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Self-stabilization in certain infinite-dimensional matrix algebras

By GYULA LAKOS (Budapest)

Abstract. Analytical tools to K-theory; namely, self-stabilization of rapidly dec-

reasing matrices, linearization of cyclic loops, and the contractibility of the pointed

stable Toeplitz algebra are discussed in terms of concrete formulas. Adaptation to the

∗-algebra and finite perturbation categories is also considered. The finite linearizability

of algebraically finite cyclic loops is demonstrated.

1. Introduction

Learning K-theory, one likely encounters stabilization of matrices, lineariza-

tion of cyclic loops, and the contractibility of the pointed stable Toeplitz algebra.

Stabilization of matrices is a fundamental feature of K-theory; linearization of

cyclic loops is an important method to prove complex Bott periodicity; the Toep-

litz algebra can also be used for the same purpose, but it is also a tool to construct

classifying spaces. Although considered simple, these basic constructions are of-

ten treated in quite awkward manners. The purpose of this paper is to show that

these topics can be discussed in a unified and simple way. Our statements are

formulated primarily in the setting of locally convex algebras. This is not just

for the sake of extreme generality but to demonstrate that concrete formulas and

maps can be very successful, without using approximations. The main statements

of this paper are as follows:

Statement 1.1 (Self-stabilization). Assume that A = KZ(S), i.e. the locally

convex algebra of rapidly decreasing Z× Z matrices over an other locally convex
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algebra S. Let r : KZ(A) → A be an isomorphism which comes from relabeling

KZ×Z(S) into KZ(S). Then there is a smooth homotopy

E : KZ(A)× [0, π/2] → KZ(A)
such that it yields a family of endomorphisms of KZ(A), which are isomorphisms

for θ ∈ [0, π/2), and a closed injective endomorphism for θ = π/2, with

E(A, 0) = A, E(A, π/2) = Diag(. . . , 0, 0 | r(A), 0, 0, . . . );

cf. (1) for the diagonal notation. This statement extends to unit groups, showing

that U(KZ(A)) can be pushed down by a homotopy into U(Ae00).

(The continuous map φ : A× [0, π/2]θ → B is smooth in the variable θ if the

higher partial derivatives ∂n
θ φ : A× [0, π/2]θ → B are still continuous functions.)

Let A[z−1, z] be the algebra of formal Laurent series with rapidly decreasing

coefficients.

Statement 1.2 (Linearization of cyclic loops). There is a smooth homotopy

K : U(A[z−1, z])× [0, π/2] → U(KZ(A)[z−1, z]),

such that

K(a(z), π/2) = Diag(. . . 1, 1 | a(z)a(1)−1, 1, 1, . . . ),

but

K(a(z), 0) = U(a)Λ(z,Q)U(a)−1Λ(z,Q)−1;

where Λ(z,Q) = Diag(. . . , z, z | 1, 1, . . . ) is the linear loop generated by the Hilbert

transform, cf. (1), and U(a) is the matrix of multiplication by a(z), cf. (2).

Statement 1.3 (Toeplitz contractibility). Let A = KZ(S). Then the unit

group of the pointed Toeplitz algebra over A, i.e. U(TN(A)po), is contractible.
These statements were formulated in the smooth category. However, it is

often useful to work in slightly different categories. One case is when A is a

∗-algebra. In those cases, instead of the general unit group U(A) of invertible

elements, one should work with the group U∗(A) of unitary elements. Another

type of restriction occurs in the finite perturbation category, when the algebra

KZ(S) of rapidly decreasing matrices is replaced by the algebra Kf
Z(S) of matrices

with finitely many nonzero entries, and the algebra A[z−1, z] of rapidly decreasing

Laurent series is replaced by the algebra A[z−1, z]f of finite Laurent series. (Here

one should be careful, because for smooth loops being finite and invertible does

not generally imply that the inverse is finite.)

Statement 1.4. Statements 1.1–1.3 restrict to the ∗-algebra and/or finite

perturbation categories.
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The setting of finite perturbations, may, however, be too restrictive. Let

us call an element a(z) ∈ U(A[z−1, z]) algebraically finite if a = as . . . a1, where

for each s either as or (as)
−1 has finite Laurent series form. The algebraically

finite elements of U(A[z−1, z]) fall into various finiteness classes F depending on

the length of the elements as or (as)
−1. Let AF be the set of decompositions

{aj}1≤j≤s compatible with F . Then Statement 1.2 can be augmented as follows:

Statement 1.5. For any finiteness class F , there is a smooth homotopy

Ke
F : AF × [0, 1]× [0, π/2] → U(KZ(A)[z−1, z]),

such that

(i) Ke
F (ã, 0, θ) = K(a, θ);

(ii) Ke
F (ã, 1, θ) differs from 1Z in finitely many places (depending on F );

(iii) Ke
F (ã, h, π/2) is constant in h;

(iv) Ke
F (ã, h, 0) = UF (ã, h)Λ(z,Q)UF (ã, h)

−1Λ(z,Q)−1.

Here UF (ã, h) differs from U(a) in a rapidly decreasing matrix.

In particular, Ke
F (ã, 1, 0) yields a finite linearization of a(z)a(1)−1.

These statements are known, but in lesser generality, in various ways: State-

ment 1.1, as stated here in the smooth category (however, see 1.4), follows from

Cuntz, [3], Section 2. Statement 1.2 is a quantitative version of the well-known

linearization technique of Atiyah and Bott, [1]; but much resembling to the for-

mulas of Pressley and Segal, [8], Ch. 6, who work with Hilbert–Schmidt mat-

rices, instead of rapidly decreasing ones. Statement 1.3 comes from the original

Toeplitz argument of Cuntz, [2], originally stated in the context of C∗-algebras,
but subsequently adapted to the smooth case, cf. also [3]. One can also find some

explicit homotopies in [4]. Statement 1.4 is useful, because ∗-algebras are promi-

nent in operator algebraic discussions; and the finite perturbation category is the

technically easiest setting to provide large contractible spaces for the purposes of

algebraic topology. Statement 1.5 amounts to an explicit computation in the less

functorial but more concrete setting of [1].

The constructions presented here are improved versions of some constructions

which can be found in the author’s thesis [5]. The author indebted to Prof.

