On reducible trinomials, IV

By ANDRZEJ SCHINZEL (Warszawa)

To Kálmán Gyôrry, Attila Pethö, János Pintz and András Sárközy for their anniversary

Abstract

Let $n>m$ be positive integers, $d=(n, m), n=d n_{1}, m=d m_{1}$ and $T(x)=x^{n}+A x^{m}+B$ defined over a field K be such that $x_{1}^{n}+A x_{1}^{m}+B$ has a linear or quadratic factor f in $K[x]$. The paper deals with reducibility over K of $T(x) / f\left(x^{d}\right)$ and supplements earlier papers of this series.

The present paper supplements part II and III of the series. We shall use the same notation. In particular, n and m are positive integers, $n_{1}=n /(n, m)$, $m_{1}=m /(n, m), K$ is a field, char $K \nmid n m(n-m)$. There is some overlap with [1] indicated in the Remarks after the proofs of Theorem 2, 4 and 5 . We shall prove

Theorem 1. Let $n \geq 2 m, A, B \in K(\mathbf{y})^{*}, A^{-n} B^{n-m} \notin K$. Assume that $x^{n_{1}}+A x^{m_{1}}+B$ has over $K(\mathbf{y})$ a linear factor $x-C$, but not a quadratic factor. Then $\left(x^{n}+A x^{m}+B\right) /\left(x^{(n, m)}-C\right)$ is reducible over $K(\mathbf{y})$ if and only if for an integer $l: n=8 l, m=2 l$ and $A=A_{8,2}^{1}(C, D), B=-C^{4}-A C$, where $D \in K(\mathbf{y})^{*}$ and

$$
A_{8,2}^{1}(v, w)=\frac{-w^{8}-4 v w^{6}+2 v^{2} w^{4}-52 v^{3} w^{2}-9 v^{4}}{64 w^{2}}
$$

Theorem 2. Let $n \geq 2 m, L$ be a finite separable extension of $K(y)$ such that $\bar{K} L$ is of genus $g>0$. Assume that $A, B \in L^{*}, A^{-n} B^{n-m} \notin K$ and $x^{n_{1}}+A x^{m_{1}}+B$ has over L a linear factor $x-C$, but not a quadratic factor. For
$g=1,\left(x^{n}+A x^{m}+B\right) /\left(x^{(n, m)}-C\right)$ is reducible over L if and only if there exists an integer l such that either $n=8 l, m=2 l$ and $A=A_{8,2}^{1}(C, D), B=-C^{4}-A C$, where $D \in L$, or $\langle n / l, m / l\rangle=:\langle\nu, \mu\rangle \in S_{2}=\{\langle 10,2\rangle,\langle 12,3\rangle\}$ and

$$
A=A_{\nu, \mu}^{1}(v, w) u^{\nu-\mu}, \quad B=-C^{n_{1}}-A C^{m_{1}}, \quad C=C_{\nu, \mu}(v, w) u^{(\nu, \mu)}
$$

where

$$
\langle v, w\rangle \in E_{\nu, \mu}^{1}(L), \quad u \in L
$$

and $E_{\nu, \mu}^{1}$ is an elliptic curve given by
$E_{10,2}^{1}: w^{2}=v^{3}-2 v+4, \quad C_{10,2}=20(1-2 v)$ or -40,
$A_{10,2}^{1}=200^{2}\left(22-8 v+3 v^{2}+10 w\right)^{2}-20^{4}(1-2 v)^{4}$ or -2200000 , respectively;
$E_{12,3}^{1}: w^{2}=v^{3}-891 v+9558, \quad C_{12,3}=18(3 v+w-57)$ or 18,
$A_{12,3}^{1}=6^{3}(15 v+w+189)^{3}-18^{3}(3 v+w-57)^{3}$ or -5616 , respectively.
For $g>1,\left(x^{n}+A x^{n}+B\right) /\left(x^{(n, m)}-C\right)$ is reducible over L if and only if there exists an integer l such that $\langle n / l, m / l\rangle=:\langle\nu, \mu\rangle \in \mathbb{Z}^{2}, \nu<\max \{8 g, 17\}$ and $\left(x^{\nu}+A x^{\mu}+B\right) /\left(x^{(\mu, \nu)}-C\right)$ is reducible over L.

Theorem 3. Let $n \geq 2 m, K$ be an algebraic number field and $a, b \in K^{*}$. Assume that trinomial $x^{n_{1}}+a x^{m_{1}}+b$ has over K a linear factor $x-c$, but not a quadratic factor. Then $\left(x^{n}+a x^{m}+b\right) /\left(x^{(n, m)}-c\right)$ is reducible over K if and only if at least one of the following conditions is satisfied:
(i) there exist an integer l such that $n=8 l, m=2 l$ and $d \in K$ such that $a=A_{8,2}^{1}(c, d), b=c^{4}-a c ;$
ii) there exist an integer l such that $\langle n / l, m / l\rangle=:\langle\nu, \mu\rangle \in S_{2}$ and $a=A_{\nu, \mu}^{1}(v, w) u^{\nu-\mu}, b=-c^{n_{1}}-A c^{m_{1}}$ and $c=C_{\nu, \mu}(v, w) u^{(\nu, \mu)}$, where $\langle v, w\rangle \in E_{\nu, \mu}^{1}(K), u \in K ;$
(iii) there exists an integer l such that $\langle n / l, m / l\rangle=:\langle\nu, \mu\rangle \in \mathbb{Z}^{2}$ and $\left\langle a_{0}, b_{0}, c_{0}\right\rangle \in$ $F_{\nu . \mu}(K)$, where $F_{\nu . \mu}(K)$ is a finite set, possibly empty.

Theorem 4. Let $n \geq 2 m, A, B \in K(\mathbf{y})^{*}, A^{-n} B^{n-m} \notin K$. Assume that $x^{n_{1}}+A x^{m_{1}}+B$ has over $K(\mathbf{y})$ a quadratic factor $F(x)=x^{2}-P x+Q$. Then $\left(x^{n}+A x^{m}+B\right) / F\left(x^{(n, m)}\right)$ is reducible over $K(\mathbf{y})$ if and only if at least one of the following conditions is satisfied:
(iv) $n=3 m$ and there exist $U_{1}, U_{2} \in K(\mathbf{y})$ such that either $P=-U_{1}^{l}, l \mid m, l$ prime or $P=4 U_{2}^{4}, 4 \mid m$;
(v) $n=4 m$ and there exist $U_{3}, \ldots, U_{7} \in K(\mathbf{y})$ such that either $4 Q-3 P^{2}=U_{3}^{2}$ or $\frac{-P+\sqrt{4 Q-3 P^{2}}}{2}=\left(U_{4}+U_{5} \sqrt{4 Q-3 P^{2}}\right), l \mid m, l$ prime, or $\frac{-P+\sqrt{4 Q-3 P^{2}}}{2}=$ $-4\left(U_{6}+U_{7} \sqrt{4 Q-3 P^{2}}\right)^{4}, 4 \mid m ;$
(vi) $n=5 \mathrm{~m}$ and there exists $U_{8} \in K(\mathbf{y}) \backslash\left\{1, \zeta_{4},-\zeta_{4}\right\}$ such that

$$
\frac{P^{2}}{Q}=\frac{U_{8}-2}{U_{8}^{3}-U_{8}^{2}+U_{8}-1}
$$

Theorem 5. Let $n \geq 2 m$, L be a finite separable extension of $K(y)$ such that $\bar{K} L$ is of genus $g>0$. Assume that $A, B \in L^{*}, A^{-n} B^{n-m} \notin K$ and $x^{n_{1}}+A x^{m_{1}}+B$ has over L a quadratic factor $F(x)=x^{2}-P x+Q$. For $g=1$, $\left(x^{n}+A x^{m}+B\right) / F\left(x^{(n, m)}\right)$ is reducible over L if and only if either (iv), (v) or (vi) of Theorem 4 hold with U_{1}, \ldots, U_{8} in L, or (vii) there exists an integer l such that $\langle n / l, m / l\rangle=:\langle\nu, \mu\rangle \in S_{3}=\{\langle 5,2\rangle,\langle 6,1\rangle,\langle 10,2\rangle\}$ and $P=P_{\nu . \mu}(v, w) u^{(\nu, \mu)}$, $Q=Q_{\nu . \mu}(v, w) u^{2(\nu, \mu)}$, where $\langle v, w\rangle \in E_{\nu . \mu}^{2}(L), u \in L$ and $E_{\nu . \mu}^{2}$ is an elliptic curve given by

$$
\begin{array}{lll}
E_{5,2}^{2}: w^{2}=v^{3}+5 v^{2}+8 v+16, & P_{5,2}=v+4, & Q_{5,2}=v^{2}+6 v+8-2 w \\
E_{6,1}^{2}: w^{2}=v^{3}+3 v+1, & P_{6,1}=v+1, & Q_{6,1}=v^{2}+2 v+3-2 w \\
E_{10,2}^{2}: w^{2}=v^{3}-52 v+144, & P_{10,2}=2 v-8, & Q_{10,2}=3 v^{2}+4 v+8 w-68 .
\end{array}
$$

For $g>1,\left(x^{n}+A x^{m}+B\right) / F\left(x^{(n, m)}\right)$ is reducible over L if and only if either (iv) or (v) of Theorem 4 hold with $K(\mathbf{y})$ replaced by L or (viii) there exists an integer l such that $\langle n / l, m / l\rangle=:\langle\nu, \mu\rangle \in \mathbb{Z}^{2}, \nu<\max \left\{\frac{24}{5} g, 16\right\}$ and $\frac{x^{\nu}+A x^{\mu}+B}{F\left(x^{(n, m)}\right)}$ is reducible over L.

