Assume that it factors into a product of linear forms over k. Denote

by L a maximal set of linear factors of F in k[X0, . . . , Xm] which are pairwise

linearly independent. Then the following two statements are equivalent:

(i) For every b ∈ k∗, the equation

F (x0, . . . , xm) = b, in (x0, . . . , xm) ∈ Rm+1

has only finitely many solutions for every subring R of k which is finitely

generated over Z.
(ii) The subspace (L)k of k[X0, . . . , Xm] generated by L has dimension m+1 and

for each proper, non-empty subset L1 of L, the intersection (L1)k ∩ (L\L1)k
contains an element of L.
Note that the condition (ii) is independent of the choice of L.
We now focus ourself on the case when k is a number field. We first introduce

some notations. Let k be a number field. Denote by k̄ the algebraic closure of k.

Denote byM(k) the set of places of k and write M∞(k) for the set of archimedean

places of k. For υ ∈ M(k) denote by | |υ the associated absolute value, normalized

such that | |υ = | | (standard absolute value) on Q if υ is archimedean, whereas

for υ non-archimedean |p|υ = p−1 if υ lies above the rational prime p. Denote by

kυ the completion of k with respect to υ and by dυ = [kυ : Qυ] the local degree.

We put || ||υ = | |dυ/d
υ , where d is the degree of k.

For x = (x0, . . . , xm) ∈ km+1, we put ‖x‖υ = max0≤i≤m ‖xi‖υ, we denote by
H(x) =

∏
υ∈M(k) ‖x‖υ and

h(x) = logH(x) =
∑

υ∈M(k)

log ‖x‖υ
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the absolute logarithmic height of x. Given a polynomial P with coefficient in

K, we define ‖P‖υ and h(P ) as the ‖ ‖υ-value and absolute logarithmic height,

respectively, of the point whose coordinates are the coefficients of P . As is known,

h(x) and h(P ) are independent of the choice of the field k. Further, h(λx) = h(x)

and h(λP ) = h(P ) for all λ ∈ Q̄∗.
Let S be a finite subset of M(k) containing M∞(k). An element x ∈ k is

said to be S-integer if ||x||υ ≤ 1 for each υ ∈ M(k)− S. Denote by OS the set of

S-integers. The units of OS are called S-units. They form a multiplicative group

which is denoted by O∗
S . For x = (x0, . . . , xm) ∈ km+1, define the S-height as

HS(x) =
∏

υ∈S ‖x‖υ. If x ∈ Om+1
S − {0}, then HS(x) ≥ 1 and HS(αx) = HS(x)

for α ∈ O∗
S . Let hS = logHS . For a polynomial P with coefficients in k, let

HS(P ) denote the S-height of that point whose coordinates are the coefficients

of P .

Let

F (X) = F (X0, . . . , Xm) ∈ OS [X]

be a homogeneous polynomial of m+1 variables. F is said to be decomposable if

F factorizes into a product of linear forms over k̄ with at least m+1 factors. For

given real numbers c, λ with c > 0, consider the solutions of the inequality

0 <
∏

υ∈S

‖F (x)‖υ ≤ cHS(x)
λ in x ∈ Om+1

S . (2.2)

If x is a solution of (4), then so is x′ = ηx for every η ∈ O∗
S . Such solution x,x′

are called O∗
S-proportional.

Motivated by (ii) of Theorem 2.1, we introduce the following definition.

Definition 2.1. Let k be a number field and let F (X0, . . . , Xm) be a de-

composable form in m + 1 variables with coefficients in k. We say that F is

non-degenerate if it satisfies the following conditions: there exists a finite algeb-

raic extension k′ of k such that F factors into a product of linear forms over k′

and if we denote by L a maximal set of linear factors of F which are pairwise

linearly independent, then the subspace (L)k′ of k′[X0, . . . , Xm] generated by L
over k′ has dimension m+ 1 and for each proper, non-empty subset L1 of L, the
intersection (L1)k′ ∩ (L\L1)k′ contains an element of L.