Richard B. Melrose, his advisor, for helpful discussions. In fact, much of this

content was motivated by the geometric idea of Melrose, Rochon [7]. The

author would also like to thank Prof. Joachim Cuntz, who called his attention to

some related papers, and Prof. Balázs Csikós, for some useful advices.
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2. A general framework for computations

If A is a not necessarily unital algebra, then one can consider the semigroup

1 + A, with elements of form 1 + a, (a ∈ A), which multiply as (1 + a)(1 + b) =

1 + (a + b + ab). If A is unital, then it is customary to identify A and 1 + A by

the recipe a ∈ A ↔ 1 − (1A − a) ∈ 1 + A. This is also the situation if there is

a natural identity element which can be associated to A, like the identity matrix

in the case of matrix algebras. The unit group U(A) of A is the unit group of the

semigroup 1 + A, i.e., it is the group of pairs (1 + a, 1 + b) ∈ (1 + A) × (1 + A)

such that (1 + a)(1 + b) = (1 + b)(1 + a) = 1; they multiply as (1 + a1, 1 + b1)

(1+a2, 1+b2) = ((1+a1)(1+a2), (1+b2)(1+b1)). If A is a topological ring, then

the natural topology on U(A) comes from the product topology of (1+A)×(1+A)

by restriction. As 1+a determines 1+b, we write “1+a” instead of “(1+a, 1+b)”.

If φ : A → B is a homomorphism, then it induces a homomorphism Uφ : U(A) →
U(B) defined by 1 + a 7→ 1 + φ(a). We will write φ instead of Uφ.

In what follows, a “locally convex vector space A” means a sequentially comp-

lete, Hausdorff, locally convex vector space A. The completeness is essential for

analytic purposes. If the topology of A is induced by a set ΠA of seminorms,

then we assume that any positive integral combination of these seminorms also

belongs to the generating seminorm set. A locally convex algebra A is a locally

convex vector space with continuous bilinear multiplication. So, for each semi-

norm p ∈ ΠA there is an other seminorm p̃ ∈ ΠA such that for all X1, X2 ∈ A

the inequality p(X1X2) ≤ p̃(X1)p̃(X2) holds. An inductive locally convex vec-

tor space A is an indexed family of locally convex vector spaces {Aλ}λ∈Λ such

that the following holds: Λ is an upward directed partially ordered set, i.e. for

all λ, µ ∈ Λ there is an element ν ≥ λ, µ. For all µ ≥ λ there exist continuous

inclusions Tλ
µ : Aλ → Aµ; and for ν ≥ µ ≥ λ one has Tµ

ν ◦ Tλ
µ = Tλ

ν . Now, A

is an inductive locally convex algebra if for each λ, µ ∈ Λ there is an element

prod(λ, µ) ∈ Λ, and for ν ≥ prod(λ, µ), bilinear products Mν
λ,µ : Aλ × Aµ → Aν

compatible with the inclusions and the usual algebraic prescriptions are given. An

element of A is an element of
⋃

λ∈Λ Aλ making identifications along the inclusion

maps. Then A will be an algebra endowed with an “inductive” topology coming

from the filtration {Aλ}λ∈Λ, such that the vector space structure respects the

filtration but the algebra structure does not. If the spaces A and B have induc-

tive topologies with filtrations {Aλ}λ∈Λ and {Bµ}µ∈M , then a map φ : A → B

is continuous if for each λ ∈ Λ there is an element µ ∈ M such that there is a

continuous map φλ : Aλ → Bµ which is set-theoretically a restriction of φ.

Suppose that Θ1,Θ2 are sets and V is a vector space. Then a V-valued
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Θ1 times Θ2 matrix is just a formal sum s =
∑

a∈Θ1,b∈Θ2
sa,bea,b ∈ MΘ1,Θ2

(V)

with coefficients sa,b from V. We write MΘ(V) instead of MΘ,Θ(V) and use

similar notation for other spaces as well. For column and row matrices, we use

the notation ea = ea,∗ and e>b = e∗,b respectively, and we make the formal

identification ea,b = ea ⊗ e>b . For column spaces, we use the notation S(Θ;V) =

MΘ,{∗}(V). We use the notation 1Θ =
∑

θ∈Θ eθ,θ, and in general circumstances

we consider the identity matrix 1Θ as the adjoint unit in any non-unital Θ times

Θ matrix algebra. If si ∈ V, i ∈ Z are given then

Diag(. . . s−2, s−1|s0, s1, s2, . . . ) =
∑

i∈Z
siei,i ∈ MZ(V) (1)

is the corresponding diagonal matrix; Diag(s0, s1, s2, . . . ) ∈ MN(V), similarly.

For a ∈ A, we define the matrices EN(a) = ae00 ∈ KN(A) and EZ(a) = ae00 ∈
KZ(A). Then, as usual, for ã = 1+a ∈ 1+A, we extend these maps as EN(ã) = 1N+

EN(a) and EZ(ã) = 1Z+EZ(a); i.e., for ã ∈ 1+A, it yields EN(ã) = Diag(ã, 1, 1, . . . ),

and EZ(ã) = Diag(. . . , 1, 1 | ã, 1, 1, . . . ).
On the set N of natural numbers, there is the natural space S∞(N;R)?,

i.e. the space of multiplicatively invertible polynomially growing functions. A

countable set Θ is called a set of polynomial growth if it is endowed with a set

of functions S∞(Θ;R)? from Θ to R such that there is a bijection ω : Θ → N
so that ω∗S∞(N;R)? = S∞(Θ;R)?. It is notable that N × N and N ∪̇N are sets

of polynomial growth naturally; and that way we can define the direct product

Θ1×Θ2 and direct sums Θ1 ∪̇Θ2 of sets of polynomial growth Θ1 and Θ2. In what

follows, the sets of polynomial growth we use will be like N,Z, or {1, . . . , n} × Z,
where the description of the relevant function spaces is evident, so it will not

be detailed. The point is that a set Θ of polynomial growth is just like N for

practical purposes. If Θ1,Θ2 are sets of polynomial growth, and V is a locally

convex vector space, then we can define some matrix spaces as follows:

(a) With functions F : ΠV → S∞(Θ1;R)? ×S∞(Θ2;R)?, the filtering spaces

M∞,∞
Θ1,Θ2

(V)F =

{
s ∈ MΘ1,Θ2(V) : ∀p ∈ ΠV

|s| 1
F1(p)

,p, 1
F2(p)

=
∑

(a,b)∈Θ1×Θ2

∣∣∣∣
1

F1(p)(a)

∣∣∣∣ p(sa,b)
∣∣∣∣

1

F2(p)(b)

∣∣∣∣ < +∞
}

form the inductive locally convex space M∞,∞
Θ1,Θ2

(V).