Corollary 1. Let L be a finite separable extensions of $K(y)$ with $\bar{K} L$ of genus g and $A, B \in L^{*}, A^{-n} B^{n-m} \notin K$ and let F be a linear factor of $x^{n_{1}}+$ $A x^{m_{1}}+B$ in $K(y)[x]$ of maximal possible degree $d \leq 2$. If $n_{1}>d+2$, then $\left(x^{n_{1}}+A x^{m_{1}}+B\right) F\left(x^{(n, m)}\right)^{-1}$ is reducible over L, if and only if there exists an integer l such that $\langle n / l, m / l\rangle=:\langle\nu, \mu\rangle \in \mathbb{N}^{2}, \nu<\max \left\{17-(d-1)^{2}, \frac{24 g}{2 d+1}\right\}$ and $\left(x^{\nu}+A x^{\mu}+B\right) F\left(x^{(\nu, \mu)}\right)^{-1}$ is reducible over L.

Remark 1. This is a minor improvement on Theorem 2 of [4] in which $9 d^{2}-$ $8 d+16$ is replaced by $17-(d-1)^{2}$.

Theorem 6. Let $n \geq 2 m, K$ be an algebraic number field and $a, b \in K^{*}$. Assume that $x^{n_{1}}+a x^{m_{1}}+b$ has over K a quadratic factor $f(x)=x^{2}-p x+q$. Then $\left(x^{n}+a x^{m}+b\right) / f\left(x^{(n, m)}\right)$ is reducible over K if and only if at least one of the following conditions is satisfied:
(ix) $n=3 m$ and there exist $u_{1}, u_{2} \in K$ such that either $p=-u_{1}^{l}, l \mid m, l$ prime or $p=4 u_{2}^{4}, 4 \mid m$;
(x) $n=4 m$ and there exist u_{3}, \ldots, u_{7} in K such that either $4 q-3 p^{2}=u_{3}^{2}$ or $\frac{-p+\sqrt{4 q-3 p^{2}}}{2}=\left(u_{4}+u_{5} \sqrt{4 q-3 p^{2}}\right)^{l}, \quad l \mid m$, lprime
or

$$
\frac{-p+\sqrt{4 q-3 p^{2}}}{2}=-4\left(u_{6}+u_{7} \sqrt{4 q-3 p^{2}}\right)^{4}, \quad 4 \mid m
$$

(xi) $n=5 m$ and there exists $u_{8} \in K \backslash\left\{1, \zeta_{4},-\zeta_{4}\right\}$ such that

$$
\frac{p^{2}}{q}=\frac{u_{8}-2}{u_{8}^{3}-u_{8}^{2}+u_{8}-1}
$$

(xii) there exists an integer l and $u \in K$ such that $\langle n / l, m / l\rangle=:\langle\nu, \mu\rangle \in S_{3}$ and $p=P_{\nu, \mu}(v, w) u^{(\nu, \mu)}, q=Q_{\nu, \mu}(v, w) u^{2(\nu, \mu)}$, where $\langle v, w\rangle \in E_{\nu . \mu}^{2}(K)$, $u \in K ;$
(xiii) there exists an integer l such that $\langle n / l, m / l\rangle=:\langle\nu, \mu\rangle \in \mathbb{Z}^{2}$ and $\langle a, b,\rangle \in$ $F_{\nu, \mu}(K)$, where $F_{\nu . \mu}(K)$ is a certain finite, possibly empty, set.

The proofs of all six theorems will be performed according to the same scheme: first the condition for reducibility given in the theorem will be shown necessary, then sufficient.

Lemma 1. In the notation of [3] we have for $n \geq 2 m>0,(m, n)=1, q>1$

$$
g_{1 *}(m, n, q) \begin{cases}\geq 0 & \text { if }\langle m, n, q\rangle=\langle 1,4,2\rangle \\ \geq 1 & \text { if }\langle m, n, q\rangle=\langle 1,4,3\rangle,\langle 1,5,2\rangle \\ \geq 2 & \text { if }\langle m, n, q\rangle=\langle 1,4,4\rangle \\ >\frac{n q}{8} & \text { otherwise }\end{cases}
$$

Proof. $g_{1 *}(m, n, q)$ is the genus of the field $M_{1 *}(m, n, q)$. By Lemma 2(a) and Lemmas 13-15 of [2] we have

$$
\begin{aligned}
g_{1 *}(m, n, q) & \geq 1+\frac{1}{2}\left(\frac{q^{n-2}-q^{n-3}}{2}(n-2)-\left\lfloor\frac{q^{\max (n-3, m-1)}}{m}\left(1+\frac{m-1}{q^{\varphi(q m) / \varphi(q)}}\right)\right\rfloor\right. \\
& \left.-\left\lfloor\frac{q^{\max (n-3, n-m-1)}}{n-m}\left(1+\frac{n-m-1}{q^{\varphi(q(n-m)) / \varphi(q)}}\right)\right\rfloor\right)=: b(m, n, q) .
\end{aligned}
$$

Now, we find

$$
b(1,4,3)=1=b(1,5,2), \quad b(1,4,4)=2=b(2,5,2)
$$

and it remains to consider

$$
\begin{equation*}
n=4, q \geq 5 \quad \text { or } \quad n=5, q \geq 3 \tag{1}
\end{equation*}
$$

or $n \geq 6$. By a formula on p. 596 of [3].

$$
g_{1 *}(m, n, q) \geq 1+\frac{q^{n-3}}{2} \gamma_{1}(q, m, n),
$$

where

$$
\gamma_{1}(q, m, n)= \begin{cases}\frac{q-1}{2}(n-2)-1-\frac{q+1}{n-1} & \text { if } m=1 \\ \frac{q-1}{2}(n-2)-\left(\frac{1}{m}+\frac{1}{n-m}\right)\left(1+\frac{1}{q}\right) & \text { otherwise }\end{cases}
$$

and in the case (1) $\gamma_{1}(q, n, m) \geq 1$,

$$
\frac{q^{n-3}}{2} \gamma_{1}(q, n, m) \geq \frac{q n}{8} .
$$

For $n \geq 6$ the inequality $g_{1 *}(m, n, q)>\frac{n q}{8}$ has been proved on p . 596 of [3].
Proof of Theorem 1. Necessity. Let

$$
Q(x ; A, B)=\frac{x^{n_{1}}+A x^{m_{1}}+B}{x-C} .
$$

If $\left(x^{n}+A x^{m}+B\right) /\left(x^{(m, n)}-C\right)$ is reducible over $K(\mathbf{y})$, then by Capelli's lemma either $Q(x ; A, B)$ is reducible over $K(\mathbf{y})$ or $x^{(n, m)}-\xi$ is reducible over $K(\mathbf{y}, \xi)$, where ξ is a zero of $Q(x ; A, B)$. Following the proof of Theorem 1 in [3] we find that either $g_{1}^{*}\left(k, m_{1}, n_{1}\right)=0$ for a certain $k \in\left[2, \frac{n_{1}-1}{2}\right]$ or $g_{1 *}\left(m_{1}, n_{1}, q\right)=0$ for a certain $q \mid(m, n), q>1$, respectively. In the former case, by Lemma 8 of [3], $n_{1} \geq 5$ and reducibility of $Q(x ; A, B)$ contradicts the assumption that $x^{n_{1}}+A x^{m_{1}}+B$ has no quadratic factor over $K(\mathbf{y})$. In the latter case, by Lemma 1 , $\left\langle m_{1}, n_{1}, q\right\rangle=\langle 1,4,2\rangle$, hence $\langle n, m\rangle=\langle 8,2\rangle$. By Lemma 29 of [2] we have

$$
\frac{x^{4}+A x-\left(C^{4}+A C\right)}{x-C}=x f(x)^{2}-g(x)^{2} ; \quad f, g \in K(\mathbf{y})[x],
$$

hence for $a, b, c \in K(\mathbf{y})$:

$$
\begin{gathered}
x^{3}+C x^{2}+C^{2} x+C^{3}+A=x(x+a)^{2}-(b x+c)^{2} \\
=x^{3}+\left(2 a-b^{2}\right) x^{2}+\left(a^{2}-2 b c\right) x-c^{2} ; \\
2 a-b^{2}=C, \quad a^{2}-2 b c=C^{2}, \quad a d-c^{2}=C^{3}+A \quad \text { and if } b \neq 0 \\
\left(C+b^{2}\right)^{2}-8 b c=4 C^{2} ; \quad c=\frac{\left(C+b^{2}\right)^{2}-4 C^{2}}{8 b}, \\
A=-c^{2}-C^{3}=A_{8,2}^{1}(C, b), \quad B=-C^{4}-A C .
\end{gathered}
$$

If $b=0$ it follows that $C=0$, hence $B=0$, contrary to the assumption.
Sufficiency. If $n=8 l, m=2 l, A=A_{8,2}^{1}(C, D), B=-C^{4}-A C$ where $C \in K(\mathbf{y}), D \in K(\mathbf{y})^{*}$, then

$$
\begin{align*}
\frac{x^{8 l}+A x^{2 l}+B}{x^{2 l}-C}= & \left(x^{3 l}+D x^{2 l}+\frac{C+D^{2}}{2} x^{l}+\frac{-3 C^{2}+2 C D^{2}+D^{4}}{8 D}\right) \\
& \times\left(x^{3 l}-D x^{2 l}+\frac{C+D^{2}}{2} x^{l}-\frac{-3 C^{2}+2 C D^{2}+D^{4}}{8 D}\right) \tag{2}
\end{align*}
$$

Proof of Theorem 2. For $g>1$ the assertion has already been proved in [3], thus we consider only the case $g=1$.

