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Abstract. Let n > m be positive integers, d = (n,m), n = dn1, m = dm1 and
T (x) = xn + Axm + B defined over a field K be such that xn

1 + Axm
1 + B has a linear

or quadratic factor f in K[x]. The paper deals with reducibility over K of T (x)/f(xd)

and supplements earlier papers of this series.

The present paper supplements part II and III of the series. We shall use
the same notation. In particular, n and m are positive integers, n1 = n/(n,m),
m1 = m/(n,m), K is a field, char K - nm(n−m). There is some overlap with [1]
indicated in the Remarks after the proofs of Theorem 2, 4 and 5. We shall prove

Theorem 1. Let n ≥ 2m, A,B ∈ K(y)∗, A−nBn−m /∈ K. Assume that
xn1 +Axm1 +B has over K(y) a linear factor x−C, but not a quadratic factor.
Then (xn + Axm + B)/(x(n,m) − C) is reducible over K(y) if and only if for an
integer l : n = 8l, m = 2l and A = A1

8,2(C,D), B = −C4−AC, where D ∈ K(y)∗

and

A1
8,2(v, w) =

−w8 − 4vw6 + 2v2w4 − 52v3w2 − 9v4

64w2
.

Theorem 2. Let n ≥ 2m, L be a finite separable extension of K(y) such
that KL is of genus g > 0. Assume that A,B ∈ L∗, A−nBn−m /∈ K and
xn1 +Axm1 +B has over L a linear factor x−C, but not a quadratic factor. For
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g = 1, (xn +Axm +B)/(x(n,m) −C) is reducible over L if and only if there exists
an integer l such that either n = 8l, m = 2l and A = A1

8,2(C,D), B = −C4−AC,
where D ∈ L, or 〈n/l,m/l〉 =: 〈ν, µ〉 ∈ S2 = {〈10, 2〉, 〈12, 3〉} and

A = A1
ν,µ(v, w)u

ν−µ, B = −Cn1 −ACm1 , C = Cν,µ(v, w)u
(ν,µ),

where
〈v, w〉 ∈ E1

ν,µ(L), u ∈ L

and E1
ν,µ is an elliptic curve given by

E1
10,2 : w2 = v3 − 2v + 4, C10,2 = 20(1− 2v) or − 40,

A1
10,2 = 2002(22− 8v + 3v2 + 10w)2 − 204(1− 2v)4 or − 2200000, respectively;

E1
12,3 : w2 = v3 − 891v + 9558, C12,3 = 18(3v + w − 57) or 18,

A1
12,3 = 63(15v + w + 189)3 − 183(3v + w − 57)3 or − 5616, respectively.

For g > 1, (xn + Axn + B)/(x(n,m) − C) is reducible over L if and only if
there exists an integer l such that 〈n/l,m/l〉 =: 〈ν, µ〉 ∈ Z2, ν < max{8g, 17} and
(xν +Axµ +B)/(x(µ,ν) − C) is reducible over L.

Theorem 3. Let n ≥ 2m, K be an algebraic number field and a, b ∈ K∗.
Assume that trinomial xn1 + axm1 + b has over K a linear factor x − c, but not
a quadratic factor. Then (xn + axm + b)/(x(n,m) − c) is reducible over K if and
only if at least one of the following conditions is satisfied:

(i) there exist an integer l such that n = 8l, m = 2l and d ∈ K such that
a = A1

8,2(c, d), b = c4 − ac;

ii) there exist an integer l such that 〈n/l,m/l〉 =: 〈ν, µ〉 ∈ S2 and
a = A1

ν,µ(v, w)u
ν−µ, b = −cn1 −Acm1 and c = Cν,µ(v, w)u

(ν,µ), where
〈v, w〉 ∈ E1

ν,µ(K), u ∈ K;

(iii) there exists an integer l such that 〈n/l,m/l〉 =: 〈ν, µ〉 ∈ Z2 and 〈a0, b0, c0〉 ∈
Fν.µ(K), where Fν.µ(K) is a finite set, possibly empty.

Theorem 4. Let n ≥ 2m, A,B ∈ K(y)∗, A−nBn−m 6∈ K. Assume that
xn1 + Axm1 + B has over K(y) a quadratic factor F (x) = x2 − Px + Q. Then
(xn + Axm + B)/F (x(n,m)) is reducible over K(y) if and only if at least one of
the following conditions is satisfied:

(iv) n = 3m and there exist U1, U2 ∈ K(y) such that either P = −U l
1, l | m, l

prime or P = 4U4
2 , 4 | m;
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(v) n = 4m and there exist U3, . . . , U7 ∈ K(y) such that either 4Q− 3P 2 = U2
3

or −P+
√

4Q−3P 2

2 = (U4 +U5

√
4Q− 3P 2 ), l | m, l prime, or −P+

√
4Q−3P 2

2 =

−4(U6 + U7

√
4Q− 3P 2 )4, 4 | m;

(vi) n = 5m and there exists U8 ∈ K(y) \ {1, ζ4,−ζ4} such that

P 2

Q
=

U8 − 2

U3
8 − U2

8 + U8 − 1

Theorem 5. Let n ≥ 2m, L be a finite separable extension of K(y) such
that KL is of genus g > 0. Assume that A,B ∈ L∗, A−nBn−m /∈ K and
xn1 + Axm1 + B has over L a quadratic factor F (x) = x2 − Px+Q. For g = 1,
(xn + Axm + B)/F (x(n,m)) is reducible over L if and only if either (iv), (v) or
(vi) of Theorem 4 hold with U1, . . . , U8 in L, or (vii) there exists an integer l such
that 〈n/l,m/l〉 =: 〈ν, µ〉 ∈ S3 = {〈5, 2〉, 〈6, 1〉, 〈10, 2〉} and P = Pν.µ(v, w)u

(ν,µ),
Q = Qν.µ(v, w)u

2(ν,µ), where 〈v, w〉 ∈ E2
ν.µ(L), u ∈ L and E2

ν.µ is an elliptic curve
given by

E2
5,2 : w2 = v3 + 5v2 + 8v + 16, P5,2 = v + 4, Q5,2 = v2 + 6v + 8− 2w,

E2
6,1 : w2 = v3 + 3v + 1, P6,1 = v + 1, Q6,1 = v2 + 2v + 3− 2w,

E2
10,2 : w2 = v3 − 52v + 144, P10,2 = 2v − 8, Q10,2 = 3v2 + 4v + 8w − 68.