(b) With functions F : ΠV×S∞(Θ2;R)? → S∞(Θ1;R)?, the filtering spaces
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M∞,−∞
Θ1,Θ2

(V)F =

{
s ∈ MΘ1,Θ2(V) : ∀p ∈ ΠV∀g ∈ S∞(Θ2;R)?

|s| 1
F (p,g)

,p,g =
∑

(a,b)∈Θ1×Θ2

∣∣∣∣
1

F (p, g)(a)

∣∣∣∣ p(sa,b)|g(b)| < +∞
}

form the inductive locally convex space M∞,−∞
Θ1,Θ2

(V). We can define the space

M−∞,∞
Θ1,Θ2

(V) similarly.

(c) We define

M−∞,−∞(Θ1,Θ2;V) =

{
s ∈ M(Θ1,Θ2;V) : ∀p ∈ ΠV∀f ∈ S∞(Θ1;R)?

∀g ∈ S∞(Θ2;R)? |s|f,p,g =
∑

(a,b)∈Θ1×Θ2

|f(a)| p(sa,b)|g(b)| < +∞
}
.

(d) It is natural to define ΨΘ1,Θ2(V) = M−∞,∞
Θ1,Θ2

(V)∩M∞,−∞
Θ1,Θ2

(V), the space

of matrices of “pseudodifferential size”.

If A × B → C is a continuous bilinear pairing between locally convex spa-

ces, then we have induced continuous pairings MX,∞
Θ1,Θ2

(A) × M−∞,Y
Θ2,Θ3

(B) →
MX,Y

Θ1,Θ3
(C), ΨΘ1,Θ2(A) × ΨΘ2,Θ3(B) → ΨΘ1,Θ3(C), etc. So come the algebra

and module structures associated to matrices. Instead of M−∞,−∞
Θ1,Θ2

(A) we will

use the shorter notations KΘ1,Θ2(A). Instead of M±∞,X
Θ,{∗} (A) it is reasonable to

use S±∞(Θ;A), which is a consistent extension of our earlier notation. There are

natural isomorphisms like KΘ1×Θ′
1,Θ2×Θ′

2
(A) ' KΘ1,Θ2(KΘ′

1,Θ
′
2
(A)), etc. One of-

ten uses is relabeling of matrices, which is as follows: Suppose that ω : Ω → Ω′ is
a map between sets of polynomial growth, such that ω∗S∞(Ω′,R)? = S∞(Ω,R)?.
This includes the case when ω is an isomorphism of sets of polynomial growth,

and also the natural inclusions ι : Ω → Ω′∪̇Ω”, where Ω” is finite or an other

set of polynomial growth. Let us now consider the matrix Rω =
∑

α∈Ω eα,ω(α) ∈
ΨΩ,Ω′(R). Then, for a matrix A ∈ MX,Y

Θ (A) or ΨΘ(A), we can take the matrix

rω(A) = R>
ωARω, which is a matrix of the same kind as A but Ω is replaced by Ω′.

This relabeling rω is a continuous, smooth operation, which is an isomorphism if

ω is an isomorphism.

The advantage of the spaces MX,Y
Θ1,Θ2

(V) is that they are sufficiently large for

the purposes of arithmetic calculations. In what follows, only the algebras K will

be used explicitly. On the other hand, all calculations, except in Section 7 will

be governed by the principle every matrix expression will be understood as an

element of ΨΩ1,Ω2(A), where Ωi are sets of polynomial growth, and A is a locally

convex algebra; but we always hope that our expressions will yield results which

turn out to be continuous in stronger topologies.
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3. The environment of cyclic and Toeplitz algebras

Cyclic and Toeplitz algebras. In what follows, let N = Z \ N, so Z = N ∪̇N.
We make a canonical correspondence between N and N by relabeling every n to

−1−n. We can consider every Z×Z matrix U as a 2×2 matrix of N×N matrices:

U =

[
U |N×N U |N×N
U |N×N U |N×N

]
'

[
U−− U−+

U+− U++

]
,

such that the matrix entries on the right side are N×N matrices obtained by the

correspondence explained above.

An element a =
∑

i∈Z aiei ∈ S−∞(Z;A) can and will, in general, be identified

with the Laurent series
∑

i∈Z aiz
i ∈ A[z−1, z] with rapidly decreasing coefficients.

We call this algebra the algebra of cyclic loops, in contrast to the algebra of proper

loops C∞(S1;A). Elements a =
∑

i∈Z aiz
i ∈ A[z−1, z] can be represented by Z×Z

matrices

U(a) =
∑

n,m∈Z
an−men,m =




. . .
. . .

. . .
. . .

. . .
. . .

. . . a0 a−1 a−2 a−3
. . .

. . . a1 a0 a−1 a−2
. . .

. . . a2 a1 a0 a−1
. . .

. . . a3 a2 a1 a0
. . .

. . .
. . .

. . .
. . .

. . .
. . .




. (2)

If WZ(A) is the image set of A[z−1, z] under U, then it is a subset of Ψ(Z;V)

algebraically, but we put the topology of S−∞(Z;V) to it. If A is a locally convex

algebra, then U : A[z−1, z] → WZ(A) is an isomorphism of algebras. When it

comes to the 2 × 2 decomposition as explained above, in order to simplify the

notation, we will just write W(a) instead of U(a)++, and Y(a) instead of U(a)+−.
If a = a(z) then, with some abuse of notation, we also write a> = a(z−1). Then

U(a) =

[
W(a>) Y(a>)
Y(a) W(a)

]
.

So W(a) is the infinite Toeplitz matrix associated to a, and Y(a) is the infinite

Hankel matrix associated to (“the positive part” of) a.

As far as the linear structure is concerned, we could have just used the

matrices W(a) to represent the elements a, and use the set WN(A) of restricted
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matrices. The difference is that in terms of matrix multiplication W(a)W(b) =

W(ab)−Y(a)Y(b>), so there is an “anomalous” term −Y(a)Y(b>) ∈ KN(A). One

can see that algebraically WN(A) ∩ KN(A) = 0. Hence it is reasonable to define

the Toeplitz algebra

TN(A) = WN(A) +KN(A),
which is topologically just WN(A) ⊕ KN(A) but with the algebraic product rule

(W(a) + p)((W(b) + q)) = W(ab) + (−Y(a)Y(b>) +W(a)q+ pW(b) + pq), induced

from the matrix structure. Algebraically, TN(A) is just a subset of Ψ(N;A) but

a locally convex algebra. So, one can see that there is a short exact sequence of

algebras 0 → KN(A) ι−→ TN(A) σ−→ WZ(A) → 0. The map ι is the inclusion of

the ideal of rapidly decreasing matrices into the Toeplitz algebra, while σ is the

symbol map. In what follows, we rather consider the value of the symbol map as

an element of A[z−1, z], so we have the symbol homomorphism

σ : TN(A) → A[z−1, z].