Necessity. Arguing as in the Proof of Theorem 1 we find that either $g_{1 *}\left(k, m_{1}, n_{1}\right) \leq 1$ for a certain $k \in\left[2, \frac{n_{1}-1}{2}\right]$ or $Q(x, A, B)$ is irreducible over L and $g_{1 *}\left(m_{1}, n_{1}, q\right) \leq 1$ for a certain $q \mid(m, n), q>1$. In the former case, by Lemma 8 of [3], $n_{1} \leq 6$ and reducibility of $Q(x, A, B)$ contradicts the assumption that $x^{n_{1}}+A x^{m_{1}}+B$ has no quadratic factor over L. In the latter case, by Lemma $1,\left\langle m_{1}, n_{1}, q\right\rangle=\langle 1,4,2\rangle,\langle 1,4,3\rangle$, or $\langle 1,5,2\rangle$. If $\left\langle m_{1}, n_{1}, q\right\rangle=\langle 1,4,2\rangle$ it follows, as in the proof of Theorem 1 , that $A=A_{8,2}^{1}(C, D)$, where $D \in L^{*}$. If $\left\langle m_{1}, n_{1}, q\right\rangle=\langle 1,4,3\rangle$ and $Q(x, A, B)$ is irreducible over L, then by Lemma 29 of [2], we have

$$
\frac{x^{4}+A x-\left(C^{4}+A C\right)}{x-C}=f(x)^{3}+x g(x)^{3}+x^{2} h(x)^{3}-3 x f(x) g(x) h(x)
$$

$$
f, g, h \in L(x)
$$

Hence for $a, b, c \in L$:

$$
\begin{gather*}
x^{3}+C x^{2}+C^{2} x+C^{3}+A=(x+a)^{3}+x b^{3}+x^{2} c^{3}-3 x(x+a) b c \\
3 a+c^{3}-3 b c=C, \quad 3 a^{2}+b^{3}-3 a b c=C^{2}, \quad a^{3}=C^{3}+A \\
a=\frac{C-c^{3}+3 b c}{3}, \quad \frac{\left(C-c^{3}+3 b c\right)^{2}}{3}+b^{3}-\left(C-c^{3}+3 b c\right) b c=C^{2} \tag{3}
\end{gather*}
$$

If $c=0$ we obtain $a=C / 3, b^{3}=\frac{2}{3} C^{2}, b=\frac{2}{3}\left(\frac{C}{b}\right)^{2}$ and taking $\frac{C}{3 b}=u$ we have $b=6 u^{2}, C=18 u^{3}, A=a^{3}-C^{3}=\left(6^{3}-18^{3}\right) u^{9}=-5616 u^{9}$.

If $c \neq 0$ we put $\frac{C}{c^{3}}=\gamma, \frac{b}{c^{2}}=\beta$ and obtain from (3)

$$
24 \beta^{3}+9 \beta^{2}-36 \beta+12=(3 \beta-2)^{2}+8\left(3 \beta^{3}-3 \beta+1\right)=(4 \gamma-3 \beta+2)^{2}
$$

Taking

$$
u=\frac{c}{12}, \quad v=24 \beta+3, \quad w=24(4 \gamma-3 \beta+2)
$$

we have

$$
v^{3}-891 v+9558=w^{2}
$$

and

$$
A=A_{18,3}^{1}(v, w) u^{9}, \quad C=C_{12,3}(v, w) u^{3} .
$$

If $\left\langle m_{1}, n_{1}, q\right\rangle=\langle 1,5,2\rangle$ and $Q(x, A, B)$ is irreducible over L, then, by Lemma 29 of [2], we have

$$
\frac{x^{5}+A x-\left(C^{5}+A C\right)}{x-C}=f(x)^{2}-x g(x)^{2}, \quad f, g, \in L(x),
$$

hence for $a, b, c, d \in L$:

$$
\begin{gather*}
x^{4}+C x^{3}+C^{2} x^{2}+C^{3} x+C^{4}+A=\left(x^{2}+a x+b\right)^{2}-x(c x+d)^{2} \\
2 a-c^{2}=C, \quad 2 b+a^{2}-2 c d=C^{2}, \quad 2 a b-d^{2}=C^{3}, \quad b^{2}=C^{4}+A, \\
a=\frac{C+c^{2}}{2} \quad b=\frac{1}{8}\left(3 C^{2}-2 C c^{2}-c^{4}+8 c d\right), \\
\left(C+c^{2}\right)\left(3 C^{2}-2 C c^{2}-c^{4}+8 c d\right)-8 d^{2}=8 C^{3} . \tag{4}
\end{gather*}
$$

If $c=0$ we obtain $-8 d^{2}=5 C^{3}, C=-\frac{8}{5}\left(\frac{d}{C}\right)^{2}$ and taking $\frac{d}{5 C}=u$ we have $C=-40 u^{2}, a=-20 u^{2}, b=600 u^{4}, A=b^{2}-C^{4}=-2200000 u^{8}$.

If $c \neq 0$ we put $\frac{C}{c^{2}}=\gamma, \frac{d}{c^{3}}=\delta$ and obtain from (4)

$$
4(\gamma+1)^{2}-2\left(5 \gamma^{3}-\gamma^{2}+3 \gamma+1\right)=(4 \delta-2 \gamma-2)^{2}
$$

Taking $2 v=-5 \gamma+1,2 w=5(2 \delta-\gamma-1), u=\frac{c}{10}$ we have

$$
v^{3}-2 v+4=w^{2}
$$

and

$$
A=A_{18,2}^{1}(v, w) u^{8}, \quad C=C_{12,2}(v, w) u^{2} .
$$

Sufficiency. If $n=8 l, m=2 l, A=A_{8,2}^{1}(C, D), B=-C^{4}-A C$ where $C \in L$, $D \in L$, then $\frac{x^{8 l}+A x^{2 l}+B}{x^{2 l}-C}$ is reducible over L by (2).

If $n=10 l, m=2 l$ and $A=A_{10,2}^{1}(v, w) u^{8}, B=-C^{5}-A C, C=C_{10,2}(v, w) u^{2}$ then

$$
\begin{aligned}
\frac{x^{10 l}+A x^{2 l}+B}{x^{2 l}-C}= & \left(x^{4 l}+10 u x^{3 l}+20(3-v) u^{2} x^{2 l}+200(w-v+3) u^{3} x^{l}\right. \\
& \left.+200\left(22-8 v+3 v^{2}+10 w\right) u^{4}\right)\left(x^{4 l}-10 u x^{3 l}+20(3-v) u^{2} x^{2 l}\right. \\
& \left.-200(w-v+3) u^{3} x^{l}+200\left(22-8 v+3 v^{2}+10 w\right) u^{4}\right) .
\end{aligned}
$$

If $n=10 l, m=2 l$ and $A=-2200000 u^{8}, B=-C^{5}-A C, C=-40 u^{2}$ then

$$
\begin{aligned}
\frac{x^{10 l}+A x^{2 l}+B}{x^{2 l}-C}= & \left(x^{4 l}-20 u^{2} x^{2 l}-200 u^{3} x^{l}+600 u^{4}\right) \\
& \times\left(x^{4 l}-20 u^{2} x^{2 l}+200 u^{3} x^{l}+600 u^{4}\right) .
\end{aligned}
$$

If $n=12 l, m=3 l$ and $A=A_{12,3}^{1}(v, w) u^{9}, B=-C^{4}-A C, C=C_{12,3}(v, w) u^{3}$ then

$$
\begin{aligned}
\frac{x^{12 l}+A x^{3 l}+B}{x^{3 l}-C}= & \left(x^{3 l}+12 u x^{2 l}+6(v-3) u^{2} x^{l}+6(15 v+w-189) u^{3}\right) \\
& \times\left(x^{6 l}-12 u x^{5 l}+6(27-v) u^{2} x^{4 l}+12(9 v+w-171) u^{3} x^{3 l}\right. \\
& +36\left(v^{2}-36 v-30 w+387\right) u^{4} x^{2 l} \\
& \left.-36(v-3)(15 v+w-189) u^{5} x^{l}+6^{2}(15 v+w-189) u^{6}\right) .
\end{aligned}
$$

If $n=12 l, m=3 l$ and $A=-5616 u^{9}, B=-C^{4}-A C, C=18 u^{3}$, then

$$
\begin{aligned}
\frac{x^{12 l}+A x^{3 l}+B}{x^{3 l}-C}= & \left(x^{3 l}+6 u^{2} x^{l}+6 u^{3}\right) \\
& \times\left(x^{6 l}-6 u^{2} x^{4 l}+12 u^{3} x^{3 l}+36 u^{4} x^{2 l}-36 u^{5} x^{l}+36 u^{6}\right) .
\end{aligned}
$$

Remark. The calculations performed in the case $\left\langle m_{1}, n_{1}, q\right\rangle=\langle 1,4,3\rangle$ are similar to those in the Proof of Theorem 6.5 of [1].