Note that the above definition is independent of the choice of L. Chen–Ru

(see [CR]) extended the result of Evertse and Győry to the following:

Theorem 2.2 (see [CR] Theorem 1.1). Let k be a number field and let

F (X0, . . . , Xm) be a non-degenerate decomposable form with coefficients in k.
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Then, for every finite set of places S of k containing the archimedean places of k,

for each real number λ < 1
m−1 and for each constant c > 0, the inequality

0 <
∏

υ∈S

‖F (x0, . . . , xm)‖υ ≤ cHλ
S(x0, . . . , xm) in (x1, . . . , xm) ∈ Om

S

has only finitely many O∗
S-non-proportional solutions.

Important examples of non-degenerate decomposable forms are those F (X)

such that degF > 2m and that any m+ 1 linear factors of F over Q are linearly

independent. In this case, Győry and Ru actually obtained a a stronger result.

This leads to the discussion of the next section.

3. Integer solutions to decomposable form inequalities

By applyingRu–Wong’s degenerate Schmidt’s subspace theorem (see [RW]),

K. Győry and Min Ru (see [GR]) dropped the assumption (ii) in Schmidt’s

result mentioned in the introduction. Furthermore, they obtained a more general

result: under the (weak) assumption that λ < q − 2m + l − 1, where l > 0 is an

integer, then the set of integer solutions is contained in a finite union of subspaces

of dimension at most l.

Theorem 3.1 (see [GR] Theorem 7). Let k be a number field and let

F (X0, . . . , Xm) be a decomposable form of degree q which factorizes into linear

factors over k̄. Suppose that λ < q − 2m+ l − 1 and that the linear factors of F

over Q̄ are in general position. Then the set of solutions of (2.2) is contained in

a finite union of linear subspaces of km+1 of dimension at most l. In particular,

if λ < q − 2m then (2.2) has only finitely many O∗
S-non-proportional solutions.

The above theorem was derived from the following result due to Ru–Wong

(see [RW]).

Theorem 3.2 (see [RW] Theorem 4.1). Given linear forms L1, . . . , Lq ∈
k[X0, . . . , Xm] in general position. Then for any ε > 0, the set of points x ∈ km+1

such that Lj(x) 6= 0 for j = 1, . . . , q and

∑

v∈S

q∑

j=1

log
‖x‖υ · ‖Lj‖υ
‖Lj(x)‖υ ≥ (2m− l + 1 + ε)h(x)

is contained in a finite union of linear subspaces of km+1 of dimension at most l.
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4. Integer solutions to semi-decomposable form inequalities

In this section, we review the recent result of Chen–Ru–Yan (see [CRY])

on the integer Solutions to Semi-Decomposable Form Inequalities. Let

F (X) = F (X0, . . . , Xm) ∈ OS [X]

be a homogeneous polynomial ofm+1 variables. F is said to be semi-decomposable

if F factorizes into a product of irreducible homogeneous polynomials over Q̄ with

at least m+ 1 factors.

Again, we study the inequality,

0 <
∏

υ∈S

‖F (x)‖υ ≤ cHS(x)
λ in x ∈ Om+1

S . (4.1)

except in this case, F is only assumed to be “semi-decomposable”. We call such

inequality the semi-decomposable form inequality.

We first establish a Schmidt’s subspace type theorem. To do so, we recall

the following result from [CZ] (See Addendum, 128(2006)).

Theorem 4.1 (Corvaja and Zannier). Let k be a number field and let S be

a finite set of places of k. Let V ⊂ PN (k) be a (irreducible) projective variety

with dimV = n. For each υ ∈ S, let Qυ ∈ k̄[X0, . . . , XN ] be a homogeneous

polynomial of degree d. Then, for every ε > 0, there are only finitely many points

x ∈ V (OS) such that

0 <
∏

υ∈S

‖Qυ(x)‖υ < H(x)−dn−ε.

Definition 4.1. Let V ⊂ PN (k) be a projective subvariety with dimV = n,

andD1, . . . , Dq, q > n, be given hypersurfaces in PN (k). We say they are located in

general position with respect to V if for any distinct j1, . . . , jn+1,
⋂n+1

i=1 suppDji ∩
V (k̄) = ∅.

Definition 4.2. Let V ⊂ PN (k) be a projective subvariety with n = dimV ,

and D1, . . . , Dq be given hypersurfaces in PN (k). Given a positive integer m ≥ n,

we say they are located in m-subgeneral position with respect to V if q > m and

for any distinct j1, . . . , jm+1,
⋂m+1

i=1 suppDji ∩ V (k̄) = ∅.
Remark 4.1. Obviously, if W ⊂ V is a subvariety of V and if D1, . . . , Dq,

are in general position with respect to V , they are in n-subgeneral position with

respect to W , where n = dimV .
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We prove the following theorem.