We can naturally extend this symbol map to unit groups as we have seen.

For technical reasons, we define the algebra

TZ(A) =
[
TN(A) KN(A)
KN(A) TN(A)

]
,

which is also naturally a locally convex algebra. ThenWZ(A) ⊂ WZ(A)+KZ(A) ⊂
TZ(A). For the sake of notational convenience, we define the block matrix

Û(a) =




W(a>) −Y(a>)
0

−Y(a) W(a)


 ∈ TZ(A).

We remark that for ã ∈ U(A[z−1, z]) an “1” appears in the place of “0”. Elements

of TZ(A) have two symbols; one belonging to the lower right quadrant, and one

belonging to the upper left quadrant. It is a small but important observation

regarding U(a) ∈ TZ(A) that the Toeplitz element in the lower right quadrant

has symbol a = a(z), but the Toeplitz element in the upper left quadrant has

symbol a> = a(z−1). One can also see that there are natural isomorphisms like

TN(KΩ(A)) ' KΩ(TN(A)), etc. In fact, all of our matrix space constructions

considered as functors are naturally “commutative”.

Let A[z−1, z]po be the set of pointed loops, i.e., where a(1) = 0. Then the

elements ã ∈ U(A[z−1, z]po) are those for which ã(1) = 1. These pointed spaces

are closed subspaces of the unpointed spaces. We can define the pointed Toeplitz

algebra TN(A)po similarly, the symbols are pointed there.
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The Bott involution map. In what follows, we use the abbreviation Λ(a, b) =
1
2 (1 + a+ b− ab). Let Q =

[−1N
1N

]
. Then Λ(z,Q) =

[
z1N

1N

]
. We use the delta

function δn,m, which is 1 if n = m, and it is 0 otherwise.

If a ∈ U(A[z−1, z]), then we define the “Bott” involution

B(a) = U(a)QU(a)−1 ∈ Q+KZ(A)
(cf. the symbols).

“Shifting rotations”. Our natural deformation parameter variable, in general,

will be θ ∈ [0, π/2], or, more generally, θ ∈ S1 = R/2πZ. In order to save space,

we often use t = sin θ and s = cos θ instead. It is useful to keep in mind that

s2 = 1− t2. For θ ∈ S1, we define the matrices

C(θ) =




s ts t2s t3s · · ·
−t s2 ts2 t2s2

. . .

−t s2 ts2
. . .

−t s2
. . .

−t
. . .

. . .




∈ TN(R).

Lemma 3.1. Let C(θ)† denote the transpose of C(θ). Then

(a) C(θ)†C(θ) = 1N.

(b) C(θ)C(θ)† = −δt,1e0,0 − δt,−1e0,0 + 1N.

(c)

C(θ)en,mC(θ)† =




tn+ms2 tn+m−1s3 · · · tns3 −tn+1s

tn+m−1s3 tn+m−2s4 · · · tn−1s4 −tns2

...
...

. . .
...

...

tms3 tm−1s4 · · · s4 −ts2

−tm+1s −tms2 · · · −ts2 t2

0
. . .




.
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(d) For n > 0,

C(θ)W(zn)C(θ)† = −δt,1e0,0 − (−1)nδt,−1e0,0 +




tn

tn−1s
...

ts

s

1

1
. . .




,

and C(θ)W(z−n)C(θ)† is the transpose of the matrix above.

Proof. Direct computation. ¤
Remark 3.2. The presence of the terms δt,1, δt,−1 might be surprising at

first sight. It reflects the phenomenon that in a topological algebra one cannot

simultaneously topologize the families C(θ) and C(θ)† correctly. In fact, the C(θ)’s

are isometries for −1 < t < 1, but they are just partial isometries for t = ±1.

4. Stabilizing homotopies

Proposition 4.1. The continuous map

TK : KN(A)× S1 → KN(A)
given by

A, θ 7→ TK(A, θ) = C(θ)AC(θ)†

is smooth in θ. It yields a family of endomorphisms of KN(A) when θ is fixed.

These are isomorphisms for −1 < t < 1, and closed injective endomorphisms for

t = ±1. In particular, for θ = 0 (t = 0),

TK(A, 0) = A =



a11 a12 · · ·
a21 a22 · · ·
...

...
. . .


 ;

but for θ = ±π/2 (t = ±1),

TK(A,±π/2) =




0

a11 a12 · · ·
a21 a22 · · ·
...

...
. . .



.
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Proof. Well-definedness and smoothness follows from Lemma 3.1.c. Lem-

ma 3.1.a implies that we have a family of endomorphisms. Furthermore, it also

shows that A = C(θ)†TK(A, θ)C(θ); from which the statement about the nature

of the endomorphisms follows easily. ¤

Hence, taking θ ∈ [0, π/2], we see that the deformation TK does indeed realize

a stabilizing homotopy, even if only with one “extra dimension”. Nevertheless,

after this, stabilization becomes a matter of standard tricks:

Corollary 4.2 (⇒ Statement 1.1). Let Ω1 and Ω2 be sets of polynomial

growth; Ω = Ω1 ∪̇Ω2, and let ω : Ω → Ω1 ⊂ Ω be the composition of an isomorp-

hism Ω ' Ω1 and the natural inclusion Ω1 → Ω1 ∪̇Ω2. Then we claim:

There is a smooth map T̂K : KΩ(S)× [0, π/2] → KΩ(S) such that it yields a

family of endomorphisms of KΩ(S), which are isomorphisms for θ ∈ [0, π/2), and

a closed injective endomorphism for θ = π/2, such that T̂K(A, 0) = idKΩ(S) and

T̂K(A, π/2) = rω. The map T̂K extends to unit groups naturally.

Proof. Take A = KN(S) in the previous statement. It yields our statement

with Ω1 = (N \ {0}) × N, Ω2 = {0} × N, ω((n,m)) = (n + 1,m). Now, using an

appropriate relabeling rη of Ω we obtain the general statement. ¤

Remark 4.3. Another way to achieve stabilization by many dimensions is to

“quantize” C(θ), see [6].