Proof of Theorem 3. In view of Theorem 2 the proof does not differ essentially from the proof of Theorem 3 in [3]. The finiteness of the set $F_{\nu, \mu}(K)$ is a consequence of the Faltings theorem.

Lemma 2. For $n \geq 2 m,(m, n)=1, n \geq 2 k+2$ we have the following inequalities

$$
g_{2}^{*}(k, m, n) \begin{cases}\geq 0 & \text { if }\langle k, m, n\rangle=\langle 1,1,5\rangle \\ \geq 1 & \text { if }\langle k, m, n\rangle=\langle 1,2,5\rangle,\langle 1,1,6\rangle, \\ \geq \frac{5 n}{24} & \text { otherwise. }\end{cases}
$$

Proof. Except for $\langle k, m, n\rangle=\langle 2,1,6\rangle$ this follows from the inequalities

$$
\begin{aligned}
g_{2}^{*}(k, m, n) & \geq\binom{ 2 k}{k}\left(\frac{k(n-2)}{8}-1\right)+1 \quad \text { for } k>1, \\
* g_{2}^{*}(1, m, n) & \geq \frac{1}{2}\binom{n-2}{2}+\frac{1}{2} \zeta-(n-2)+1
\end{aligned}
$$

shown in the proof of Lemma 15 of [4], where ζ is given by the formula (9) there, namely

$$
\zeta= \begin{cases}(n+m-4) / 2 & \text { if } n \equiv m \equiv 1 \quad(\bmod 2) \\ (2 n-m-4) / 2 & \text { if } n \equiv 1, m \equiv 0 \quad(\bmod 2), \\ (n-2) / 2 & \text { if } n \equiv 0, m \equiv 1 \quad(\bmod 2)\end{cases}
$$

For $\langle k, m, n\rangle=\langle 2,1,6\rangle$ we profit by the result of $[1]$ that $g_{2}^{*}(2,1,6)=2$.
Lemma 3. The number of vectors $\left\langle\alpha_{1}, \ldots, \alpha_{i}, \ldots, \alpha_{a}\right\rangle \in \mathbb{Z} / q \mathbb{Z}$ such that

$$
\begin{equation*}
\sum_{\substack{i=1 \\ i \notin \mathcal{A}}}^{a} \zeta_{q}^{\alpha_{i}} \zeta_{a q}^{i}=0, \quad \mathcal{A} \text { a proper subset of }\{1, \ldots, a\} \tag{5}
\end{equation*}
$$

does not exceed

$$
q^{a-|\mathcal{A}|-\min \{\min \mathcal{A}-1, \varphi(a q) / \varphi(q)\}},
$$

where $\min \varnothing=\infty$.
Proof. Let $\varrho=\left[\mathbb{Q}\left(\zeta_{a q}\right): \mathbb{Q}\left(\zeta_{q}\right)\right]=\varphi(a q) / \varphi(q)$ and let $\zeta_{a q}^{r_{j}}(1 \leq j \leq \varrho)$ be all the conjugates of $\zeta_{a q}$ over $\mathbb{Q}\left(\zeta_{q}\right)$. The equation (5) gives

The Vandermonde determinant $\operatorname{det}\left(\zeta_{a q}^{i r_{j}}\right) \neq 0$, hence $\alpha_{i}(1 \leq i \leq \min \{\min \mathcal{A}-1, \varrho\})$ are determined uniquely by $\left.\alpha_{i}(\min \{\min \mathcal{A}-1, \varrho\})<i \leq a, i \notin \mathcal{A}\right)$. The number of vectors formed by the latter is just the bound given in the lemma.

Lemma 4. Let $x(t)$ be an algebraic function of t given in the neighbourhood of $t=0$ by the Puiseux expansions

$$
\begin{aligned}
x_{i}(t) & =\zeta_{a}^{i} t^{l_{1} / m_{1}} P_{i}\left(\zeta_{a}^{i} t^{1 / m_{1}}\right) & & (1 \leq i \leq a, i \notin \mathcal{A}), \\
x_{a+j}(t) & =\zeta_{b}^{j} t^{l_{2} / m_{2}} P_{a+j}\left(\zeta_{b}^{j} t^{1 / m_{2}}\right) & & (1 \leq j \leq b, j \notin \mathcal{B}),
\end{aligned}
$$

where $l_{1}, l_{2} \in \mathbb{Z} ; a, b, m_{1}, m_{2} \in \mathbb{N}, \mathcal{A}, \mathcal{B}$ subsets of $\{1, \ldots, a\},\{1, \ldots, b\}$, respectively and P_{i}, P_{a+j} ordinary power series with non-zero constant term. If

$$
\begin{equation*}
l_{1} m_{2}-l_{2} m_{1}=1, q \text { is a positive integer } \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
y(t)=\left(\sum_{\substack{i=1 \\ i \notin \mathcal{A} \cup \mathcal{B}+a}}^{a+b} x_{i}(t)^{1 / q}\right)^{q} \tag{7}
\end{equation*}
$$

then the number of distinct prime factors of the denominator of t in the field $\bar{K}(t, y(t))$ does not exceed

$$
M_{1}= \begin{cases}\frac{q^{a+b-|\mathcal{A}|-|\mathcal{B}|-2}}{m_{1} m_{2}}\left(1+\frac{m_{1}-1}{q^{\min \{\min \mathcal{A}-1, \varphi(a q) / \varphi(q)\}}}\right) & \tag{8}\\ \times\left(1+\frac{m_{2}-1}{q^{\min \{\min \mathcal{B}-1, \varphi(b q) / \varphi(q)\}}}\right) & \text { if }|\mathcal{A}|<a,|\mathcal{B}|<b, \\ \frac{q^{a-|\mathcal{A}|-1}}{m_{1}}\left(1+\frac{m_{1}-1}{q^{\min \{\min \mathcal{A}-1, \varphi(q q) / \varphi(q)\}}}\right) & \text { if }|\mathcal{A}|<a,|\mathcal{B}|=b, \\ \frac{q^{b-|\mathcal{B}|-1}}{m_{2}}\left(1+\frac{m_{2}-1}{q^{\min \{\min \mathcal{B}-1, \varphi(b q) / \varphi(q)\}}}\right) & \text { if }|\mathcal{A}|=a,|\mathcal{B}|<b,\end{cases}
$$

Remark. This lemma generalizes the arguments used in the proof of Lemma 22 and 23 of [2], Lemma 14 of [3].

Proof. By (7) the Puiseux expansions of $y(t)$ at $t=0$ are

$$
\begin{equation*}
\left(\sum_{\substack{i=1 \\ i \notin \mathcal{A}}}^{a} \zeta_{q}^{\alpha_{i}} \zeta_{a q}^{i} t^{l_{1} / m_{1} q} P_{i}\left(\zeta_{a}^{i} t^{1 / m_{1}}\right)^{1 / q}+\sum_{\substack{j=1 \\ j \notin \mathcal{B}}}^{b} \zeta_{q}^{\alpha_{a+j}} \zeta_{b q}^{j} q^{l_{2} / m_{2} q} P_{a+j}\left(\zeta_{b}^{j} t^{1 / m_{2}}\right)^{1 / q}\right)^{q} \tag{9}
\end{equation*}
$$

where α_{i}, α_{a+j} run through $\mathbb{Z} / q \mathbb{Z}$.
Let \mathcal{S}, \mathcal{T} be the sets of vector $\left\langle\alpha_{1}, \ldots, \alpha_{i}, \ldots, \alpha_{a}\right\rangle(i \notin \mathcal{A},|\mathcal{A}|<a)$ and $\left\langle\alpha_{a+1}, \ldots, \alpha_{a+j}, \ldots, \alpha_{a+b}\right\rangle(j \notin \mathcal{B},|\mathcal{B}|<b)$ such that

$$
\sum_{\substack{i=1 \\ i \notin \mathcal{A}}}^{a} \zeta_{q}^{\alpha_{i}} \zeta_{a q}^{i}=0 \quad \text { and } \quad \sum_{\substack{j=1 \\ j \notin \mathcal{B}}}^{b} \zeta_{q}^{\alpha_{a+j}} \zeta_{b q}^{j}=0, \text { respectively }
$$

By Lemma 3 we have

$$
\begin{equation*}
|\mathcal{S}| \leq q^{a-|\mathcal{A}|-\min \{\min \mathcal{A}-1, \varphi(a q) / \varphi(q)\}} \quad \text { if }|\mathcal{A}|<a \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
|\mathcal{T}| \leq q^{b-|\mathcal{B}|-\min \{\min \mathcal{B}-1, \varphi(b q) / \varphi(q)\}} \quad \text { if }|\mathcal{B}|<b \tag{11}
\end{equation*}
$$

On the other hand, if $|\mathcal{A}|<a,|\mathcal{B}|<b$ and $\left\langle\alpha_{1}, \ldots, \alpha_{a}\right\rangle \notin \mathcal{S}$ and $\left\langle\alpha_{a+1}, \ldots, \alpha_{a+b}\right\rangle \notin$ \mathcal{T} the parenthesis in (9) contains $t^{l_{1} / m_{1} q}$ and $t^{l_{2} / m_{2} q}$ with non-zero coefficients.