For g > 1, (xn + Axm + B)/F (x(n,m)) is reducible over L if and only if either
(iv) or (v) of Theorem 4 hold with K(y) replaced by L or (viii) there exists an
integer l such that 〈n/l,m/l〉 =: 〈ν, µ〉 ∈ Z2, ν < max

{
24
5 g, 16

}
and xν+Axµ+B

F (x(n,m))

is reducible over L.

Corollary 1. Let L be a finite separable extensions of K(y) with KL of
genus g and A,B ∈ L∗, A−nBn−m /∈ K and let F be a linear factor of xn1 +

Axm1 + B in K(y)[x] of maximal possible degree d ≤ 2. If n1 > d + 2, then
(xn1 + Axm1 + B)F (x(n,m))−1 is reducible over L, if and only if there exists an
integer l such that 〈n/l,m/l〉 =: 〈ν, µ〉 ∈ N2, ν < max

{
17 − (d − 1)2, 24g

2d+1

}
and

(xν +Axµ +B)F (x(ν,µ))−1 is reducible over L.

Remark 1. This is a minor improvement on Theorem 2 of [4] in which 9d2 −
8d+ 16 is replaced by 17− (d− 1)2.

Theorem 6. Let n ≥ 2m, K be an algebraic number field and a, b ∈ K∗.
Assume that xn1 + axm1 + b has over K a quadratic factor f(x) = x2 − px + q.
Then (xn + axm + b)/f(x(n,m)) is reducible over K if and only if at least one of
the following conditions is satisfied:
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(ix) n = 3m and there exist u1, u2 ∈ K such that either p = −ul
1, l|m, l

prime or p = 4u4
2, 4|m;

(x) n = 4m and there exist u3, . . . , u7 in K such that either 4q− 3p2=u2
3 or

−p+
√
4q − 3p2

2
=

(
u4 + u5

√
4q − 3p2

)l
, l | m, lprime

or
−p+

√
4q − 3p2

2
= −4

(
u6 + u7

√
4q − 3p2

)4
, 4|m;

(xi) n = 5m and there exists u8 ∈ K \ {1, ζ4,−ζ4} such that

p2

q
=

u8 − 2

u3
8 − u2

8 + u8 − 1
;

(xii) there exists an integer l and u ∈ K such that 〈n/l,m/l〉 =: 〈ν, µ〉 ∈ S3

and p = Pν,µ(v, w)u
(ν,µ), q = Qν,µ(v, w)u

2(ν,µ), where 〈v, w〉 ∈ E2
ν.µ(K),

u ∈ K;

(xiii) there exists an integer l such that 〈n/l,m/l〉 =: 〈ν, µ〉 ∈ Z2 and 〈a, b, 〉 ∈
Fν.µ(K), where Fν.µ(K) is a certain finite, possibly empty, set.

The proofs of all six theorems will be performed according to the same
scheme: first the condition for reducibility given in the theorem will be shown
necessary, then sufficient.

Lemma 1. In the notation of [3] we have for n ≥ 2m > 0, (m,n) = 1, q > 1

g1∗(m,n, q)





≥ 0 if 〈m,n, q〉 = 〈1, 4, 2〉,
≥ 1 if 〈m,n, q〉 = 〈1, 4, 3〉, 〈1, 5, 2〉,
≥ 2 if 〈m,n, q〉 = 〈1, 4, 4〉,
>

nq

8
otherwise.

Proof. g1∗(m,n, q) is the genus of the field M1∗(m,n, q). By Lemma 2(a)
and Lemmas 13–15 of [2] we have

g1∗(m,n, q) ≥ 1+
1

2

(
qn−2 − qn−3

2
(n− 2)−

⌊
qmax(n−3,m−1)

m

(
1+

m− 1

qϕ(qm)/ϕ(q)

)⌋

−
⌊
qmax(n−3,n−m−1)

n−m

(
1 +

n−m− 1

qϕ(q(n−m))/ϕ(q)

)⌋)
=: b(m,n, q).

Now, we find
b(1, 4, 3) = 1 = b(1, 5, 2), b(1, 4, 4) = 2 = b(2, 5, 2)



On reducible trinomials, IV 711

and it remains to consider

n = 4, q ≥ 5 or n = 5, q ≥ 3 (1)

or n ≥ 6. By a formula on p. 596 of [3].

g1∗(m,n, q) ≥ 1 +
qn−3

2
γ1(q,m, n),

where

γ1(q,m, n) =





q − 1

2
(n− 2)− 1− q + 1

n− 1
if m = 1,

q − 1

2
(n− 2)−

(
1

m
+

1

n−m

)(
1 +

1

q

)
otherwise

and in the case (1) γ1(q, n,m) ≥ 1,

qn−3

2
γ1(q, n,m) ≥ qn

8
.

For n ≥ 6 the inequality g1∗(m,n, q) > nq
8 has been proved on p. 596 of [3]. ¤

Proof of Theorem 1. Necessity. Let

Q(x;A,B) =
xn1 +Axm1 +B

x− C
.