Due to the multiplicative structure, the concatenation of group valued ho-

motopies is particularly simple: If f, g : Y × [0, 1] → G yield homotopies f0 ' f1,

g0 ' g1 where f1 = g0, then h(y, t) = f(y, t)f(y, 1)−1g(y, t) yields a homo-

topy between f0 and g1. Then polynomial/smooth homotopies yield polyno-

mial/smooth homotopies, and the operation is associative; in contrast to con-

catenation by reparametrization. Using this observation and the stabilizing ho-

motopies above, one can easily prove

Corollary 4.4. Let Ω1,Ω2 be sets of polynomial growth, and let ι1 : Ω1 →
Ω1 ∪̇Ω2 be the natural inclusion. Assume that H : X × [0, 1] → U(KΩ1 ∪̇Ω2

(S)) is

a smooth homotopy with maps f0, f1 : X → U(KΩ1(S)) such that H0 = rι1(f0)

andH1 = rι1(f1). Then we claim that there is a smooth homotopy f : X×[0, 1] →
U(KΩ1(S)) between f0 and f1. This f can be chosen so that there is a smooth

homotopy between H and rι1(f) relative to endpoints. In other words: “In stable

algebras stable homotopies can be reduced to ordinary homotopies.” ¤

Using the same techniques, the statement extends to stable homotopies of

(stable) involutions.
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5. Linearization of cyclic loops

5.1. Let v be a cyclic formal variable, and take V =
∑

n∈N v
nen,n. Furt-

hermore, take G(θ, v) =
[
1N

V−1C(θ)V

]
and G†(θ, v) =

[
1N

V−1C(θ)†V

]
. For a ∈

A[z−1, z], we define

U(a, θ, v) = δt,1a(v)e00 + δt,−1a(−v)e00 + G(θ, v)U(a)G†(θ, v).

5.2. For n > 0, this definition yields

U(zn, θ, v)

=




. . .

1

s tsv t2sv2 · · · tn−1svn−1 tnvn

−tv−1 s2 ts2v · · · tn−2s2vn−2 tn−1svn−1

. . .
. . .

. . .
...

...
. . .

. . . ts2v t2sv2

. . . s2 tsv

−tv−1 s

1
. . .




,

U(1, θ, v) = 1Z, and U(z−n, θ, v) = U(zn, θ, v−1)>; i.e. U(zn, θ, v) is just a rather

nice perturbation / deformation of U(zn).

Lemma 5.3. The continuous map

U : A[z−1, z]× S1 → WZ(A) +KZ(A)[v−1, v]

defined by

a, θ 7→ U(a, θ, v)

is smooth in θ. It yields a family of homomorphisms with fixed θ. The symbols

remain constant. For θ = 0,

U(a, 0, v) =

[
W(a>) Y(a>)
Y(a) W(a)

]
= U(a);
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while for θ = π/2,

U(a, π/2, v) =




W(a>) −vY(a>)
a(v)

−v−1Y(a) W(a)


 .

Proof. This is immediate from 5.2 by taking linear combinations. ¤

Considering a ∈ U(A), and the natural extension to the unit group,

U(a, π/2, v) = EZ(a(v))Λ(v,Q)Û(a)Λ(v,Q)−1 can be written.

Proposition 5.4 (⇒ Statement 1.2). The continuous map

K : U(A[z−1, z])× S1 → U(KZ(A)[v−1, v]po)

defined by

a, θ 7→ K(a, θ, v) = U(a, θ, v)Λ(v,Q)U(a, θ, 1)−1Λ(v,Q)−1

is smooth in the variable θ. Here

K(a, 0, v) = Λ(v,B(a))Λ(v,Q)−1, K(a, π/2, v) = EZ(a(v)a(1)
−1).

Proof. The statement follows immediately from the previous lemma. ¤
Remark 5.5. When it comes to the linearization of not pointed loops but the

“cocycle” a(z)a(w)−1, then one can use the linearizing “cocycle” Kc(a, θ, z,w) =

U(a, θ, z)Λ(zw−1,Q)U(a, θ,w)−1. It yields Kc(a, 0, z,w) = Λ(zw−1,B(a)) and

Kc(a, π/2, z,w) = EZ(a(z)a(w)−1). Then K(a, θ, v) = Kc(a, θ, z, 1)Λ(z,Q)−1.

It is notable that loops which are already linear will remain constant but sta-

bilized: If a(z) = Λ(z, Q̃) then Kc(a, θ, z,w) = Diag(. . . , zw−1|Λ(zw−1, Q̃), 1 . . . ),

independently from θ. Similarly, rapidly decreasing perturbations of a linear loop

will linearize through rapidly decreasing perturbations of that linear loop.

Remark 5.6. For a locally convex algebra A we can define

K0(A) = πsmooth
0 (Invol(Q+KZ(A))),

the smooth path components of the involutions, which are perturbations of Q.

Similarly, one can define

K1(A) = πsmooth
0 (U(KZ(A))).

Now B, by this linearization argument, induces an isomorphism

B∗ : K1(A[z
−1, z]po) → K0(A).

This is the “hard part” of Bott periodicity in the complex case, when geometric

loops can be represented by cyclic loops.
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6. The contractibility of the pointed stable Toeplitz unit group

When we extend the stabilization procedure of Proposition 4.1 to Toeplitz

algebras, the symbol suddenly appears in the result:

Proposition 6.1. The continuous map

T : TN(A)× S1 → WN(A) +KN(A)[v−1, v] ⊂ TN(A)[v−1, v]

defined by

A, θ 7→ T (A, θ, v) = δt,1a(v)e0,0 + δt,−1a(−v)e0,0 + V−1C(θ)VAV−1C(θ)†V,

where a = σ(A), is smooth in the variable θ. It yields a family of homomorphisms

of TN(A) to TN(A)[v−1, v]. The map leaves the symbol invariant. For θ = 0,

T (A, 0, v) = A =



a11 a12 · · ·
a21 a22 · · ·
...

...
. . .


 ;

but for θ = ±π/2,

T (A,±π/2, v) =




a(±v)

a11 a12 · · ·
a21 a22 · · ·
...

...
. . .



.

Proof. It follows from direct inspection of the matrices in question. ¤

As a corollary we obtain

Proposition 6.2. The map Z : U(TN(A))×S1 → U(KN(A)[v−1, v]po) defined

by A, θ 7→ Z(A, θ, v) = T (A, θ, v)T (A, θ, 1)−1 is smooth in θ. For θ = 0 it yields

Z(A, 0, v) = 1N, but for θ = ±π/2 it yields Z(A,±π/2, v) = EN(a(±v)a(1)−1).