We assert that the q-th power of the parenthesis contains with non-zero coefficients both monomials

$$
\begin{equation*}
t^{(q-1) \frac{l_{1}}{m_{1}}+\frac{l_{2}}{m_{2} q}} \quad \text { and } \quad t^{\frac{l_{1}}{m_{1} q}+(q-1) \frac{l_{2}}{m_{2} q}} . \tag{12}
\end{equation*}
$$

Indeed, if for $i=1$ or 2

$$
\begin{equation*}
(q-1) \frac{l_{i}}{m_{i} q}+\frac{l_{3-i}}{m_{3-i} q}=\sum_{\mu=0}^{\infty} a_{\mu}\left(\frac{l_{1}}{m_{1} q}+\frac{\mu}{m_{1}}\right)+\sum_{\mu=0}^{\infty} b_{\mu}\left(\frac{l_{2}}{m_{2} q}+\frac{\mu}{m_{2}}\right) \tag{13}
\end{equation*}
$$

where a_{μ}, b_{μ} are non-negative integers and

$$
\begin{equation*}
\sum_{\mu=0}^{\infty} a_{\mu}+\sum_{\mu=0}^{\infty} b_{\mu}=q \tag{14}
\end{equation*}
$$

then multiplying both sides of (13) by $m_{1} m_{2} q$ we obtain

$$
l_{3-i} m_{i}-l_{i} m_{3-i} \equiv l_{1} m_{2} \sum_{\mu=0}^{\infty} a_{\mu}+l_{2} m_{1} \sum_{\mu=0}^{\infty} b_{\mu} \quad(\bmod q)
$$

hence by (6) and (14)

$$
(-1)^{i} \equiv \sum_{\mu=0}^{\infty} a_{\mu} \quad(\bmod q)
$$

and for $i=1: \quad \sum_{\mu=0}^{\infty} a_{\mu}=q-1, \sum_{\mu=0}^{\infty} b_{\mu}=1 ;$ for $i=2: \quad \sum_{\mu=0}^{\infty} a_{\mu}=1$, $\sum_{\mu=0}^{\infty} b_{\mu}=q-1$.

Now, (13) gives in both cases

$$
\sum_{\mu=0}^{\infty} a_{\mu} \mu=0=\sum_{\mu=0}^{\infty} b_{\mu} \mu
$$

and, since $a_{\mu} \geq 0, b_{\mu} \geq 0, a_{\mu}=0=b_{\mu}$ for $\mu>0$, thus for $i=0$: $a_{0}=q-1$, $b_{0}=1$; for $i=2: a_{0}=1, b_{0}=q-1$. Therefore, there is no cancellation and both monomials (12) occur with non-zero coefficients in the Puiseux expansion of $y(t)$ at $t=0$. Now, by (6),

$$
(q-1) \frac{l_{i}}{m_{i} q}+\frac{l_{3-i}}{m_{3-1} q}=\frac{q l_{i} m_{3-i}+l_{3-i} m_{i}-l_{i} m_{3-i}}{m_{1} m_{2} q}=\frac{q l_{i} m_{3-i}+(-1)^{i}}{m_{1} m_{2} q}
$$

hence the reduced denominator is divisible by $q m_{3-i}$ and, since $\left(m_{1}, m_{2}\right)$ $=1$ we have l.c.m. $\left[q m_{2}, q m_{1}\right]=q m_{1} m_{2}$. Thus we obtain for $y(t)$ at $t=0$

$$
\frac{\left(q^{a-|\mathcal{A}|}-|\mathcal{S}|\right)\left(q^{b-|\mathcal{B}|}-|\mathcal{T}|\right)}{q^{2} m_{1} m_{2}} \text { cycles of length } q m_{1} m_{2}
$$

If $|\mathcal{A}|<a,|\mathcal{B}|<b,\left\langle\alpha_{1}, \ldots, \alpha_{a}\right\rangle \notin \mathcal{S}$ and $\left\langle\alpha_{a+1}, \ldots, \alpha_{a+b}\right\rangle \in \mathcal{T}$, then the parenthesis in (9) contains $t^{\frac{l_{1}}{m_{1} q}}$ and $t^{\frac{l_{2}}{m_{2} q}+\frac{\nu}{m_{2}}}$ (we take the least possible $\nu \in \mathbb{N}$) with non-zero coefficients, hence the q-th power of the parenthesis contains with a non-zero coefficient

$$
\left.t^{\frac{l_{1}}{m_{1} q}+(q-1)\left(\frac{l_{2}}{m_{2} q}+\frac{\nu}{m_{2}}\right.}\right),
$$

(the proof is similar to the one given above). However, by (6),

$$
\frac{l_{1}}{m_{1} q}+(q-1)\left(\frac{l_{2}}{m_{2} q}+\frac{\nu}{m_{2}}\right)=\frac{m_{1} q\left(l_{2}+\nu(q-1)\right)+1}{m_{1} m_{2} q}
$$

hence the reduced denominator is divisible by $m_{1} q$ and we obtain for $y(t)$ at $t=0$ at most

$$
\frac{\left(q^{a-|\mathcal{A}|}-|\mathcal{S}|\right)|\mathcal{T}|}{q^{2} m_{1}}
$$

cycles.
If $|\mathcal{A}|<a,|\mathcal{B}|<b,\left\langle\alpha_{1}, \ldots, \alpha_{a}\right\rangle \in \mathcal{S}$ and $\left\langle\alpha_{a+1}, \ldots, \alpha_{a+b}\right\rangle \notin \mathcal{T}$ we obtain similarly for $y(t)$ at $t=0$ at most

$$
\frac{|\mathcal{S}|\left(q^{b-|\mathcal{B}|}-|\mathcal{T}|\right)}{q^{2} m_{2}}
$$

cycles.
Finally, if $|\mathcal{A}|<a,|\mathcal{B}|<b,\left\langle\alpha_{1}, \ldots, \alpha_{a}\right\rangle \in \mathcal{S}$ and $\left\langle\alpha_{a+1}, \ldots, \alpha_{a+b}\right\rangle \in \mathcal{T}$ the parenthesis in (9) contains with non-zero coefficients

$$
t^{\frac{l_{1}}{m_{1} q}+\frac{\nu_{1}}{m_{1}}} \quad \text { and } t^{\frac{l_{2}}{m_{2} q}+\frac{\nu_{2}}{m_{2}}}
$$

(we take the least possible ν_{1}, ν_{2} in \mathbb{N}), hence the q-th power of the parenthesis contains with a non-zero coefficient

$$
\begin{equation*}
t^{(q-1)}\left(\frac{l_{1}}{m_{1} q}+\frac{\nu_{1}}{m_{1}}\right)+\frac{l_{2}}{m_{2} q}+\frac{\nu_{2}}{m_{2}} . \tag{15}
\end{equation*}
$$

Indeed, if

$$
\begin{align*}
(q-1)\left(\frac{l_{1}}{m_{1} q}+\frac{\nu_{1}}{m_{1}}\right)+\frac{l_{2}}{m_{2} q}+\frac{\nu_{2}}{m_{2}}= & \sum_{\mu=\nu_{1}}^{\infty} a_{\mu}\left(\frac{l_{1}}{m_{1} q}+\frac{\mu}{m_{1}}\right) \\
& +\sum_{\mu=\nu_{2}}^{\infty} b_{\mu}\left(\frac{l_{2}}{m_{2} q}+\frac{\mu}{m_{2}}\right) \tag{16}
\end{align*}
$$

where a_{μ}, b_{μ} are non-negative integers and

$$
\begin{equation*}
\sum_{\mu=\nu_{1}}^{\infty} a_{\mu}+\sum_{\mu=\nu_{2}}^{\infty} b_{\mu}=q \tag{17}
\end{equation*}
$$

then multiplying both sides of (16) by $m_{1} m_{2} q$ we obtain

$$
-1 \equiv l_{1} m_{2} \sum_{\mu=\nu_{1}}^{\infty} a_{\mu}+l_{2} m_{1} \sum_{\mu=\nu_{2}}^{\infty} b_{\mu} \quad(\bmod q)
$$

hence by (6) and (17)

$$
-1 \equiv \sum_{\mu=\nu_{1}}^{\infty} a_{\mu} \quad(\bmod q)
$$

and $\sum_{\mu=\nu_{1}}^{\infty} a_{\mu}=q-1, \sum_{\mu=\nu_{2}}^{\infty} b_{\mu}=1$. Now (16) gives

$$
m_{2} \sum_{\mu=\nu_{1}}^{\infty} a_{\mu} \mu+m_{1} \sum_{\mu=\nu_{2}}^{\infty} b_{\mu} \mu=m_{2}(q-1) \nu_{1}+m_{1} \nu_{2},
$$

hence $a_{\mu}=0$ for $\mu>\nu_{1}$ and $b_{\mu}=0$ for $\mu>\nu_{2}, a_{\nu_{1}}=q-1, b_{\nu_{2}}=1$. Therefore, there is no cancellation and the monomial (15) occurs with a non-zero coefficients in the Puiseux expansions of $y(t)$ at $t=0$. Now,

$$
(q-1)\left(\frac{l_{1}}{m_{1} q}+\frac{\nu_{1}}{m_{1}}\right)+\frac{l_{2}}{m_{2} q}+\frac{\nu_{2}}{m_{2}}=\frac{q\left(m_{2} l_{1}+m_{2} \nu_{1}(q-1)+m_{1} \nu_{2} q\right)-1}{m_{1} m_{2} q}
$$