If (xn +Axm +B)/(x(m,n) −C) is reducible over K(y), then by Capelli’s lemma
either Q(x;A,B) is reducible over K(y) or x(n,m) − ξ is reducible over K(y, ξ),
where ξ is a zero of Q(x;A,B). Following the proof of Theorem 1 in [3] we find
that either g∗1(k,m1, n1) = 0 for a certain k ∈ [

2, n1−1
2

]
or g1∗(m1, n1, q) = 0

for a certain q | (m,n), q > 1, respectively. In the former case, by Lemma 8
of [3], n1 ≥ 5 and reducibility of Q(x;A,B) contradicts the assumption that
xn1+Axm1+B has no quadratic factor overK(y). In the latter case, by Lemma 1,
〈m1, n1, q〉 = 〈1, 4, 2〉, hence 〈n,m〉 = 〈8, 2〉. By Lemma 29 of [2] we have

x4 +Ax− (C4 +AC)

x− C
= xf(x)2 − g(x)2; f, g ∈ K(y)[x],

hence for a, b, c ∈ K(y):

x3 + Cx2 + C2x+ C3 +A = x(x+ a)2 − (bx+ c)2

= x3 + (2a− b2)x2 + (a2 − 2bc)x− c2;

2a− b2 = C, a2 − 2bc = C2, ad− c2 = C3 +A and if b 6= 0

(C + b2)2 − 8bc = 4C2; c =
(C + b2)2 − 4C2

8b
,

A = −c2 − C3 = A1
8,2(C, b), B = −C4 −AC.
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If b = 0 it follows that C = 0, hence B = 0, contrary to the assumption.

Sufficiency. If n = 8l, m = 2l, A = A1
8,2(C,D), B = −C4 − AC where

C ∈ K(y), D ∈ K(y)∗, then

x8l +Ax2l +B

x2l − C
=

(
x3l +Dx2l +

C +D2

2
xl +

−3C2 + 2CD2 +D4

8D

)

×
(
x3l −Dx2l +

C +D2

2
xl − −3C2 + 2CD2 +D4

8D

)
. (2)

¤

Proof of Theorem 2. For g > 1 the assertion has already been proved
in [3], thus we consider only the case g = 1.

Necessity. Arguing as in the Proof of Theorem 1 we find that either
g1∗(k,m1, n1) ≤ 1 for a certain k ∈ [

2, n1−1
2

]
or Q(x,A,B) is irreducible over

L and g1∗(m1, n1, q) ≤ 1 for a certain q | (m,n), q > 1. In the former case, by
Lemma 8 of [3], n1 ≤ 6 and reducibility of Q(x,A,B) contradicts the assumption
that xn1 + Axm1 + B has no quadratic factor over L. In the latter case, by
Lemma 1, 〈m1, n1, q〉 = 〈1, 4, 2〉, 〈1, 4, 3〉, or 〈1, 5, 2〉. If 〈m1, n1, q〉 = 〈1, 4, 2〉 it
follows, as in the proof of Theorem 1, that A = A1

8,2(C,D), where D ∈ L∗. If
〈m1, n1, q〉 = 〈1, 4, 3〉 and Q(x,A,B) is irreducible over L, then by Lemma 29
of [2], we have

x4 +Ax− (C4 +AC)

x− C
= f(x)3 + xg(x)3 + x2h(x)3 − 3xf(x)g(x)h(x);

f, g, h ∈ L(x).
Hence for a, b, c ∈ L:

x3 + Cx2 + C2x+ C3 +A = (x+ a)3 + xb3 + x2c3 − 3x(x+ a)bc;

3a+ c3 − 3bc = C, 3a2 + b3 − 3abc = C2, a3 = C3 +A,

a =
C − c3 + 3bc

3
,

(C − c3 + 3bc)2

3
+ b3 − (C − c3 + 3bc)bc = C2. (3)

If c = 0 we obtain a = C/3, b3 = 2
3C

2, b = 2
3

(
C
b

)2 and taking C
3b = u we have

b = 6u2, C = 18u3, A = a3 − C3 = (63 − 183)u9 = −5616u9.
If c 6= 0 we put C

c3 = γ, b
c2 = β and obtain from (3)

24β3 + 9β2 − 36β + 12 = (3β − 2)2 + 8(3β3 − 3β + 1) = (4γ − 3β + 2)2.

Taking
u =

c

12
, v = 24β + 3, w = 24(4γ − 3β + 2),
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we have
v3 − 891v + 9558 = w2

and
A = A1

18,3(v, w)u
9, C = C12,3(v, w)u

3.

If 〈m1, n1, q〉 = 〈1, 5, 2〉 and Q(x,A,B) is irreducible over L, then, by Lemma 29
of [2], we have

x5 +Ax− (C5 +AC)

x− C
= f(x)2 − xg(x)2, f, g,∈ L(x),

hence for a, b, c, d ∈ L:

x4 + Cx3 + C2x2 + C3x+ C4 +A = (x2 + ax+ b)2 − x(cx+ d)2;

2a− c2 = C, 2b+ a2 − 2cd = C2, 2ab− d2 = C3, b2 = C4 +A,

a =
C + c2

2
b =

1

8
(3C2 − 2Cc2 − c4 + 8cd),

(C + c2)(3C2 − 2Cc2 − c4 + 8cd)− 8d2 = 8C3. (4)

If c = 0 we obtain −8d2 = 5C3, C = − 8
5

(
d
C

)2 and taking d
5C = u we have

C = −40u2, a = −20u2, b = 600u4, A = b2 − C4 = −2200000u8.
If c 6= 0 we put C

c2 = γ, d
c3 = δ and obtain from (4)

4(γ + 1)2 − 2(5γ3 − γ2 + 3γ + 1) = (4δ − 2γ − 2)2.

Taking 2v = −5γ + 1, 2w = 5(2δ − γ − 1), u = c
10 we have

v3 − 2v + 4 = w2

and
A = A1

18,2(v, w)u
8, C = C12,2(v, w)u

2.

Sufficiency. If n = 8l, m = 2l, A = A1
8,2(C,D), B = −C4−AC where C ∈ L,

D ∈ L, then x8l+Ax2l+B
x2l−C

is reducible over L by (2).
If n = 10l, m = 2l and A = A1

10,2(v, w)u
8, B = −C5−AC, C = C10,2(v, w)u

2

then

x10l +Ax2l +B

x2l − C
= (x4l + 10ux3l + 20(3− v)u2x2l + 200(w − v + 3)u3xl

+ 200(22− 8v + 3v2 + 10w)u4)(x4l − 10ux3l + 20(3− v)u2x2l

− 200(w − v + 3)u3xl + 200(22− 8v + 3v2 + 10w)u4).
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If n = 10l, m = 2l and A = −2200000u8, B = −C5 −AC, C = −40u2 then

x10l +Ax2l +B

x2l − C
= (x4l − 20u2x2l − 200u3xl + 600u4)

× (x4l − 20u2x2l + 200u3xl + 600u4).