Theorem 4.2. Let k be a number field and let S be a finite set of places

of k. Let V ⊂ PN (k) be a (irreducible) projective variety. Let Q1, . . . , Qq ∈
k̄[X0, . . . , XN ] be homogeneous polynomials of degree d1, . . . , dq respectively, and

assume that for some m ≥ dimV they are located in m-subgeneral position with

respect to V . Then, for every ε > 0,

q∑

j=1

∑

υ∈S

log

(
‖x‖dj

υ · ‖Qj‖υ
‖Qj(x)‖υ

)1/dj

≤ (m(dimV + 1) + ε)h(x)

holds for all x ∈ V (k), outside a finite union of proper subvarieties of V .

Corollary 4.1. Let k be a number field and let S be a finite set of places

of k. Let V ⊂ PN (k) be a (irreducible) projective variety with dimV = n. Let

Q1, . . . , Qq ∈ k̄[X0, . . . , XN ] be homogeneous polynomials of d1, . . . , dq respecti-

vely, which are located in general position with respect to V . Then, for every

ε > 0, the set of points x ∈ V (k) \⋃q
j=1{Qj = 0} with

q∑

j=1

∑

υ∈S

log

(
‖x‖dj

υ · ‖Qj‖υ
‖Qj(x)‖υ

)1/dj

≥ (n(n+ 1) + ε)h(x)

is a finite set.

Proof of Corollary 4.1. Since Q1, . . . , Qq are in general position with

respect to V , by applying Theorem 4.2 with m = n we conclude that the set of

x ∈ V (k) with

q∑

j=1

∑

υ∈S

log

(
‖x‖dj

υ · ‖Qj‖υ
‖Qj(x)‖υ

)1/dj

≥ (n(n+ 1) + ε)h(x)

is contained a finite union of proper subvariaties of V (k). Say W is one of

them. From Remark 4.1, we know that Q1, . . . , Qq are in n-subgeneral position

with respect to W . Applying Theorem 4.2 to W with m = n and noticing that

n(n+ 1) ≥ n(dimV + 1), we get that the set of x ∈ V (k) \⋃q
j=1{Qj = 0} with

q∑

j=1

∑

υ∈S

log

(
‖x‖dj

υ · ‖Qj‖υ
‖Qj(x)‖υ

)1/dj

≥ (n(n+ 1) + ε)h(x)

is contained a finite union of proper subvarieties of W (k). Eventually, the set will

be finite. This proves the Corollary. ¤
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Proof of Theorem 4.2. Assume that dimV = n. Let Qj , 1 ≤ j ≤ q, be

the given homogeneous polynomials in k̄[x0, . . . , xn] of degree dj . Replacing Qj

by Q
d/dj

j if necessary, where d is the l.c.m. of d′js, we can assume that Q1, . . . , Qq

have the same degree of d. Denote by P1, . . . , Pr the generators of (IV )d, where

IV is the prime ideal defining V and (IV )d is the subset of IV , which consists only

of the homogeneous polynomials with degree d. For every fixed b = [b0 : · · · :
bN ] ∈ V (k), and every υ ∈ S, take a renumbering {l1, . . . , lq} (which depends

on υ and b) of the indices {1, . . . , q} such that

‖Ql1(b)‖υ ≤ · · · ≤ ‖Qlq (b)‖υ. (4.2)

Then the assumption that Q1, . . . , Qq are in m-subgeneral position with respect

to V implies that P1, . . . , Pr, Ql1 , . . . , Qlm+1 have no common zeros in PN (k̄). By

Hilbert’s Nullstellensatz, for any integer t, 0 ≤ t ≤ N , there is an integer mi ≥ d

such that

xmt
t =

m+1∑

j=1

αjtQlj +

r∑

i=1

βitPi,

where αjt, 1 ≤ j ≤ m + 1, and βit, 1 ≤ i ≤ r, are the homogeneous polynomials

of degree mt − d. So, for 0 ≤ t ≤ N ,

‖xt‖mt
υ ≤ c1,υ‖x‖mt−d

υ max{‖Ql1(x)‖υ, . . . , ‖Qlm+1(x)‖υ}

for all x ∈ V (k), where c1,υ is a positive constant. That is

‖x‖dυ ≤ c1,υ max{‖Ql1(x)‖υ, . . . , ‖Qlm+1(x)‖υ} (4.3)

for all x ∈ V (k). Combining (4.2) and (4.3), we get

q∑

j=1

log
‖b‖dυ · ‖Qj‖υ
‖Qj(b)‖υ ≤

m∑

i=1

log

(‖b‖dυ · ‖Qli‖υ
‖Qli(b)‖υ

)
+ Cυ

≤ m log

(‖b‖dυ · ‖Ql1‖υ
‖Ql1(b)‖υ

)
+ Cυ.

