Conjecture of Pomerance for some even integers and odd primorials

By N. SARADHA (Mumbai)
Dedicated to Professors K. Györy, A. Pethő, J. Pintz and A. Sárközy

Abstract

We solve some cases of a conjecture of Pomerance concerning reduced residue systems modulo k consisting of the first $\varphi(k)$ primes not dividing k when k is even or when k is an odd primorial, thus extending a recent result of Hajdu and Saradha.

1. Introduction

Let $k>1$ be an integer. We denote by $\varphi(k)$, Euler's totient function and by $\omega(k)$, the number of distinct prime divisors of k. We say that k is a P-integer if the first $\varphi(k)$ primes coprime to k form a reduced residue system modulo k. In 1980, Pomerance [5] proved the finiteness of P-integers and conjectured that
if k is a P-integer, then $k \leq 30$.
This conjecture is still open. It is easy to check that the only P-integers less than or equal to 30 are $2,4,6,12,18,30$. In fact, it has been verified by Hajdu and Saradha [3] that
there are no other P-integers up to 5.5×10^{5}.
Further it was shown that
the only prime P - integer is 2 .
This follows from the following general result proved in [3]. Let $\ell(k)$ denote the least prime divisor of k and we put $\ell(1)=1$.

[^0]If k is an integer with $\ell(k)>\log (k)$, then k is a P-integer if and only if $k \in\{2,4,6\}$.

This result depends on explicit computations done by Hagedorn [2] on the values of the Jacobsthal function. Note that this result does not include even integers >8 since $2<\log 8$. In this note we extend the above result as follows. Let $\alpha \geq 0$ be an integer. We write $k=2^{\alpha} k_{1}$ with $2 \nmid k_{1}$.

Theorem 1.1. Let $k=2^{\alpha} k_{1}>1$ with $k_{1}=1$ or $\ell\left(k_{1}\right)>(.88) \log (k)$. Then k is a P-integer if and only if $k \in\{2,4,6,12,18,30\}$.

The following corollary is immediate and it extends (1).
Corollary 1.1. Let q be an odd prime.
(i) The only P-integers which are powers of 2 are 2 and 4.
(ii) Any integer of the form q^{β} with $\beta<1.136 \frac{q}{\log q}$ is not a P-integer. In particular, none of the integers of the form q, q^{2} or q^{3} is a P-integer.
(iii) The only P-integers of the form $2 q, 2^{2} q, 2^{3} q, 2 q^{2}$ are $6,12,18$.

Let $N_{h}=p_{1} \ldots p_{h}$ i.e., product of the first h primes. These are called primorials. In Theorem 3 of [3], it was shown that all primorials are not P-integers except 2,6 and 30 . Here we consider odd primorials i.e.,

$$
N_{h}^{\prime}=p_{2} \ldots p_{h}
$$

We show that
Theorem 1.2. All odd primorials are not P-integers.

2. Lemmas

We record some lemmas required for the proofs of Theorems 1.1 and 1.2. As the proofs are similar to the proof of Theorem 2 of [3], we will be brief at many places and give details only where the arguments are different. Let $2=p_{1}<p_{2}<$ \ldots denote the sequence of all primes. For any positive real x, let $\log _{1} x=\log (x)$ and for $t \geq 2, \log _{t}(x)=\log \left(\log _{t-1}(x)\right)$. We denote by $P(k)$ the maximum of the least primes in the reduced residue classes $\bmod k$. For any integer $n>1$, let $g(n)$ denote the Jacobsthal function i.e., the least integer such that in any sequence of $g(n)$ consecutive integers there is an integer coprime to n. For the properties of $g(n)$, we refer to [1], [3] and [4] and the references mentioned therein. We begin with some properties of $g(n)$ that we need in this article.

Lemma 2.1. For any integer $n>1$, let $N(n)$ denote its radical. Then $g(n)=g(N(n))$. For any prime p, we have $g\left(p^{\alpha}\right)=2$. If n is an odd integer, then $g(2 n)=2 g(n)$. Further if $\ell(n)>\omega(n)+1$, then $g(n)=\omega(n)+1$.