If n = 12l, m = 3l and A = A1
12,3(v, w)u

9, B = −C4 − AC, C = C12,3(v, w)u
3

then

x12l +Ax3l +B

x3l − C
= (x3l + 12ux2l + 6(v − 3)u2xl + 6(15v + w − 189)u3)

× (x6l − 12ux5l + 6(27− v)u2x4l + 12(9v + w − 171)u3x3l

+ 36(v2 − 36v − 30w + 387)u4x2l

− 36(v − 3)(15v + w − 189)u5xl + 62(15v + w − 189)u6).

If n = 12l, m = 3l and A = −5616u9, B = −C4 −AC, C = 18u3, then

x12l +Ax3l +B

x3l − C
= (x3l + 6u2xl + 6u3)

× (x6l − 6u2x4l + 12u3x3l + 36u4x2l − 36u5xl + 36u6). ¤

Remark. The calculations performed in the case 〈m1, n1, q〉 = 〈1, 4, 3〉 are
similar to those in the Proof of Theorem 6.5 of [1].

Proof of Theorem 3. In view of Theorem 2 the proof does not differ es-
sentially from the proof of Theorem 3 in [3]. The finiteness of the set Fν,µ(K) is
a consequence of the Faltings theorem. ¤

Lemma 2. For n ≥ 2m, (m,n) = 1, n ≥ 2k + 2 we have the following
inequalities

g∗2(k,m, n)





≥ 0 if 〈k,m, n〉 = 〈1, 1, 5〉,
≥ 1 if 〈k,m, n〉 = 〈1, 2, 5〉, 〈1, 1, 6〉,
≥ 5n

24
otherwise.

Proof. Except for 〈k,m, n〉 = 〈2, 1, 6〉 this follows from the inequalities

g∗2(k,m, n) ≥
(
2k

k

)(
k(n− 2)

8
− 1

)
+ 1 for k > 1,

∗g∗2(1,m, n) ≥ 1

2

(
n− 2

2

)
+

1

2
ζ − (n− 2) + 1
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shown in the proof of Lemma 15 of [4], where ζ is given by the formula (9) there,
namely

ζ =





(n+m− 4)/2 if n ≡ m ≡ 1 (mod 2),

(2n−m− 4)/2 if n ≡ 1, m ≡ 0 (mod 2),

(n− 2)/2 if n ≡ 0, m ≡ 1 (mod 2).

For 〈k,m, n〉 = 〈2, 1, 6〉 we profit by the result of [1] that g∗2(2, 1, 6) = 2. ¤

Lemma 3. The number of vectors 〈α1, . . . , αi, . . . , αa〉 ∈ Z/qZ such that

a∑

i=1
i/∈A

ζαi
q ζiaq = 0, A a proper subset of {1, . . . , a} (5)

does not exceed
qa−|A|−min{minA−1,ϕ(aq)/ϕ(q)},

where min∅ = ∞.

Proof. Let % = [Q(ζaq) : Q(ζq)] = ϕ(aq)/ϕ(q) and let ζ
rj
aq (1 ≤ j ≤ %) be

all the conjugates of ζaq over Q(ζq). The equation (5) gives

min{minA−1,%}∑

i=1

ζαi
q ζirjaq = −

a∑

i=min{minA−1,%}+1
i/∈A

ζαi
q ζirjaq (1 ≤ j ≤ min{minA− 1, %}).

The Vandermonde determinant det(ζirjaq )6=0, hence αi (1≤ i≤min{minA− 1, %})
are determined uniquely by αi (min{minA− 1, %}) < i ≤ a, i /∈ A). The number
of vectors formed by the latter is just the bound given in the lemma. ¤

Lemma 4. Let x(t) be an algebraic function of t given in the neighbourhood
of t = 0 by the Puiseux expansions

xi(t) = ζiat
l1/m1Pi(ζ

i
at

1/m1) (1 ≤ i ≤ a, i /∈ A),

xa+j(t) = ζjb t
l2/m2Pa+j(ζ

j
b t

1/m2) (1 ≤ j ≤ b, j /∈ B),

where l1, l2 ∈ Z; a, b,m1,m2 ∈ N, A,B subsets of {1, . . . , a}, {1, . . . , b}, respecti-
vely and Pi, Pa+j ordinary power series with non-zero constant term. If

l1m2 − l2m1 = 1, q is a positive integer (6)
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and

y(t) =

(
a+b∑

i=1
i/∈A∪B+a

xi(t)
1/q

)q

, (7)

then the number of distinct prime factors of the denominator of t in the field
K(t, y(t)) does not exceed

M1=





qa+b−|A|−|B|−2

m1m2

(
1+

m1 − 1

qmin{minA−1,ϕ(aq)/ϕ(q)}

)

×
(
1 +

m2 − 1

qmin{minB−1,ϕ(bq)/ϕ(q)}

)
if |A| < a, |B| < b,

qa−|A|−1

m1

(
1 +

m1 − 1

qmin{minA−1,ϕ(aq)/ϕ(q)}

)
if |A| < a, |B| = b,

qb−|B|−1

m2

(
1 +

m2 − 1

qmin{minB−1,ϕ(bq)/ϕ(q)}

)
if |A| = a, |B| < b,

(8)

Remark. This lemma generalizes the arguments used in the proof of Lem-
ma 22 and 23 of [2], Lemma 14 of [3].

Proof. By (7) the Puiseux expansions of y(t) at t = 0 are
(

a∑

i=1
i/∈A

ζαi
q ζiaqt

l1/m1qPi(ζ
i
at

1/m1)1/q +

b∑

j=1
j /∈B

ζαa+j
q ζjbqt

l2/m2qPa+j(ζ
j
b t

1/m2)1/q

)q

(9)

where αi, αa+j run through Z/qZ.
Let S, T be the sets of vector 〈α1, . . . , αi, . . . , αa〉 (i /∈ A, |A| < a) and

〈αa+1, . . . , αa+j , . . . , αa+b〉 (j /∈ B, |B| < b) such that

a∑

i=1
i/∈A

ζαi
q ζiaq = 0 and

b∑

j=1
j /∈B

ζαa+j
q ζjbq = 0, respectively.