hence the reduced denominator is divisible by q and we obtain for $y(t)$ at most

$$
\frac{|\mathcal{S}||\mathcal{T}|}{q^{2}}
$$

cycles. The total number of cycles does not exceed

$$
\begin{aligned}
& \frac{\left(q^{a-|\mathcal{A}|}-|\mathcal{S}|\right)\left(q^{b-|\mathcal{B}|}-|\mathcal{T}|\right)}{q^{2} m_{1} m_{2}}+\frac{\left(q^{a-|\mathcal{A}|}-|\mathcal{S}|\right)|\mathcal{T}|}{q^{2} m_{1}}+\frac{|\mathcal{S}|\left(q^{b-|\mathcal{B}|}-|\mathcal{T}|\right)}{q^{2} m_{2}}+\frac{|\mathcal{S}||\mathcal{T}|}{q^{2}} \\
&=\frac{q^{a+b-|\mathcal{A}|-|\mathcal{B}|}}{q^{2} m_{1} m_{2}}+|\mathcal{S}| \frac{q^{b-|\mathcal{B}|}}{q^{2} m_{2}}\left(1-\frac{1}{m_{1}}\right)+|\mathcal{T}| \frac{q^{a-|\mathcal{A}|}}{q^{2} m_{1}}\left(1-\frac{1}{m_{2}}\right) \\
&+\frac{|\mathcal{S}||\mathcal{T}|}{q^{2}}\left(1-\frac{1}{m_{1}}\right)\left(1-\frac{1}{m_{2}}\right) .
\end{aligned}
$$

Using the inequalities (10) and (11) we obtain for the number of cycles the bound M_{1} given by (8).

Consider now the case $|\mathcal{A}|<a,|\mathcal{B}|=b$. Then, if $\left\langle\alpha_{1}, \ldots, \alpha_{a}\right\rangle \notin \mathcal{S}$, the monomial of the least degree occurring with a non-zero coefficient in the parenthesis of (9) is $t^{1 / m_{1} q}$ and the q-th power of the parenthesis contains with a non-zero
coefficient $t^{1 / m_{1}}$. It follows by (10) that the number of cycles for $y(t)$ at $t=0$ is at most

$$
\begin{aligned}
& \frac{q^{a-|\mathcal{A}|}-|\mathcal{S}|}{q m_{1}}+\frac{|\mathcal{S}|}{q}=\frac{q^{a-|\mathcal{A}|-1}}{m_{1}}+\frac{|\mathcal{S}|}{q}\left(1-\frac{1}{m_{1}}\right) \\
& \leq \frac{q^{a-|\mathcal{A}|-1}}{m_{1}}\left(1+\frac{m_{1}-1}{q^{\min \{\min \mathcal{A}-1, \varphi(a q) / \varphi(q)\}}}\right)=M_{1}
\end{aligned}
$$

The case $|\mathcal{A}|=a,|\mathcal{B}|<b$ is treated similarly.
Lemma 5. Let $x(t)$ be an algebraic function of t given in the neighbourhood of $t=\infty$ by the Puiseux expansion

$$
\begin{aligned}
x_{i}(t) & =\zeta_{c}^{i} t^{l_{3} / m_{3}} Q_{i}\left(\zeta_{c}^{i} t^{1 / m_{3}}\right) & & (1 \leq i \leq c, i \notin \mathcal{C}) \\
x_{c+j}(t) & =\zeta_{d}^{j} t^{l_{4} / m_{4}} Q_{c+j}\left(\zeta_{d}^{j} t^{1 / m_{4}}\right) & & (1 \leq j \leq d, j \notin \mathcal{D})
\end{aligned}
$$

where $l_{3}, l_{4} \in \mathbb{Z} ; c, d, m_{3}, m_{4} \in \mathbb{N}, \mathcal{C}, \mathcal{D}$ are proper subsets of $\{1, \ldots, a\},\{1, \ldots, b\}$, respectively and Q_{i}, Q_{c+j} ordinary power series with non-zero constant terms. If $l_{3} m_{4}-l_{4} m_{3}=1, q$ is a positive integer and

$$
y(t)=\left(\sum_{\substack{i=1 \\ i \notin \mathcal{C} \cup \mathcal{D}+c}}^{c+d} x_{i}(t)^{1 / q}\right)^{q}
$$

then the number of distinct prime factors of the denominator of t in the field $\bar{K}(t, y(t))$ does not exceed

$$
M_{2}= \begin{cases}\frac{q^{c+d-|\mathcal{C}|-|\mathcal{D}|-2}}{m_{3} m_{4}}\left(1+\frac{m_{3}-1}{q^{\min \{\min \mathcal{C}-1, \varphi(c q) / \varphi(q)\}}}\right) & \\ \times\left(1+\frac{m_{4}-1}{q^{\min \{\min \mathcal{D}-1, \varphi(d q) / \varphi(q)\}}}\right) & \text { if }|\mathcal{C}|<c,|\mathcal{D}|<d \\ \frac{q^{c-|\mathcal{C}|-1}}{m_{3}}\left(1+\frac{m_{3}-1}{q^{\min \{\min \mathcal{C}-1, \varphi(c q) / \varphi(q)\}}}\right) & \text { if }|\mathcal{C}|<c,|\mathcal{D}|=d \\ \frac{q^{d-|\mathcal{D}|-1}}{m_{4}}\left(1+\frac{m_{4}-1}{q^{\min \{\min \mathcal{D}-1, \varphi(d q) / \varphi(q)\}}}\right) & \text { if }|\mathcal{C}|=c,|\mathcal{D}|<d\end{cases}
$$

Proof. We apply Lemma 4 to the algebraic function $x\left(t^{-1}\right)$ replacing l_{1}, l_{2}, a, b, m_{1}, m_{2} by $-l_{4},-l_{3}, d, c, m_{4}, m_{3}$, respectively.

Lemma 6. In the notation of [4] (Lemma 8) if $n \geq 5$ the number of distinct prime factors dividing the numerator or the denominator of t in the field $\bar{K}(t, y(t))$ is at most

$$
M_{3}= \begin{cases}\frac{q^{n-4}}{2}\left(1+\frac{1}{q^{\min \left\{\frac{n-3}{2}, \varphi((n-1) q) / \varphi(q)\right\}}}\right)+q^{n-3} & \text { if } n \equiv 1 \bmod 2, m=1 \\ \frac{q^{n-3}}{n-2}\left(1+\frac{n-3}{q^{\varphi((n-2) q) / \varphi(q)}}\right)+q^{n-4} & \text { if } n \equiv 1 \bmod 2, m=2 \\ 2 q^{n-3}, & \text { otherwise }\end{cases}
$$

Proof. In the notation of [4] (Lemma 3) we have

$$
f_{m} x^{n}-t^{\alpha} f_{n} x^{m}+t^{\beta} f_{n-m}=\prod_{i=1}^{n}\left(x-x_{i}(t)\right), \quad x^{2}-t x+t=\prod_{i \in \mathcal{I}}\left(x-x_{i}(t)\right)
$$

where f_{n} is a monic polynomial of degree $\left\lfloor\frac{n-1}{2}\right\rfloor$ with a non-zero constant term and

$$
\alpha=\left\lfloor\frac{n}{2}\right\rfloor-\left\lfloor\frac{m}{2}\right\rfloor, \quad \beta=\left\lfloor\frac{n+m}{2}\right\rfloor-\left\lfloor\frac{m}{2}\right\rfloor .
$$

We have to choose $a, b, c, d, \mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}$ that

$$
\{1, \ldots, a+b\} \backslash \mathcal{A} \backslash(a+\mathcal{B})=\{1, \ldots, n\} \backslash \mathcal{I}, c+d=n,|\mathcal{C}|+|\mathcal{D}|=2
$$

If $n \equiv m \equiv 1 \bmod 2$ we take in Lemmas 4 and 5

$$
\begin{aligned}
& a=m, \quad l_{1}=\frac{m+1}{2}, \quad m_{1}=m, \quad \mathcal{A}=\varnothing ; \\
& b=n-m, \quad l_{2}=1, \quad m_{2}=2, \quad \mathcal{B}=\left\{\frac{n-m}{2}, n-m\right\} ; \\
& c=n-m, \quad l_{3}=1, \quad m_{3}=1, \quad \mathcal{C}=\{n-m\} ; \\
& d=m, \quad l_{4}=0, \quad m_{4}=1, \quad \mathcal{D}=\{m\} .
\end{aligned}
$$

If $n \equiv 1, m \equiv 0 \bmod 2$ we take in Lemmas 4 and 5

$$
\begin{aligned}
& a=m, \quad l_{1}=1, \quad m_{1}=2, \quad \mathcal{A}=\left\{\frac{m}{2}, m\right\} ; \\
& b=n-m, \quad l_{2}=\frac{n-m-1}{2}, \quad m_{2}=n-m, \quad \mathcal{B}=\varnothing ; \\
& c=n-m, \quad l_{3}=1, \quad m_{3}=1, \quad \mathcal{C}=\{n-m\} ; \\
& d=m, \quad l_{4}=0, \quad m_{4}=1, \quad \mathcal{D}=\{m\} .
\end{aligned}
$$