Consequently, the symbols a(z) of invertible Toeplitz algebra elements are

stably homotopic to constant loops a(1). If A = KN(S), then (according to

Corollary 4.2) stable homotopy implies the existence of ordinary homotopies. ¤

6.3. Suppose that Q is an involution, and k ∈ A. We will use the short-

hand notation k+Q = 1
2 (k + QkQ), k++

Q = 1+Q
2 k 1+Q

2 , k+−
Q = 1+Q

2 k 1−Q
2 , k−+

Q =
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1−Q
2 k 1+Q

2 . Let us define

L(Q, k) = W(Λ(z, Q))kW(Λ(z−1, Q)) =




k++
Q k+−

Q

k−+
Q k+Q k+−

Q

k−+
Q k+Q

. . .

. . .
. . .



.

This is a homomorphism in k, and we can extend it to k̃ = 1+k by L(Q, k̃) = 1N+

L(Q, k). Notice that in this case, k̃L(Q, k̃−1) has symbol k̃Λ(z, Q)k̃−1Λ(z, Q)−1.

6.4. Assume that Q = Q and k ∈ TZ(S). Set

L̃(k) =




. . .
. . .

. . . k+Q k−+
Q

k+−
Q k+Q k−+

Q e00 k−+
Q e10 k−+

Q e20 · · ·
e00k

+−
Q e00k

++
Q e00 e00k

++
Q e10 e00k

++
Q e20 · · ·

e01k
+−
Q e01k

++
Q e00 e01k

++
Q e10 e01k

++
Q e20 · · ·

e02k
+−
Q e02k

++
Q e00 e02k

++
Q e10 e02k

++
Q e20 · · ·

...
...

...
...

. . .




.

What happens here, compared to L(Q, k), is the following: We inflated the first

row and column to infinitely many rows and columns, and reordered the matrix.

Again, this is a homomorphism in k, and we can extend it to k̃ ∈ 1Z + TZ(S) by

taking L̃(k̃) = 1Z×Z + L̃(k). Assume now that k̃ ∈ U(TZ(S)), and the symbol of

its lower right quadrant is a(z). Consider

U(Λ(z,Q))L̃(k̃)Λ(k̃−1,QTZ(S))U(k̃Λ(z,Q)
−1k̃−1)

=




. . .
. . .
1−Q
2

1+Q
2

1−Q
2

1+Q
2
. . .

. . .



L̃(k̃)




. . .
. . .
1+Q
2

1−Q
2

k̃ 1+Q
2 k̃ 1−Q

2
. . .

. . .



k̃−1.

From the observation L̃(k̃)Λ(k̃−1,QTZ(S)) ∈ U(TZ(KZ(S))), and a careful exami-

nation of the matrix product, we find that the resulting expression is of shape[
1N

N(k̃)

]
∈ U(TZ(KZ(S))); where we introduced the notation N(k̃) for the lo-

wer right quadrant. Then the component N(k̃) ∈ U(TN(KZ(S))) has symbol

Λ(z,Q)EZ(a(z))k̃Λ(z,Q)−1k̃−1=EZ(a(z))Λ(z,Q)k̃Λ(z,Q)−1k̃−1. Let us set G(a)=

N(U(a)). This yields
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Proposition 6.5. The continuous map G : U(S[z−1, z]) → U(TN(KZ(S))) is

such that the symbol of G(a) is EZ(a(z))Λ(z,Q)U(a)Λ(z,Q)−1U(a)−1. ¤
Now, according to Proposition 6.2 and Corollary 4.4, the mere existence

of the map above implies that the symbol EZ(a(z))Λ(z,Q)U(a)Λ(z,Q)−1U(a)−1

is homotopic to 1Z for a(z) ∈ U(A[z−1, z]po). Hence, Proposition 6.5 can be

considered as a reformulation of linearizability.

Proposition 6.6 (⇒ Statement 1.3). The unit group U(TN(KZ(S))po) is

smoothly contractible.

Proof. We prove the statement up to stabilization. Then stabilization can

be removed according to Corollary 4.4.

(a) First, consider any element A ∈ U( TN(KZ(S))po). According to Propo-

sition 6.2, its symbol a is (stably) homotopic to the constant loop 1. Applying

Proposition 6.5 to this homotopy, we see that it is sufficient to prove that Toeplitz

units with symbol U(a)Λ(z,Q)U(a)−1Λ(z,Q)−1 can be contracted.

(b) Consider, again, A as above. Let

Q =

[
−1Z

Q

]
=




−1N
−1N

−1N
1N


 ;

here the double lines show how we decompose this block matrix of Z×Z matrices

to a block matrix of N× N matrices. Furthermore, let

S(θ) =




s −t

1

1

t s







1N
1N

W(a>) Y(a>)
Y(a) W(a)







1N
W(a−1) Y(a−1)

Y((a−1)>) W((a−1)>)
1N







1N
A

1N
A−1







s t

1

1

−t s




∈ U(K{1,2}×Z(S)),

and take S(θ)L(Q,S(θ)−1) ∈ U(TN(K{1,2}×Z(S))). This yields a homotopy bet-

ween S(0)L(Q,S(0)−1) and S(π/2)L(Q,S(π/2)−1), which have symbols

S(0)Λ(z, Q)S(0)−1Λ(z, Q)−1 =

[
1Z

U(a)Λ(z,Q)U(a)−1Λ(z,Q)−1

]
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and

S(π/2)Λ(z, Q)S(π/2)−1Λ(z, Q)−1 =

[
1Z

1Z

]
,

respectively. Thus, Toeplitz units with symbol Λ(z−1,Q)U(a)Λ(z,Q)U(a)−1 can

be deformed to Toeplitz units with trivial symbols. According to part (a), it is

sufficient to show that elements with trivial symbol can be contracted.

(c) Now suppose that the symbol of a Toeplitz unit A is 1. According to stan-

dard stabilization arguments, we can assume that A = EN(k̃), where k̃ =
[
k0

1N

] ∈
U(KZ(S)). Let k̃(θ) =

[
s t
−t s

] [
k̃0

1N

]
[ s −t
t s ]. Then k̃(θ)L(Q, k̃(θ))−1 yields a ho-

motopy between k̃(0)L(Q, k̃(0))−1 = EN(k̃)=A and k̃(π/2)L(Q, k̃(π/2))−1 =1.