By Lemma 3 we have

|S| ≤ qa−|A|−min{minA−1,ϕ(aq)/ϕ(q)} if |A| < a, (10)

and
|T | ≤ qb−|B|−min{minB−1,ϕ(bq)/ϕ(q)} if |B| < b. (11)

On the other hand, if |A| < a, |B| < b and 〈α1, . . . , αa〉 /∈ S and 〈αa+1, . . . , αa+b〉 /∈
T the parenthesis in (9) contains tl1/m1q and tl2/m2q with non-zero coefficients.
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We assert that the q-th power of the parenthesis contains with non-zero coeffici-
ents both monomials

t(q−1)
l1
m1

+
l2

m2q and t
l1

m1q+(q−1)
l2

m2q . (12)

Indeed, if for i = 1 or 2

(q − 1)
li

miq
+

l3−i

m3−iq
=

∞∑
µ=0

aµ

(
l1

m1q
+

µ

m1

)
+

∞∑
µ=0

bµ

(
l2

m2q
+

µ

m2

)
, (13)

where aµ, bµ are non-negative integers and

∞∑
µ=0

aµ +

∞∑
µ=0

bµ = q, (14)

then multiplying both sides of (13) by m1m2q we obtain

l3−imi − lim3−i ≡ l1m2

∞∑
µ=0

aµ + l2m1

∞∑
µ=0

bµ (mod q),

hence by (6) and (14)

(−1)i ≡
∞∑

µ=0

aµ (mod q)

and for i = 1:
∑∞

µ=0 aµ = q − 1,
∑∞

µ=0 bµ = 1; for i = 2:
∑∞

µ=0 aµ = 1,∑∞
µ=0 bµ = q − 1.
Now, (13) gives in both cases

∞∑
µ=0

aµµ = 0 =

∞∑
µ=0

bµµ

and, since aµ ≥ 0, bµ ≥ 0, aµ = 0 = bµ for µ > 0, thus for i = 0: a0 = q − 1,
b0 = 1; for i = 2: a0 = 1, b0 = q− 1. Therefore, there is no cancellation and both
monomials (12) occur with non-zero coefficients in the Puiseux expansion of y(t)
at t = 0. Now, by (6),

(q − 1)
li

miq
+

l3−i

m3−1q
=

qlim3−i + l3−imi − lim3−i

m1m2q
=

qlim3−i + (−1)i

m1m2q
,

hence the reduced denominator is divisible by qm3−i and, since (m1,m2)

= 1 we have l.c.m. [qm2, qm1] = qm1m2. Thus we obtain for y(t) at t = 0

(qa−|A| − |S|)(qb−|B| − |T |)
q2m1m2

cycles of length qm1m2.
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If |A| < a, |B| < b, 〈α1, . . . , αa〉 /∈ S and 〈αa+1, . . . , αa+b〉 ∈ T , then the
parenthesis in (9) contains t

l1
m1q and t

l2
m2q+

ν
m2 (we take the least possible ν ∈ N)

with non-zero coefficients, hence the q-th power of the parenthesis contains with
a non-zero coefficient

t
l1

m1q+(q−1)
(

l2
m2q+

ν
m2

)
,

(the proof is similar to the one given above). However, by (6),

l1
m1q

+ (q − 1)

(
l2

m2q
+

ν

m2

)
=

m1q(l2 + ν(q − 1)) + 1

m1m2q
,

hence the reduced denominator is divisible by m1q and we obtain for y(t) at t = 0

at most
(qa−|A| − |S|)|T |

q2m1
cycles.

If |A| < a, |B| < b, 〈α1, . . . , αa〉 ∈ S and 〈αa+1, . . . , αa+b〉 /∈ T we obtain
similarly for y(t) at t = 0 at most

|S|(qb−|B| − |T |)
q2m2

cycles.
Finally, if |A| < a, |B| < b, 〈α1, . . . , αa〉 ∈ S and 〈αa+1, . . . , αa+b〉 ∈ T the

parenthesis in (9) contains with non-zero coefficients

t
l1

m1q+
ν1
m1 and t

l2
m2q+

ν2
m2

(we take the least possible ν1, ν2 in N), hence the q-th power of the parenthesis
contains with a non-zero coefficient

t
(q−1)

(
l1

m1q+
ν1
m1

)
+

l2
m2q+

ν2
m2 . (15)

Indeed, if

(q − 1)

(
l1

m1q
+

ν1
m1

)
+

l2
m2q

+
ν2
m2

=

∞∑
µ=ν1

aµ

(
l1

m1q
+

µ

m1

)

+

∞∑
µ=ν2

bµ

(
l2

m2q
+

µ

m2

)
, (16)

where aµ, bµ are non-negative integers and
∞∑

µ=ν1

aµ +

∞∑
µ=ν2

bµ = q, (17)
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then multiplying both sides of (16) by m1m2q we obtain

−1 ≡ l1m2

∞∑
µ=ν1

aµ + l2m1

∞∑
µ=ν2

bµ (mod q),

hence by (6) and (17)

−1 ≡
∞∑

µ=ν1

aµ (mod q)

and
∑∞

µ=ν1
aµ = q − 1,

∑∞
µ=ν2

bµ = 1. Now (16) gives

m2

∞∑
µ=ν1

aµµ+m1

∞∑
µ=ν2

bµµ = m2(q − 1)ν1 +m1ν2,

hence aµ = 0 for µ > ν1 and bµ = 0 for µ > ν2, aν1 = q − 1, bν2 = 1. Therefore,
there is no cancellation and the monomial (15) occurs with a non-zero coefficients
in the Puiseux expansions of y(t) at t = 0. Now,

(q − 1)

(
l1

m1q
+

ν1
m1

)
+

l2
m2q

+
ν2
m2

=
q(m2l1 +m2ν1(q − 1) +m1ν2q)− 1

m1m2q
,

hence the reduced denominator is divisible by q and we obtain for y(t) at most

|S| |T |
q2

cycles. The total number of cycles does not exceed

(qa−|A| − |S|)(qb−|B| − |T |)
q2m1m2

+
(qa−|A| − |S|)|T |

q2m1
+

|S|(qb−|B| − |T |)
q2m2

+
|S| |T |
q2

=
qa+b−|A|−|B|

q2m1m2
+ |S|q

b−|B|

q2m2

(
1− 1

m1

)
+ |T |q

a−|A|

q2m1

(
1− 1

m2

)

+
|S| |T |
q2

(
1− 1

m1

)(
1− 1

m2

)
.