Lemma 7. In the notation of [4] we have for $n \geq 5, n \geq 2 m,(m, n)=1$, $q \geq 2$

$$
g_{2 *}(m, n, q) \begin{cases}\geq 1 & \text { if }\langle m, n, q\rangle=\langle 1,5,2\rangle \\ \geq 2 & \text { if }\langle m, n, q\rangle=\langle 2,5,2\rangle \\ \geq 3 & \text { if }\langle m, n, q\rangle=\langle 1,5,3\rangle \\ >\frac{5 n q}{24} & \text { otherwise }\end{cases}
$$

Proof. By Lemma 2(a) of [2], Lemma 20-22 of [4] and Lemma 6 we have

$$
\begin{aligned}
g_{2 *}(m, n, q) \geq & 1+\frac{q^{n-4}}{2}\left(\frac{q-1}{2}\binom{n-2}{2}\right. \\
& +\left\lfloor\frac{m-1}{2}\right\rfloor\left(q-\frac{1}{n-m}\left(1+\frac{n-m-1}{q^{\varphi((n-m) q) / \varphi(q)}}\right)\right) \\
& \left.+\left\lfloor\frac{n-m-1}{2}\right\rfloor\left(q-\frac{1}{m}\left(1+\frac{m-1}{q^{\varphi(m q) / \varphi(q)}}\right)-M_{3} q^{4-n}\right)\right) .
\end{aligned}
$$

If $\langle m, n\rangle=\langle 1,5\rangle$ we obtain

$$
g_{2 *}(m, n, q) \geq\left\lfloor 1+\frac{q}{2}\left(\frac{5}{2}(q-1)-\frac{1}{2}-\frac{1}{2 q}-q\right)\right\rfloor=\left\lfloor\frac{3}{4}(q-1)^{2}\right\rfloor
$$

thus $g_{2 *}(m, n, q)>\frac{25 q}{24}$ unless $q \leq 3$.
If $\langle m, n\rangle=\langle 2,5\rangle$ we obtain

$$
\begin{gathered}
g_{2 *}(m, n, q) \geq\left\lfloor 1+\frac{q}{2}\left(\frac{3}{2}(q-1)+q-\frac{1}{2}-\frac{1}{2 q}-\frac{q}{3}-\frac{2}{3 q}-1\right)\right\rfloor \\
=\left\lfloor\frac{1}{12}(q-1)(13 q-5)\right\rfloor
\end{gathered}
$$

thus $g_{2 *}(m, n, q)>\frac{25 q}{24}$ unless $q=2$.
If $n \geq 6$ we have (cf. [4], p. 68)

$$
g_{2 *}(m, n, q) \geq 1+\frac{q^{n-4}}{2}(3 q-5)>\frac{5 n q}{24} .
$$

Proof of Theorem 4. Necessity. Let

$$
\begin{equation*}
Q(x ; A, B)=\frac{x^{n_{1}}+A x^{m_{1}}+B}{x^{2}-P x+Q} \tag{18}
\end{equation*}
$$

If $\left\langle m_{1}, n_{1}\right\rangle=\langle 1,3\rangle$, then

$$
Q(x ; A, B)=x+P
$$

and condition (iv) follows from Capelli's theorem.
If $\left\langle m_{1}, n_{1}\right\rangle=\langle 1,4\rangle$ then

$$
Q(x ; A, B)=x^{2}+P x+\left(P^{2}-Q\right)
$$

and condition (v) follows from Capelli's lemma and Capelli's theorem. Therefore, let $n_{1} \geq 5$. If $Q\left(x^{(m, n)} ; A, B\right)$ is reducible over $K(\mathbf{y})$, then by Capelli's lemma either $Q(x ; A, B)$ is reducible over $K(\mathbf{y})$, or $x^{(m, n)}-\xi$ is reducible over $K(\mathbf{y}, \xi)$, where ξ is a zero of $Q(x ; A, B)$. Following the proof of Theorem 1 in [4] we find that either $g_{2}^{*}\left(k, m_{1}, n_{1}\right)=0$ for a certain $k \leq \frac{n_{1}-2}{2}$ or $g_{2 *}\left(m_{1}, n_{1}, q\right)=0$ for a certain $q \mid(m, n), q>1$, respectively. The latter case is impossible by Lemma 7. In the former case by Lemma 2 above $\left\langle k, m_{1}, n_{1}\right\rangle=\langle 1,1,5\rangle$ and we have to consider the case $x^{5}+A x+B=\left(x^{2}-P x+Q\right)(x+a)\left(x^{2}+b x+c\right)$, where $a, b, c \in K(\mathbf{y})$. This gives the following system of equations:

$$
\begin{gathered}
a+b-P=0, \quad a b+c-P a-P b+Q=0 \\
a c-P a b-P c+Q a+Q b=0
\end{gathered}
$$

We cannot have $P=0$, since this would imply $B=0$. Taking $U_{8}=a / P$ we obtain

$$
\frac{P^{2}}{Q}=\frac{(a+b)^{2}(a+2 b)}{2 a^{2} b+2 a b^{2}+b^{3}}=\frac{U_{8}-2}{U_{8}^{3}-U_{8}^{2}+U_{8}-1}
$$

where $U_{8} \in K(\mathbf{y}) \backslash\left\{1, \zeta_{4},-\zeta_{4}\right\}$, which gives condition (vi).
Sufficiency. If (iv) is satisfied, $Q\left(x^{(m, n)} ; A, B\right)$ is divisible either by

$$
x^{m / l}-U_{1}^{m / l} \quad\left(P=U_{1}^{l}\right)
$$

or by

$$
x^{m / 2}+2 U_{2} x^{m / 4}+2 U_{2}^{2} \quad\left(P=4 U_{2}^{4}\right)
$$

If (v) is satisfied, $Q\left(x^{(m, n)} ; A, B\right)$ is divisible either by $x^{m / l}-U_{1}^{m / l}\left(P=U_{1}^{l}\right)$ or by

$$
x^{m / 2}+\frac{P+U_{3}}{2}
$$

or by

$$
x^{2 m / l}-2 U_{4} x^{m / l}+U_{4}^{2}-U_{5}^{2}\left(4 Q-3 P^{2}\right)
$$

or by

$$
\begin{aligned}
x^{m}+4 U_{6} x^{3 m / 4}+8 U_{6}^{2} x^{m / 2}+8 U_{6}\left(U_{6}^{2}-U_{7}^{2}(4 Q-\right. & \left.\left.3 P^{2}\right)\right) x^{m / 4} \\
& +4\left(U_{6}^{2}-U_{7}^{2}\left(4 Q-3 P^{2}\right)\right)^{2}
\end{aligned}
$$

If (vi) is satisfied, then
$Q\left(x^{(m, n)} ; A, B\right)=\left(x^{(m, n)}+P\right)\left(x^{2(m, n)}+\left(P-P U_{8}\right) x^{(m, n)}+P^{2}\left(U_{8}^{2}-U_{8}+1\right)-Q\right)$.

Remark. The calculations performed in the case $\left\langle k_{1}, m_{1}, n_{1}\right\rangle=\langle 1,2,5\rangle$ are similar to those in [1], Proof of Theorem 3.1.

Proof of Theorem 5. Necessity. Let $Q(x ; A, B)$ be again given by (18). If $n_{1} \leq 4$ the conditions (iv) and (v) with $K(\mathbf{y})$ replaced by L follow as in the proof of Theorem 4, or $g>\frac{5 n_{1}}{24}$ and the condition (viii) holds with $\nu=$ n_{1}, thus let $n_{1} \geq 5$. If $Q\left(x^{(m, n)} ; A, B\right)$ is reducible over L, then by Capelli's lemma either $Q(x ; A, B)$ is reducible over L, or $x^{(m, n)}-\xi$ is reducible over $L(\xi)$, where ξ is a zero of $Q(x ; A, B)$. Following the proof of Theorem 2 in [4] we find that either $g_{2}^{*}\left(k, m_{1}, n_{1}\right) \leq g$ for a certain $k \leq \frac{n_{1}-2}{2}$, or $g_{2 *}\left(m_{1}, n_{1}, q\right) \leq g$ for a certain $q \mid(m, n), q>1$, respectively. In the former case, by Lemma 2 either, $\left\langle k, m_{1}, n_{1}\right\rangle=\langle 1,1,5\rangle,\langle 1,2,5\rangle$ or $\langle 1,1,6\rangle,\langle 1,5,3\rangle,\langle 2,5,2\rangle$ or $g>\frac{5 n_{1} q}{24}$. For $g=1$ we have $\left\langle k, m_{1}, n_{1}\right\rangle=\langle 1,1,5\rangle,\langle 1,2,5\rangle,\langle 1,1,6\rangle$ or $\left\langle m_{1}, n_{1}, q\right\rangle=\langle 1,5,2\rangle$. We consider these cases successively. The case $\left\langle k, m_{1}, n_{1}\right\rangle=\langle 1,1,5\rangle$ leads to (vi) with $K(\mathbf{y})$ replaced by L, as in the proof of Theorem 2 . The case $\left\langle k, m_{1}, n_{1}\right\rangle=\langle 1,2,5\rangle$ leads to the equality

$$
x^{5}+A x^{2}+B=\left(x^{2}-P x+Q\right)(x+a)\left(x^{2}+b x+c\right), \quad a, b, c \in L .
$$

This gives the following system of equations:

$$
a+b-P=0, \quad a b+c-P a-P b+Q=0, \quad-P a c+Q a b+Q c=0
$$

and on eliminating P and Q

$$
-(a+b) a c+a b\left(a^{2}+a b+b^{2}-c\right)+c\left(a^{2}+a b+b^{2}-c\right)=0
$$

$a b=0$ implies $B=0$, hence $a b \neq 0$ and or putting $b=\beta a, c=\gamma a^{2}$ it follows

$$
\begin{gathered}
\gamma^{2}-\left(\beta^{2}-\beta\right) \gamma-\left(\beta^{3}+\beta^{2}+\beta\right)=0 \\
\left(2 \gamma-\left(\beta^{2}-\beta\right)\right)^{2}=\left(\beta^{2}-\beta\right)^{2}+4\left(\beta^{3}+\beta^{2}+\beta\right)=\beta^{4}+2 \beta^{3}+5 \beta^{2}+4 \beta
\end{gathered}
$$

Taking $4 \beta^{-1}=v, 8 \gamma \beta^{-2}-4+4 \beta^{-1}=w, \frac{a \beta}{4}=u$ we obtain $w^{2}=v^{3}+5 v^{2}+8 v+16$, where $v, w \in L$ and $P=u(v+4), Q=u^{2}\left(v^{2}+6 v+8-2 w\right)$.