¤

Remark 6.7. If the locally convex algebra A is strong in the terminology

of in [5], i.e. for all seminorm p there is a seminorm p̃ such that p(X1 . . . Xn) ≤
p̃(X1) . . . p̃(Xn) holds for all n, then the proof can be much simplified: In that case,

the associated algebras are also strong, and the smooth homotopy lifting property

holds for the symbol map. Then, using Proposition 6.2, the proof of the contrac-

tibility statement reduces to point (c) immediately, hence making points (a) and

(b), and the construction of 6.4 unnecessary. One must note that Proposition 6.6

above is much easier to prove than Kuiper’s Theorem about the contractibility

of the unitary group. See, e.g. [9]. Stabilization was an important assumption in

the previous statement. For example, U( TN(C)po) is not contractible, as it allows
an extended, multiplicative determinant.

7. Possible modifications

Due to the nice properties of U(a, θ, v), Statement 1.4 can be seen in a rather

straightforward manner. We remark that another such category is the category

of Hilbert–Schmidt operators, used by Pressley and Segal, [8], Ch. 6. Further-

more, with some extra work, the transformation parameter θ (i.e. s and t jointly)

can be replaced by t entirely, extending the constructions as formal homotopies.

8. Algebraically finite cyclic loops

A practical disadvantage of B(a) is that it is, in general, an infinite per-

turbation of Q. The exception is when a ∈ U(A[z−1, z]f), but this is a rather
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restrictive condition from geometrical viewpoint. We will show below that we

can do well also in the case when a can be represented by finite loops but it is

not in U(A[z−1, z]f).

8.1. For m ≤ 0 ≤ n, we say that the loop a(z) ∈ U(A[z−1, z]) is an

L(m,n)-finite loop if a(z) =
∑

m≤j≤n ajz
k. A loop a(z) is an R(m,n)-finite

loop if its inverse a(z)−1 is an L(−n,−m)-finite loop. For a finite sequence

F = {(mj , nj)}1≤j≤s, let

AF = {(as, . . . , a1) : aj ∈ U(A[z−1, z]) is L(mj , nj) or R(mj , nj)-finite}.

We say that a ∈ U(A[z−1, z] is algebraically finite of type F if a = as . . . a1 for an

element (as, . . . , a1) ∈ AF .

8.2. For m ≤ 0 ≤ n, we say that a matrix A is an L(m,n)-perturbation of

A0 if

A = A0 +
∑

m≤i≤n, j∈Z
ai,jei,j ,

for ai,j chosen suitably. Similarly, we can define R(m,n)-perturbations by interc-

hanging the role of i and j in the expression above. An (m,n)-perturbation is a

matrix which is both an L(m,n)-perturbation and an R(m,n)-perturbation.

In what follows, we will always be concerned with perturbations of Λ(s,Q),

where s is equal to 1, −1, or another formal variable v. Both L(m,n)-perturbations

and R(m,n)-perturbations of Λ(s,Q) can be reduced to (m,n)-perturbations by

taking direct cut-offs of unwanted matrix elements:




s

L− M L+

1


 R(m,n)−−−−→



s

M

1


 R(m,n)←−−−−



s R−

M

R+ 1


 .

The reduction R(m,n) is essentially taking away the off-diagonal elements of

a triangular block matrix (with respect to an appropriate ordering of the basis).

Sometimes it is practical to use the partial reduction R
[h]
(m,n) = (1−h)Id+hR(m,n),

where h is assumed to be a scalar variable. Here the off-diagonal blocks are

not taken away completely but multiplied by 1 − h. It is useful to notice that

(partial) reduction is a homomorphism as long as we restrict our attention to

matrices of appropriate block triangular shape. In particular, invertible elements

/ involutions are reduced to invertible elements / involutions.
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8.3. The involutions Q and Q̄ are unipotently related if 1
2 (QQ̄ + Q̄Q) = 1

holds. In this case the expression C(Q̄,Q) = 1+Q̄Q
2 satisfies the identities

C(Q̄,Q)−1 = C(Q, Q̄) and C(Q̄,Q)QC (Q̄,Q)−1 = Q̄.

More generally, C(Q̄,Q, h) = (1− h)1 + h 1+Q̄Q
2 satisfies the identities

C(Q̄,Q, h)−1 = C(Q, Q̄, h) and C(Q̄,Q, h)QC (Q̄,Q, h)−1 = (1− h)Q+ hQ̄.

This situation applies when, in the manner of the previous paragraph, an

involution Q is reduced to an involution Q̄.

Lemma 8.4. If a(z) =
∑

m≤j≤n ajz
k, m ≤ 0 ≤ n, then U(a, θ, v) is an

(m,n)-perturbation of U(a).

Proof. This is immediate from 5.2. ¤

Lemma 8.5. Suppose that A is an (m′, n′)-perturbation of Λ(s,Q), where

m′ ≤ 0 ≤ n′. Then we claim:

If a is an L(m,n)- or R(m,n)-finite loop, then U(a, θ1, v)AU(a, θ2,w)
−1 is

an L(m+m′, n+ n′)- or R(m+m′, n+ n′)-perturbation of Λ(s,Q), respectively.

Proof. The L case: Let k > n + n′ and h = s if k < m +m′. The special

shape of the matrices implies

e>k U(a, θ1, v)A =

( ∑

m≤j≤n

aje
>
k−j

)
A = h

∑

m≤j≤n

aje
>
k−j = he>k U(a, θ2,w),

from which e>k U(a, θ1, v)AU(a, θ2,w)
−1 = he>k = e>k Λ(s,Q). This latter equality,

which holds for appropriate k, is exactly the statement of having an L(m+m′, n+
n′)-perturbation of Λ(s,Q). The R case is similar. ¤

8.6. Next, we construct a linearization procedure which linearizes algebra-

ically finite loops into finite perturbations: Let F = {(mj , nj)}1≤j≤s be a finite-

ness type, ã = (as, . . . , a1) ∈ AF , and a = as . . . a1. Set Mk = m1 + · · · + mk,

Nk = n1 + · · · + nk. Let |F | = (Ms, Ns). Also, let ãk = (ak, . . . , a1), with

appropriate finiteness type Fk. Then |Fk| = (Mk, Nk). We define

BF (ã) = R|Fs|
(
U(as) . . .R|F1|

(
U(a1)QU(a1)

−1
)
. . .U(as)

−1
)
.

Then BF (ã) is an involution, and an |F |-perturbation of Q. More generally, let
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Kc
F (ã, θ, v,w) = R|Fs|

(
U(as, θ, v) . . .

. . .R|F1|
(
U(a1, θ, v)Λ(vw

−1,Q)U(a1, θ,w)
−1

)
. . . U(as, θ,w)

−1
)
.