Using the inequalities (10) and (11) we obtain for the number of cycles the bound
M1 given by (8). ¤

Consider now the case |A| < a, |B| = b. Then, if 〈α1, . . . , αa〉 /∈ S, the mo-
nomial of the least degree occurring with a non-zero coefficient in the parenthesis
of (9) is t1/m1q and the q-th power of the parenthesis contains with a non-zero
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coefficient t1/m1 . It follows by (10) that the number of cycles for y(t) at t = 0 is
at most

qa−|A| − |S|
qm1

+
|S|
q

=
qa−|A|−1

m1
+

|S|
q

(
1− 1

m1

)

≤ qa−|A|−1

m1

(
1 +

m1 − 1

qmin{minA−1,ϕ(aq)/ϕ(q)}

)
= M1.

The case |A| = a, |B| < b is treated similarly.

Lemma 5. Let x(t) be an algebraic function of t given in the neighbourhood
of t = ∞ by the Puiseux expansion

xi(t) = ζict
l3/m3Qi(ζ

i
ct

1/m3) (1 ≤ i ≤ c, i /∈ C),

xc+j(t) = ζjdt
l4/m4Qc+j(ζ

j
dt

1/m4) (1 ≤ j ≤ d, j /∈ D),

where l3, l4 ∈ Z; c, d,m3,m4 ∈ N, C,D are proper subsets of {1, . . . , a}, {1, . . . , b},
respectively and Qi, Qc+j ordinary power series with non-zero constant terms. If
l3m4 − l4m3 = 1, q is a positive integer and

y(t) =

(
c+d∑

i=1
i/∈C∪D+c

xi(t)
1/q

)q

,

then the number of distinct prime factors of the denominator of t in the field
K(t, y(t)) does not exceed

M2 =





qc+d−|C|−|D|−2

m3m4

(
1 +

m3 − 1

qmin{min C−1,ϕ(cq)/ϕ(q)}

)

×
(
1 +

m4 − 1

qmin{minD−1,ϕ(dq)/ϕ(q)}

)
if |C| < c, |D| < d,

qc−|C|−1

m3

(
1 +

m3 − 1

qmin{min C−1,ϕ(cq)/ϕ(q)}

)
if |C| < c, |D| = d,

qd−|D|−1

m4

(
1 +

m4 − 1

qmin{minD−1,ϕ(dq)/ϕ(q)}

)
if |C| = c, |D| < d,

Proof. We apply Lemma 4 to the algebraic function x(t−1) replacing l1, l2,
a, b, m1, m2 by −l4, −l3, d, c, m4, m3, respectively. ¤
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Lemma 6. In the notation of [4] (Lemma 8) if n ≥ 5 the number of distinct
prime factors dividing the numerator or the denominator of t in the fieldK(t, y(t))

is at most

M3 =





qn−4

2

(
1 +

1

qmin{n−3
2 ,ϕ((n−1)q)/ϕ(q)}

)
+ qn−3 if n ≡ 1 mod 2, m = 1,

qn−3

n− 2

(
1 + n−3

qϕ((n−2)q)/ϕ(q)

)
+ qn−4 if n ≡ 1 mod 2, m = 2,

2qn−3, otherwise.

Proof. In the notation of [4] (Lemma 3) we have

fmxn − tαfnx
m + tβfn−m =

n∏

i=1

(x− xi(t)), x2 − tx+ t =
∏

i∈I
(x− xi(t)),

where fn is a monic polynomial of degree
⌊
n−1
2

⌋
with a non-zero constant term

and
α =

⌊n
2

⌋
−
⌊m
2

⌋
, β =

⌊
n+m

2

⌋
−
⌊m
2

⌋
.

We have to choose a, b, c, d, A, B, C, D that

{1, . . . , a+ b} \ A \ (a+ B) = {1, . . . , n} \ I, c+ d = n, |C|+ |D| = 2.

If n ≡ m ≡ 1 mod 2 we take in Lemmas 4 and5

a = m, l1 =
m+ 1

2
, m1 = m, A = ∅;

b = n−m, l2 = 1, m2 = 2, B =

{
n−m

2
, n−m

}
;

c = n−m, l3 = 1, m3 = 1, C = {n−m};
d = m, l4 = 0, m4 = 1, D = {m}.

If n ≡ 1, m ≡ 0 mod 2 we take in Lemmas 4 and 5

a = m, l1 = 1, m1 = 2, A =
{m

2
,m

}
;

b = n−m, l2 =
n−m− 1

2
, m2 = n−m, B = ∅;

c = n−m, l3 = 1, m3 = 1, C = {n−m};
d = m, l4 = 0, m4 = 1, D = {m}. ¤
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Lemma 7. In the notation of [4] we have for n ≥ 5, n ≥ 2m, (m,n) = 1,
q ≥ 2

g2∗(m,n, q)





≥ 1 if 〈m,n, q〉 = 〈1, 5, 2〉,
≥ 2 if 〈m,n, q〉 = 〈2, 5, 2〉,
≥ 3 if 〈m,n, q〉 = 〈1, 5, 3〉,

>
5nq

24
otherwise.

Proof. By Lemma 2(a) of [2], Lemma 20–22 of [4] and Lemma 6 we have

g2∗(m,n, q) ≥ 1 +
qn−4

2

(
q − 1

2

(
n− 2

2

)

+

⌊
m− 1

2

⌋(
q − 1

n−m

(
1 +

n−m− 1

qϕ((n−m)q)/ϕ(q)

))

+

⌊
n−m− 1

2

⌋(
q − 1

m

(
1 +

m− 1

qϕ(mq)/ϕ(q)

)
−M3q

4−n

))
.