Theorem 4.1 then implies that

q∑

j=1

∑

υ∈S

log

(‖x‖dυ · ‖Qj‖υ
‖Qj(x)‖υ

)1/d

≤ m(n+ 1 + ε)h(x).

This proves Theorem 4.2. ¤
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Theorem 4.3 (Finiteness result). Let k be a number field and let F (X)

be a semi-decomposable form in m + 1 variables with coefficients in k. Write

F = Q1 . . . Qq over k̄. Assume that Q1, . . . , Qq are in general position with

degQj = dj . Let d = max1≤j≤q dj . Assume that degF > dm(m+ 1). Then, for

every finite set S of places of k containing the archimedean places of k, for each

positive number λ < degF − dm(m + 1), (4.1) has only finitely many O∗
S-non-

proportional solutions.

Proof. We shall prove Theorem 4.3 by using Corollary 4.1. Write F =

Q1 . . . Qq over k′, where k′ is a finite algebraic extension of k. Let S′ ⊂ M(k′)
consist of the extension of the places of S to k′, then every S-integer in k is also

an S′-integer in k′. Moreover, we have HS(x0, . . . , xm) = HS′(x0, . . . , xm) and

∏

υ∈S

‖F (x0, . . . , xm)‖υ =
∏

w∈S′
‖F (x0, . . . , xm)‖w for (x0, . . . , xm) ∈ Om+1

S .

So (4.1) is preserved when we work on k′. Therefore, for simplicity, we assume

that k′ = k. By enlarging S if necessary, we may assume that the coefficients of

Qj , 1 ≤ j ≤ q, are in OS . Hence, by Corollary 4.1, for all x = (x0, . . . , xm) ∈
Om+1

S , except for finitely many, with F (x) 6= 0, we have

q∑

j=1

∑

υ∈S

1

dj
log

‖x‖dj
υ · ‖Qj‖υ

‖Qj(x)‖υ ≤ (
m(m+ 1) + ε

)
h(x).

This gives, for d = max1≤j≤q dj ,

q∑

j=1

∑

υ∈S

log
‖x‖dj

υ · ‖Qj‖υ
‖Qj(x)‖υ ≤ (

dm(m+ 1) + ε
)
h(x).

Hence

(d1 + · · ·+ dq)hS(x) ≤ (dm(m+ 1) + ε
)
h(x) + log

∏

υ∈S

‖F (x)‖υ +O(1).

Using (4.1), the above becomes

(d1 + · · ·+ dq)hS(x) ≤ (dm(m+ 1) + ε
)
h(x) + λhS(x) +O(1).

Since degF = d1 + · · ·+ dq, it yields

(degF )hS(x) ≤ (dm(m+ 1) + ε
)
h(x) + λhS(x) +O(1). (4.4)
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On the other hand, for x ∈ Om
S , we have

h(x) ≤ hS(x). (4.5)

(4.4) and (4.5) then yield

(
degF − dm(m+ 1)− λ− ε

)
hS(x) ≤ C,

for some positive constant C. Choose an ε > 0 such that degF − ε−dm(m+1)−
λ > 0. Then it gives that HS(x) is bounded. By the Dirichlet–Chevalley–Weil

S-unit Theorem, there is an S-unit u such that ‖ux‖υ ≤ DυHS(x)
1/#S for υ ∈ S,

where the Dυ are constants depending only on k, S. Thus x is O∗
S-proportional to

x′ := u ·x, and ‖x′‖υ is bounded for every υ ∈ M(k). This implies that there are

only finitely many possibilities for x′. Hence up to O∗
S-proportionality, (4.1) has

only finitely many solutions x ∈ Om
S . This finishes the proof of Theorem 4.3 ¤
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