Then, in particular, Kc
F (ã, 0, v,w) = Λ(vw−1,BF (ã)), and Kc

F (ã, π/2, v,w) =

EZ(a(z))Λ(vw−1,Q)EZ(a(w)−1); which are immediate from the special shape of

the matrices involved. This yields

Proposition 8.7. The continuous map

KF : AF × S1 → U(KZ(A)[v−1, v]po)

defined by

ã, θ 7→ KF (ã, θ, v) = Kc
F (ã, θ, v, 1)Λ(v,Q)

−1

is smooth in the variable θ; and it is an |F |-perturbation of 1Z. Here

KF (ã, 0, v) = Λ(v,BF (ã))Λ(v,Q)
−1, KF (ã, π/2, v) = EZ(a(v)a(1)

−1).

In particular, as S1 is restricted to [0, π/2], it yields a linearizing homotopy

of a(z)a(1)−1 in the finite perturbation category. ¤

In the literature one finds comments about the possibly very large size of the

matrices used in linearizing homotopies. The result above, however, shows the

one can do reasonably well.

8.8. There is, however, a closer analogy between the non-finite and the

finite cases: Let Q0 = Q, and Qk = R|Fk|(U(ak)Qk−1U(ak)
−1) by recursion.

Then Qk = BFk
(ãk). Using the notation

∏s
i=1 xi = xn . . . x2x1, let

UF (ã) =

s∏

i=1

U(ai) +QiU(ai)Qi−1

2
=

s∏

i=1

C
(
Qi,U(ai)Qi−1U(ai)

−1
)
U(ai).

According to our earlier observations,

BF (ã) = UF (ã)QUF (ã)
−1.

We also define

UF (ã, θ, v) = R|Fs|
(
U(as, θ, v) . . .R|F1|

(
U(a1, θ, v)U(a1)

−1
)
. . .U(as)

−1
)
UF (ã),

and

ÛF (ã) = R|Fs|
(
Û(as) . . .R|F1|

(
Û(a1)U(a1)

−1
)
. . .U(as)

−1
)
UF (ã).
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Then UF (ã, 0, v) = UF (ã), which is trivial; and, analogously to the origi-

nal situation, UF (ã, π/2, v) = EZ(a(z))Λ(v,Q)ÛF (ã)Λ(v,Q)
−1, which follows from

Λ(v,BF (ã))
−1 = UF (ã)Λ(v,Q)

−1UF (ã)
−1 and the homomorphism property of re-

duction. In fact,

Kc
F (ã, θ, v,w) = UF (ã, θ, v)Λ(vw

−1,Q)UF (ã, θ,w)
−1

holds. Again, this follows from Λ(vw−1,BF (ã)) = UF (ã)Λ(vw
−1,Q)UF (ã)

−1 and

the homomorphism property of reduction.

8.9. The constructions above can be expounded in order to show that the

linearizations K and KF can nicely be deformed into each other: Let

UF (ã, h) =

s∏

k=1

(
(1− h)U(ak) + hUFk

(ãk)UFk−1
(ãk−1)

−1
)
.

Here the product terms can also be written as C(Qk,U(ak)Qk−1U(ak)
−1, h)U(ak),

which makes invertibility clear. Then UF (ã, 0) = U(a), UF (ã, 1) = UF (ã). Let

BF (ã, h) = UF (ã, h)QUF (ã, h)
−1.

Notice that BF (ã, 0) = B(a), BF (ã, 1) = BF (ã). Let

UF (ã, h, θ, v) =
s∏

k=1

(
(1− h)U(ak, θ, v) + hUFk

(ãk, θ, v)UFk−1
(ãk−1, θ, v)

−1
)

=

s∏

k=1

R
[h]
|Fk|

(
U(ak, θ, v) . . .R|F1|

(
U(a1, θ, v)U(a1)

−1
)
. . .U(ak)

−1
)

C(Qk,U(ak)Qk−1U(ak)
−1, h)U(ak)

R|Fk−1|
(
U(ak−1, θ, v) . . .R|F1|

(
U(a1, θ, v)U(a1)

−1
)
. . .U(ak−1)

−1
)−1

.

Again, the latter product form implies not only invertibility but that the inverses

of the product terms are linear in h. In particular, it yields that the inverse is

UF (ã, h, θ, v)
−1 =

∏s
k=1(1 − h)U(ak, θ, v)

−1 + hUFk−1
(ãk−1, θ, v)UFk

(ãk, θ, v)
−1.

This also shows that UF (ã, h, θ, v)
−1 is polynomial in h. We also define

ÛF (ã, h) =

s∏

k=1

(
(1− h)Û(ak) + hÛFk

(ãk)ÛFk−1
(ãk−1)

−1
)
.
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One can see that the identities UF (ã, h, 0, v) = UF (ã, h) and UF (ã, h, π/2, v) =

EZ(a(z))Λ(v,Q)ÛF (ã, h)Λ(v,Q)
−1 hold. Furthermore, UF (ã, 0, θ, v) = U(a, θ, v),

UF (ã, 1, θ, v) = UF (ã, θ, v), and ÛF (ã, 0) = Û(a), ÛF (ã, 1) = ÛF (ã). We define

Kec
F (ã, h, θ, v,w) = UF (ã, h, θ, v)Λ(vw

−1,Q)UF (ã, h, θ,w)
−1.

From the earlier observations, the identities Kec
F (ã, h, 0, v,w) = Λ(vw−1,BF (ã, h))

and Kec
F (ã, h, π/2, v,w) = EZ(a(v))Λ(vw−1,Q)EZ(a(w))−1 follow. Furthermore,

Kec
F (ã, 0, θ, v,w) = Kc(a, θ, v,w) and Kec

F (ã, 1, θ, v,w) = Kc
F (ã, θ, v,w).

This yields

Proposition 8.10 (⇒ Statement 1.5). The continuous map

Ke
F : AF × R× S1 → U(KZ(A)[v−1, v]po)

defined by

ã, h, θ 7→ Ke
F (ã, h, θ, v) = Kec

F (ã, h, θ, v, 1)Λ(v,Q)−1

is smooth in θ and polynomial in h. It has the properties

(i) Ke
F (ã, 0, θ) = K(a, θ);

(ii) Ke
F (ã, 1, θ) = KF (ã, θ);

(iii) Ke
F (ã, h, 0) = Λ(v,BF (ã, h)Λ(v,Q)

−1;

(iv) Ke
F (ã, h, π/2) = EZ(a(z)a(1)−1).

In particular, it connects the pullback homotopy K|AF and homotopy KF

through other linearizing homotopies. ¤
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