If 〈m,n〉 = 〈1, 5〉 we obtain

g2∗(m,n, q) ≥
⌊
1 +

q

2

(
5

2
(q − 1)− 1

2
− 1

2q
− q

)⌋
=

⌊
3

4
(q − 1)2

⌋
,

thus g2∗(m,n, q) > 25q
24 unless q ≤ 3.

If 〈m,n〉 = 〈2, 5〉 we obtain

g2∗(m,n, q) ≥
⌊
1 +

q

2

(
3

2
(q − 1) + q − 1

2
− 1

2q
− q

3
− 2

3q
− 1

)⌋

=

⌊
1

12
(q − 1)(13q − 5)

⌋
,

thus g2∗(m,n, q) > 25q
24 unless q = 2.

If n ≥ 6 we have (cf. [4], p. 68)

g2∗(m,n, q) ≥ 1 +
qn−4

2
(3q − 5) >

5nq

24
. ¤

Proof of Theorem 4. Necessity. Let

Q(x;A,B) =
xn1 +Axm1 +B

x2 − Px+Q
. (18)

If 〈m1, n1〉 = 〈1, 3〉, then
Q(x;A,B) = x+ P
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and condition (iv) follows from Capelli’s theorem.
If 〈m1, n1〉 = 〈1, 4〉 then

Q(x;A,B) = x2 + Px+ (P 2 −Q)

and condition (v) follows from Capelli’s lemma and Capelli’s theorem. Therefore,
let n1 ≥ 5. If Q(x(m,n);A,B) is reducible over K(y), then by Capelli’s lemma
either Q(x;A,B) is reducible over K(y), or x(m,n) − ξ is reducible over K(y, ξ),
where ξ is a zero of Q(x;A,B). Following the proof of Theorem 1 in [4] we
find that either g∗2(k,m1, n1) = 0 for a certain k ≤ n1−2

2 or g2∗(m1, n1, q) = 0

for a certain q | (m,n), q > 1, respectively. The latter case is impossible by
Lemma 7. In the former case by Lemma 2 above 〈k,m1, n1〉 = 〈1, 1, 5〉 and we
have to consider the case x5+Ax+B = (x2−Px+Q)(x+a)(x2+ bx+ c), where
a, b, c ∈ K(y). This gives the following system of equations:

a+ b− P = 0, ab+ c− Pa− Pb+Q = 0,

ac− Pab− Pc+Qa+Qb = 0

We cannot have P = 0, since this would imply B = 0. Taking U8 = a/P we
obtain

P 2

Q
=

(a+ b)2(a+ 2b)

2a2b+ 2ab2 + b3
=

U8 − 2

U3
8 − U2

8 + U8 − 1
,

where U8 ∈ K(y) \ {1, ζ4,−ζ4}, which gives condition (vi).

Sufficiency. If (iv) is satisfied, Q(x(m,n);A,B) is divisible either by

xm/l − U
m/l
1 (P = U l

1)

or by
xm/2 + 2U2x

m/4 + 2U2
2 (P = 4U4

2 ).

If (v) is satisfied, Q(x(m,n);A,B) is divisible either by xm/l − U
m/l
1 (P = U l

1) or
by

xm/2 +
P + U3

2
,

or by
x2m/l − 2U4x

m/l + U2
4 − U2

5 (4Q− 3P 2),

or by

xm + 4U6x
3m/4 + 8U2

6x
m/2 + 8U6(U

2
6 − U2

7 (4Q− 3P 2))xm/4

+ 4(U2
6 − U2

7 (4Q− 3P 2))2.
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If (vi) is satisfied, then

Q(x(m,n);A,B) = (x(m,n)+P )(x2(m,n)+(P −PU8)x
(m,n)+P 2(U2

8 −U8+1)−Q).

¤

Remark. The calculations performed in the case 〈k1,m1, n1〉 = 〈1, 2, 5〉 are
similar to those in [1], Proof of Theorem 3.1.

Proof of Theorem 5. Necessity. Let Q(x;A,B) be again given by (18).
If n1 ≤ 4 the conditions (iv) and (v) with K(y) replaced by L follow as in
the proof of Theorem 4, or g > 5n1

24 and the condition (viii) holds with ν =

n1, thus let n1 ≥ 5. If Q(x(m,n);A,B) is reducible over L, then by Capelli’s
lemma either Q(x;A,B) is reducible over L, or x(m,n) − ξ is reducible over L(ξ),
where ξ is a zero of Q(x;A,B). Following the proof of Theorem 2 in [4] we
find that either g∗2(k,m1, n1) ≤ g for a certain k ≤ n1−2

2 , or g2∗(m1, n1, q) ≤ g

for a certain q | (m,n), q > 1, respectively. In the former case, by Lemma 2
either, 〈k,m1, n1〉 = 〈1, 1, 5〉, 〈1, 2, 5〉 or 〈1, 1, 6〉, 〈1, 5, 3〉, 〈2, 5, 2〉 or g > 5n1q

24 . For
g = 1 we have 〈k,m1, n1〉 = 〈1, 1, 5〉, 〈1, 2, 5〉, 〈1, 1, 6〉 or 〈m1, n1, q〉 = 〈1, 5, 2〉. We
consider these cases successively. The case 〈k,m1, n1〉 = 〈1, 1, 5〉 leads to (vi) with
K(y) replaced by L, as in the proof of Theorem 2. The case 〈k,m1, n1〉 = 〈1, 2, 5〉
leads to the equality

x5 +Ax2 +B = (x2 − Px+Q)(x+ a)(x2 + bx+ c), a, b, c ∈ L.