The first two assertions follow from the definition of $g(n)$. For the proof of the third assertion we refer to Lemma 2.2 of [4] or the argument in Proposition 2.8 of [2]. The last assertion was an observation of Jacobsthal, see Erdős [1]. The next lemma is due to Stevens [7] in which an explicit upper bound for $g(k)$ is given.

Lemma 2.2. We have $g(k) \leq 2 \omega(k)^{2+2 e \log (\omega(k))}$ for all $k>1$.
The next lemma gives estimates from Prime Number Theory due to Rosser and Schoenfeld [6].

Lemma 2.3. Let p_{n} denote the n-th prime. Then
(i) $p_{n}>n\left(\log (n)+\log _{2}(n)-\frac{3}{2}\right)$ for $n>1$;
(ii) $p_{n}<n\left(\log (n)+\log _{2}(n)\right)$ for $n \geq 6$;
(iii) For $x \geq 2$ write $\vartheta(x)=\sum_{p \leq x} \log (p)$. For any $x \geq 563$ we have

$$
x\left(1-\frac{1}{2 \log (x)}\right)<\vartheta(x)<x\left(1+\frac{1}{2 \log (x)}\right) .
$$

It is well known that the normal order of $\omega(n)$ is $\log _{2}(n)$. For the purpose of this article we use the following explicit estimate for $\omega(k)$. Let $k=2^{\alpha} k_{1}$ with $k_{1}=1$ or $\ell\left(k_{1}\right)>(.88) \log (k)$. Suppose $k>5.5 \times 10^{5}$. Then for $k_{1} \neq 1$, we see that

$$
\begin{equation*}
\omega(k)=\omega\left(k_{1}\right)+1<\frac{\log (k)}{\log _{2}(k)-(.12)}+1<\frac{1.25 \log (k)}{\log _{2}(k)}<(.49) \log (k)<\ell\left(k_{1}\right) \tag{2}
\end{equation*}
$$

From the definition of P-integers and a result of Pomerance [5], we get the following estimates for $P(k)$.

Lemma 2.4. Let k be given. Suppose m is an integer such that $\operatorname{gcd}(m, k)=1$ and $1<m \leq \frac{k}{1+g(k)}$. Then k is a P-integer if and only if

$$
(g(m)-1) k<P(k) \leq p_{\varphi(k)+\omega(k)} .
$$

Let

$$
\delta_{1}=\left\{\begin{array}{ll}
0 & \text { if } \alpha>0 \\
1 & \text { if } \alpha=0
\end{array} \quad \text { and } \quad \delta_{2}= \begin{cases}1 & \text { if } \alpha>0 \\
0 & \text { if } \alpha=0\end{cases}\right.
$$

Suppose it is possible to choose m in Lemma 2.4 as the product of the first h primes if k is odd and first $h-1$ odd primes if k is even i.e.,

$$
\begin{equation*}
m=2^{\delta_{1}} p_{2} p_{3} \ldots p_{h} \tag{3}
\end{equation*}
$$

Then by Proposition 1.1 of Hagedorn [2] we get

$$
g(m) \geq 2 p_{h-1} \quad \text { if } \delta_{1}=1
$$

Hence by Lemma 2.1, if $\delta_{1}=0$ i.e., when m is odd, we get

$$
g(m)=\frac{1}{2} g(2 m) \geq p_{h-1}
$$

Thus for the choice of m as in (3), we have

$$
g(m) \geq 2^{\delta_{1}} p_{h-1}
$$

Now by Lemmas 2.4 and 2.3, we have

$$
\begin{equation*}
p_{\varphi(k)+\omega(k)}>\left(2^{\delta_{1}} p_{h-1}-1\right) k>2^{\delta_{1}}(h \log (h)) k \quad \text { for } h \geq 8 \tag{4}
\end{equation*}
$$