Consider now $\langle k, m, n\rangle=\langle 1,1,6\rangle$. The equality

$$
x^{6}+A x+B=\left(x^{2}-P x+Q\right)(x+a)\left(x^{3}+b x^{2}+c x+d\right),
$$

leads to the system of equations

$$
\begin{gathered}
a+b-P=0, \quad a b+c-P a-P b+Q=0 \\
a c+d-P a b-P c+Q a+Q b=0, \quad a d-P a c-P d+Q a b+Q c=0 .
\end{gathered}
$$

Eliminating P, Q and d and taking $b=\beta a, c=\gamma a^{2}$ we obtain

$$
\gamma^{2}+\gamma\left(\beta^{2}+2 \beta\right)-\left(\beta^{4}+2 \beta^{3}+2 \beta^{2}+2 \beta\right)=0
$$

It follows that

$$
\begin{aligned}
\left(2 \gamma+\beta^{2}+2 \beta\right)^{2} & =\left(\beta^{2}+2 \beta\right)^{2}+4\left(\beta^{4}+2 \beta^{3}+2 \beta^{2}+2 \beta\right) \\
& =5 \beta^{4}+12 \beta^{3}+12 \beta^{2}+8 \beta
\end{aligned}
$$

Putting $2 \beta^{-1}+1=v, 2 \gamma \beta^{-2}+1+2 \beta^{-1}=w, \frac{a \beta}{2}=u$ we obtain $w^{2}=v^{3}+3 v+1$, where $v, w \in L$ and $P=u(v+1), Q=u^{2}\left(v^{2}+2 v+3-2 w\right)$. Consider finally $\left\langle m_{1}, n_{1}, q\right\rangle=\langle 1,5,2\rangle$. By Lemma 29 of [2] we have

$$
\frac{x^{5}+A x+B}{x^{2}-P x+Q}=x f(x)^{2}-g(x)^{2}, \quad \text { where } f, g \in L[x]
$$

and taking $f(x)=x+a, g(x)=b x+c$ we obtain

$$
x^{5}+A x+B=\left(x^{2}-P x+Q\right)\left(x^{3}+\left(2 a-b^{2}\right) x^{2}+\left(a^{2}-2 b c\right) x-c^{2}\right),
$$

which leads to the system of equations

$$
\begin{aligned}
2 a-b^{2}-P & =0, \quad a^{2}-2 b c-P\left(2 a-b^{2}\right)+Q=0, \\
-c^{2} & -P\left(a^{2}-2 b c\right)+Q\left(2 a-b^{2}\right)=0 .
\end{aligned}
$$

Eliminating P and Q and taking $a=\alpha b^{2}, c=\gamma b^{3}$ we obtain

$$
\gamma^{2}-2 \gamma(4 \alpha-2)-\left(4 \alpha^{3}-10 \alpha^{2}+6 \alpha-1\right)=0
$$

It follows that

$$
(\gamma-4 \alpha+2)^{2}=(4 \alpha-2)^{2}+4 \alpha^{3}-10 \alpha^{2}+6 \alpha-1=4 \alpha^{3}+6 \alpha^{2}-10 \alpha+3
$$

Putting $4 \alpha+2=v, 4 \gamma-16 \alpha+8=w, \frac{b}{2}=u$ we obtain $w^{2}=v^{3}-52 v+144$, $P=(2 v-8) u^{2}, Q=\left(3 v^{2}+4 v-68+8 w\right) u^{4}$.

Sufficiency. Proof of sufficiency in the cases (iv), (v) and (vi) is similar to that of Theorem 4. If there exists an integer l such that $\langle n / l, m / l\rangle=\langle\nu, \mu\rangle \in S_{3}$ and $P=P_{\nu, \mu}(v, w) u^{(\nu, \mu)}, Q=Q_{\nu, \mu}(v, w) u^{2(\nu, \mu)}$, where $\langle v, w\rangle \in E_{\nu, \mu}^{2}(L), u \in L$, we shall consider successively the three cases.

$$
\begin{aligned}
& \text { If }\langle\nu, \mu\rangle=\langle 5,2\rangle \text {, then } \\
& \qquad \frac{x^{n}+A x^{m}+B}{x^{2 l}-P x^{l}+Q}=\left(x^{l}+u v\right)\left(x^{2 l}+4 u x^{l}+2 u^{2}(w-v+4)\right) .
\end{aligned}
$$

If $\langle\nu, \mu\rangle=\langle 6,1\rangle$, then

$$
\begin{aligned}
\frac{x^{n}+A x^{m}+B}{x^{2 l}-P x^{l}+Q}= & \left(x^{l}+u(v-1)\right)\left(x^{3 l}+2 u x^{2 l}+2 u^{2}(w-v) x^{l}\right. \\
& \left.+u^{3}\left((2 v+6) w-v^{3}-v^{2}-9 v-5\right)\right)
\end{aligned}
$$

If $\langle\nu, \mu\rangle=\langle 10,2\rangle$, then

$$
\begin{aligned}
\frac{x^{n}+A x^{m}+B}{x^{4 l}-P x^{2 l}+Q}= & \left(x^{3 l}+2 a x^{2 l}+u^{2}(v-2) x^{l}+2 u^{3}(w+4 v-16)\right) \\
& \times\left(x^{3 l}-2 a x^{2 l}+u^{2}(v-2) x^{l}-2 u^{3}(w+4 v-16)\right)
\end{aligned}
$$

For $q>1$ the sufficiency of the given condition is obvious.
Remark. The calculations performed for the cases $\left\langle k, m_{1}, n_{1}\right\rangle=\langle 1,2,5\rangle$ and $\langle 1,1,6\rangle$ and $\left\langle m_{1}, n_{1}, q\right\rangle=\langle 1,5,2\rangle$ are similar to those in the proof of Theorem 3.2, Theorem 4.1, and Theorem 6.1 of [1].

Proof of Corollary. The corollary follows from Theorem 2 of [2], Theorem 2 and Theorem 5 above.

Proof of Theorem 6. In view of Theorem 5 the proof does not differ essentially from the proof of Theorem 3 in [3]. The finiteness of the set $F_{\nu, \mu}(K)$ is a consequence of the Faltings theorem.

References

[1] A. Bremner and M. Ulas, On the type of reducibility of trinomials, Acta Arith. (to appear).
[2] A. Schinzel, On reducible trinomials, Dissert. Math. 329 (1993), and Selecta 1, 466-548.
[3] A. Schinzel, On reducible trinomials, II, Publ. Math. Debrecen 56 (2000), 575-608, and Selecta 1, 580-604.
[4] A. Schinzel, On reducible trinomials, III, Periodica Math. Hungarica 43 (2001), 43-69, and Selecta 1, 605-631.

Corrigenda to the paper [2] (mistakes corrected in Selecta, vol. 1 are not included)
p. 8 Table $2 A_{8,1}$ (first): for $3 v^{2}-12 v-10 \operatorname{read} 3 v^{2}-10$

Table $2 A_{9,1}$: for $v^{3}+18 v-36$ read $v^{3}-18 v+36$
(I owe these corrections to A. Bremner).

```
p. \(9 \quad\) line -6 for \(\langle 7,2\rangle\) read \(\langle 7,2\rangle,\langle 7,3\rangle\)
line - 6 insert \(E_{7,3}(Q)=\{\langle-33,0\rangle,\langle 3,108\rangle,\langle 3,-108\rangle\), \(\langle 39,216\rangle,\langle 39,-216\rangle\}\)
```

p. 49 line 13 for u^{3} read $u^{3}(v-39)$
p. $50 \quad$ for $(v-1) x+(w-3 v+5)$
read $u^{2}(v-1) x+u^{3}(w-3 v+5)$
(I owe these corrections to A. Jasinski).
p. 64 line 17 insert $E_{7,3}(Q)=\{\langle-33,0\rangle,\langle 3,108\rangle,\langle 3,-108\rangle$, $\langle 39,216\rangle,\langle 39,-216\rangle\}$
line -16 leave out $E_{7,3}$
line -17 leave out $\langle 3,108\rangle$
line -13 insert: All rational points on the curve $E_{7,3}$ are the indicated torsion points (see [1], Theorem 5.2 (3)).

ANDRZEJ SCHINZEL
INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES
NIADECKICH 8
00-956 WARSAW
POLAND
E-mail: schinzel@impan.pl