This gives the following system of equations:

a+ b− P = 0, ab+ c− Pa− Pb+Q = 0, −Pac+Qab+Qc = 0

and on eliminating P and Q

−(a+ b)ac+ ab(a2 + ab+ b2 − c) + c(a2 + ab+ b2 − c) = 0

ab = 0 implies B = 0, hence ab 6= 0 and or putting b = βa, c = γa2 it follows

γ2 − (β2 − β)γ − (β3 + β2 + β) = 0,

(2γ − (β2 − β))2 = (β2 − β)2 + 4(β3 + β2 + β) = β4 + 2β3 + 5β2 + 4β.

Taking 4β−1 = v, 8γβ−2−4+4β−1 = w, aβ
4 = u we obtain w2 = v3+5v2+8v+16,

where v, w ∈ L and P = u(v + 4), Q = u2(v2 + 6v + 8− 2w).
Consider now 〈k,m, n〉 = 〈1, 1, 6〉. The equality

x6 +Ax+B = (x2 − Px+Q)(x+ a)(x3 + bx2 + cx+ d),
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leads to the system of equations

a+ b− P = 0, ab+ c− Pa− Pb+Q = 0,

ac+ d− Pab− Pc+Qa+Qb = 0, ad− Pac− Pd+Qab+Qc = 0.

Eliminating P,Q and d and taking b = βa, c = γa2 we obtain

γ2 + γ(β2 + 2β)− (β4 + 2β3 + 2β2 + 2β) = 0.

It follows that

(2γ + β2 + 2β)2 = (β2 + 2β)2 + 4(β4 + 2β3 + 2β2 + 2β)

= 5β4 + 12β3 + 12β2 + 8β.

Putting 2β−1+1 = v, 2γβ−2+1+2β−1 = w, aβ
2 = u we obtain w2 = v3+3v+1,

where v, w ∈ L and P = u(v + 1), Q = u2(v2 + 2v + 3 − 2w). Consider finally
〈m1, n1, q〉 = 〈1, 5, 2〉. By Lemma 29 of [2] we have

x5 +Ax+B

x2 − Px+Q
= xf(x)2 − g(x)2, where f, g ∈ L[x]

and taking f(x) = x+ a, g(x) = bx+ c we obtain

x5 +Ax+B = (x2 − Px+Q)(x3 + (2a− b2)x2 + (a2 − 2bc)x− c2),

which leads to the system of equations

2a− b2 − P = 0, a2 − 2bc− P (2a− b2) +Q = 0,

−c2 − P (a2 − 2bc) +Q(2a− b2) = 0.

Eliminating P and Q and taking a = αb2, c = γb3 we obtain

γ2 − 2γ(4α− 2)− (4α3 − 10α2 + 6α− 1) = 0.

It follows that

(γ − 4α+ 2)2 = (4α− 2)2 + 4α3 − 10α2 + 6α− 1 = 4α3 + 6α2 − 10α+ 3.

Putting 4α + 2 = v, 4γ − 16α + 8 = w, b
2 = u we obtain w2 = v3 − 52v + 144,

P = (2v − 8)u2, Q = (3v2 + 4v − 68 + 8w)u4.
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Sufficiency. Proof of sufficiency in the cases (iv), (v) and (vi) is similar to
that of Theorem 4. If there exists an integer l such that 〈n/l,m/l〉 = 〈ν, µ〉 ∈ S3

and P = Pν,µ(v, w)u
(ν,µ), Q = Qν,µ(v, w)u

2(ν,µ), where 〈v, w〉 ∈ E2
ν,µ(L), u ∈ L,

we shall consider successively the three cases.
If 〈ν, µ〉 = 〈5, 2〉, then

xn +Axm +B

x2l − Pxl +Q
= (xl + uv)(x2l + 4uxl + 2u2(w − v + 4)).

If 〈ν, µ〉 = 〈6, 1〉, then
xn +Axm +B

x2l − Pxl +Q
= (xl + u(v − 1))

(
x3l + 2ux2l + 2u2(w − v)xl

+u3
(
(2v + 6)w − v3 − v2 − 9v − 5

))
.

If 〈ν, µ〉 = 〈10, 2〉, then
xn +Axm +B

x4l − Px2l +Q
= (x3l + 2ax2l + u2(v − 2)xl + 2u3(w + 4v − 16))

× (x3l − 2ax2l + u2(v − 2)xl − 2u3(w + 4v − 16)).

For q > 1 the sufficiency of the given condition is obvious. ¤

Remark. The calculations performed for the cases 〈k,m1, n1〉 = 〈1, 2, 5〉 and
〈1, 1, 6〉 and 〈m1, n1, q〉 = 〈1, 5, 2〉 are similar to those in the proof of Theorem 3.2,
Theorem 4.1, and Theorem 6.1 of [1].

Proof of Corollary. The corollary follows from Theorem 2 of [2], The-
orem 2 and Theorem 5 above. ¤

Proof of Theorem 6. In view of Theorem 5 the proof does not differ es-
sentially from the proof of Theorem 3 in [3]. The finiteness of the set Fν.µ(K) is
a consequence of the Faltings theorem. ¤
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Corrigenda to the paper [2] (mistakes corrected in Selecta, vol. 1 are not
included)

p. 8 Table 2 A8,1 (first): for 3v2 − 12v − 10 read 3v2 − 10

Table 2 A9,1: for v3 + 18v − 36 read v3 − 18v + 36

(I owe these corrections to A. Bremner).

p. 9 line –6 for 〈7, 2〉 read 〈7, 2〉, 〈7, 3〉
line –6 insert E7,3(Q) = {〈−33, 0〉, 〈3, 108〉, 〈3,−108〉,

〈39, 216〉, 〈39,−216〉}
p. 49 line 13 for u3 read u3(v − 39)

p. 50 for (v − 1)x+ (w − 3v + 5)

read u2(v − 1)x+ u3(w − 3v + 5)

(I owe these corrections to A. Jasinski).

p. 64 line 17 insert E7,3(Q) = {〈−33, 0〉, 〈3, 108〉, 〈3,−108〉,
〈39, 216〉, 〈39,−216〉}

line –16 leave out E7,3

line –17 leave out 〈3, 108〉
line –13 insert: All rational points on the curve E7,3 are the

indicated torsion points (see [1], Theorem 5.2 (3)).
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