When $k=2^{\alpha} k_{1}$ with $\ell\left(k_{1}\right)>(.88) \log (k)$ and $k>5.5 \times 10^{5}$ we observe by (2) and Lemma 2.1 that

$$
g(k)=g(N(k))=g\left(2^{\delta_{2}} N\left(k_{1}\right)\right)=2^{\delta_{2}}\left(\omega\left(k_{1}\right)+1\right) .
$$

Also if $k_{1}=1$, then $g(k)=g\left(2^{\alpha}\right)=2$. Hence we have

$$
\begin{equation*}
g(k)=2^{\delta_{2}}\left(\omega\left(k_{1}\right)+1\right)=2^{\delta_{2}} \omega(k) \quad \text { for } k>5.5 \times 10^{5} . \tag{5}
\end{equation*}
$$

Further $\varphi(k)<\frac{k}{2^{\delta_{2}}}$. Hence using $\varphi(k)+\omega(k) \leq k$, the upper estimate for p_{n} from Lemma 2.3 (ii) and (2), we get

$$
\begin{equation*}
p_{\varphi(k)+\omega(k)} \leq p_{\frac{k}{2^{\delta_{2}}}+1+\frac{1.25 \log (k)}{\log _{2}(k)}} \leq\left(\frac{k}{2^{\delta_{2}}}+1+\frac{1 \cdot 25 \log (k)}{\log _{2}(k)}\right)\left(\log (k)+\log _{2}(k)\right) . \tag{6}
\end{equation*}
$$

Thus we have

$$
\begin{equation*}
p_{\varphi(k)+\omega(k)} \leq \frac{1.026}{2^{\delta_{2}}} k \log (k) \quad \text { for } k \geq 10^{90} \tag{7}
\end{equation*}
$$

Applying (4) and (7) in Lemma 2.4, we obtain the following lemma.

Lemma 2.5. Let $k \geq 10^{90}, k=2^{\alpha} k_{1}$ with $k_{1}=1$ or $\ell\left(k_{1}\right)>(.88) \log (k)$. Then k is not a P-integer.

Proof. Let $k \geq 10^{90}$ and $m=2^{\delta_{1}} p_{2} \ldots p_{h}$ with

$$
h=\left[\frac{.85 \log (k)}{\log _{2}(k)}\right]+1 .
$$

Then

$$
\frac{.85 \log (k)}{\log _{2}(k)}<h<\frac{.88 \log (k)}{\log _{2}(k)}
$$

Hence

$$
p_{h}<.88 \log (k)<\ell\left(k_{1}\right)
$$

showing that $\operatorname{gcd}(m, k)=1$ and also using (2) and (5) we get

$$
m<e^{.88 \log (k)}<\frac{k \log _{2}(k)}{2.5 \log (k)+\log _{2}(k)} \leq \frac{k}{1+2 \omega(k)} \leq \frac{k}{1+g(k)}
$$

On the other hand, using (4) and (7) in Lemma 2.4, we get

$$
\begin{aligned}
& \log (k)>2^{\delta_{1}+\delta_{2}}(.974) h \log (h)>1.948 h \log (h) \\
&>\frac{1.65 \log (k)}{\log _{2}(k)}\left\{\log _{2} k-.17-\log _{3} k\right\}>1.07 \log (k),
\end{aligned}
$$

a contradiction.

3. Proofs of Theorems 1.1 and 1.2

Proof of Theorem 1.1. We take $k=2^{\alpha} k_{1}$ with $k_{1}=1$ or $\ell\left(k_{1}\right)>.88 \log (k)$. By Lemma 2.5 and the computations made in [3] we may assume that

$$
\begin{equation*}
5.5 \times 10^{5}<k<10^{90} \tag{8}
\end{equation*}
$$

As in [3] we use "boot-strapping" technique and the explicit values of $g(m)$ given by the work of Hagedorn [2] to cover this range.

First, we take k odd. Then $k=k_{1}>1$ and by (2), we have $\ell(k)=\ell\left(k_{1}\right)>$ $\omega\left(k_{1}\right)+1=\omega(k)+1$. Hence by Lemma 2.1 we have $g(k)=\omega(k)+1<\log (k)+1$. Now we follow the argument exactly as in [3] (see pages 22-23) to show that no
odd value of k in (8) is a P-integer. Next we take k even in the range given by (8). Then by (5) and (2) we have,

$$
g(k) \leq 2 \omega(k) \leq \frac{2.5 \log (k)}{\log _{2}(k)}
$$

Suppose $\beta_{1}<k \leq \beta_{2}$. Let $m=p_{2} \ldots p_{h}$ with a suitable h such that

$$
\begin{equation*}
p_{h}<.88 \log \left(\beta_{1}\right) \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
1<m<\frac{\beta_{1} \log _{2}\left(\beta_{1}\right)}{2.5 \log \left(\beta_{1}\right)+\log _{2}\left(\beta_{1}\right)} \tag{10}
\end{equation*}
$$

Then $\operatorname{gcd}(m, k)=1$ since $\ell(k)>.88 \log (k)>.88 \log \beta_{1}>p_{h}$ and we also have

$$
m<\frac{k \log _{2} k}{2.5 \log (k)+\log _{2}(k)} \leq \frac{k}{1+g(k)}
$$

Then by Lemma 2.4 and (6), we find that k is a P-integer only if

$$
\begin{equation*}
g(m)-1<\log \left(\beta_{2}\right)\left(\frac{1}{2}+\frac{1}{\beta_{2}}+\frac{1.25 \log \left(\beta_{2}\right)}{\beta_{2} \log _{2}\left(\beta_{2}\right)}\right)\left(1+\frac{\log _{2}\left(\beta_{2}\right)}{\log \left(\beta_{2}\right)}\right) \tag{11}
\end{equation*}
$$

Thus when (11) is contradicted, then no value of k in $\left(\beta_{1}, \beta_{2}\right]$ is a P-integer. We begin with $\beta_{1}=5.5 \times 10^{5}$ and $\beta_{2}=10^{7}$. Then $\omega(k) \leq \frac{1.25 \log \left(\beta_{2}\right)}{\log _{2}\left(\beta_{2}\right)} \leq 7.3$ giving $g(k) \leq 8$. We choose $h=6$. Then $m=3 \cdot 5 \cdot 7 \cdot 11 \cdot 13$ and hence $m<5.5 \times 10^{5} / 9$ and $g(m)=\frac{1}{2} \times 22=11$ so that the left hand side of (11) equals 10 . On the other hand, the right hand side of (11) does not exceed 9.5 giving the necessary contradiction. Proceeding successively from $10^{\alpha_{1}}=10^{7}$, we give in Table 1 , the value $\alpha_{i}=\alpha$ for $i>1$ such that k is taken in the range $\left(10^{\alpha_{i-1}}, 10^{\alpha_{i}}\right]$, the value of h such that $m=p_{2} \ldots p_{h}$ satisfies (10) and the exact value of $g(m)=\frac{1}{2} g(2 m)$ as provided by Hagedorn (see Table 1 of [2]). One checks that (11) is contradicted in each of the range specified, thereby proving the assertion of the theorem.

h	7	8	10	13	20	23
$g(m)$	13	17	23	37	87	108
α	9	12	17	29	72	90

Table 1

Proof of Theorem 1.2. We follow the argument as in the proof of Theorem 3 of [3]. First we take $p_{h}>1000$ and we choose $m=2 p_{h+1} \ldots p_{h+\theta}$ with $p_{h+\theta} \leq 1.777 p_{h}$ and such that

$$
\text { (i) } \quad m \leq \frac{k}{1+g(k)} \quad \text { (ii) } \quad(g(m)-1) k \geq p_{\varphi(k)+\omega(k)}
$$

This would imply that k is not a P-integer. Condition (i) requires that

$$
g(k)+1 \leq \frac{1}{2}\left(\exp \left(2 \vartheta\left(p_{h}\right)\right)-\exp \left(\vartheta\left(p_{h+\theta}\right)\right)\right)
$$

Using the upper bound for $g(k)$ from Lemma 2.2, this amounts to checking

$$
2+4 h^{2+2 e \log (h)} \leq \exp \left(2 \vartheta\left(p_{h}\right)\right)-\exp \left(\vartheta\left(p_{h+\theta}\right)\right)
$$

As in [3] this inequality is verified by using approximate values of $\vartheta(x)$ given by Lemma 2.3(iii) for $x=p_{h} \geq 12000$ and exact values of $\vartheta\left(p_{h}\right)$ for $1000<p_{h}<$ 12000. The second condition (ii) leads to showing

$$
\begin{aligned}
g(m)-1 \geq \omega(m) \geq \theta \geq \pi\left(1.777 p_{h}\right)-h & \\
& \geq\left(\prod_{i=1}^{h}\left(1-\frac{1}{p_{i}}\right)+\frac{h}{k}\right)\left(\vartheta\left(p_{h}\right)+\log \left(\vartheta\left(p_{h}\right)\right)\right)
\end{aligned}
$$

This is checked to be valid for $p_{h}>1000$. Thus no odd primorial with $p_{h}>1000$ is a P-integer. Now we assume that $p_{h}<1000$. In order to check all those $k=p_{2} \ldots p_{h}$ with $p_{h}<1000$, we proceed as follows. For each such k we find a power of 2 , say $2^{q}<k$ and $0 \leq i<j$ such that $i k+2^{q}$ and $j k+2^{q}$ are both primes and

$$
\begin{equation*}
j k+2^{q}<(\varphi(k)+h-1) \log (\varphi(k)+h-1) \tag{12}
\end{equation*}
$$

This implies that both the primes $i k+2^{q}$ and $j k+2^{q}$ belong to the set of first $\varphi(k)$ primes coprime to k, but they belong to the same residue class $2^{q}(\bmod k)$. Hence k is not a P-integer. We give two examples to illustrate the above procedure. Let $k=3 \cdot 5 \ldots 29$. Then $k+2$ is a prime and it is one of the first $\varphi(k)$ primes coprime to k, but it falls in the residue class $2(\bmod k)$. Hence by the above procedure with $i=0, j=1$ and $q=1$, we conclude that k is not a P-integer. Let $k=3 \cdot 5 \ldots p_{39}$. Then $3 k+2^{32}$ and $5 k+2^{32}$ are primes, $2^{32}<k$ and (12) is satisfied by taking $i=3, j=5$ and $q=32$. Hence we conclude that k is not a P-integer.

Acknowledgement. The author wishes to thank the referee for indicating some small changes in the original version.

References

[1] P. Erdős, On the integers relatively prime to n and a number-theoretic function considered by Jacobsthal, Math. Scand. 10 (1962), 163-170.
[2] T. R. Hagedorn, Computation of Jacobsthal's function $h(n)$ for $n<50$, Math. Comp. 78 (2009), 1073-1087.
[3] L. Hajdu and N. Saradha, On a problem of Recaman and its generalization, J. Number Theory 131 (2011), 18-24.
[4] L. Hajdu and N. Saradha, Disproof of a conjecture of Jacobsthal, to appear in Math. Comp.
[5] C. Pomerance, A note on the least prime in an arithmetic progression, J. Number Theory 12 (1980), 218-223.
[6] J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1992), 64-94.
[7] H. Stevens, On Jacobsthal's $g(n)$ function, Math. Ann. 226 (1977), 95-97.
N. SARADHA

SCHOOL OF MATHEMATICS
TATA INSTITUTE
OF FUNDAMENTAL RESEARCH
DR. HOMIBHABHA ROAD
COLABA, MUMBAI
INDIA
E-mail: saradha@math.tifr.res.in
(Received February 11, 2011; revised July 29, 2011)

[^0]: Mathematics Subject Classification: 11N13.
 Key words and phrases: Jacobsthal function, primes in residue classes.

