Schur power convexity of Stolarsky means

By ZHEN-HANG YANG (Hangzhou)

Abstract

In this paper, the Schur convexity is generalized to Schur f-convexity, which contains the Schur geometrical convexity, Schur harmonic convexity and so on. When $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ is defined by $f(x)=\left(x^{m}-1\right) / m$ if $m \neq 0$ and $f(x)=\ln x$ if $m=0$, the necessary and sufficient conditions for f-convexity (is called Schur m-power convexity) of Stolarsky means are given, which generalized and unified certain known results.

1. Introduction and main results

Let $p, q \in \mathbb{R}$ and $a, b \in \mathbb{R}_{+}:=(0, \infty)$ with $a \neq b$. The so-called Stolarsky means $S_{p, q}(a, b)$ are defined by

$$
S_{p, q}(a, b)= \begin{cases}\left(\frac{q\left(a^{p}-b^{p}\right)}{p\left(a^{q}-b^{q}\right)}\right)^{\frac{1}{p-q}} & \text { if } p q(p-q) \neq 0 \tag{1.1}\\ \left(\frac{a^{p}-b^{p}}{p(\ln a-\ln b)}\right)^{\frac{1}{p}} & \text { if } p \neq 0, q=0 \\ \left(\frac{a^{q}-b^{q}}{q(\ln a-\ln b)}\right)^{\frac{1}{q}} & \text { if } q \neq 0, p=0 \\ \exp \left(\frac{a^{p} \ln a-b^{p} \ln b}{a^{p}-b^{p}}-\frac{1}{p}\right) & \text { if } p=q \neq 0 \\ \sqrt{a b} & \text { if } p=q=0\end{cases}
$$

Mathematics Subject Classification: Primary: 26B25, 26E60; Secondary: 26D15, 26D99. Key words and phrases: Schur convexity, Schur f-convexity, Schur power convexity, Stolarsky means.
This paper is in final form and no version of it will be submitted for publication elsewhere.

Also, $S_{p, q}(a, a)=a$. It is known that the Stolarsky means $S_{p, q}(a, b)$ are C^{∞} function on the domain $\left\{(p, q, a, b): p, q \in \mathbb{R}, a, b \in \mathbb{R}_{+}\right\}$(see [19, Lemma 1]), and obviously symmetric with respect to a, b and p, q.

Most of the classical two variable means are special cases of $S_{p, q}(a, b)$, for example, $S_{1,2}=A$ is the arithmetic means, $S_{0,0}=G$ is the geometric mean, $S_{-1,-2}=H$ is the harmonic mean, $S_{1,0}=L$ is the logarithmic mean, $S_{1,1}=I$ is the identric mean (exponential mean), and more generally, the r-th power mean is equal to $S_{r, 2 r}$. The basic properties of Stolarsky means, as well as their comparison theorems, log-convexity, and inequalities were studied in papers [3], [8], [12], [15], [16], [18], [19], [20], [23], [24], [25], [26], [27], [28], [36], [37], [42], [43], [44], [46], [47].

Schur convexity was introduced by Schur in 1923 [21], and it has many important applications in analytic inequalities [2], [11], [49], linear regression [35], graphs and matrices [7], combinatorial optimization [14], information-theoretic topics [9], Gamma functions [22], stochastic orderings [32], reliability [13], and other related fields.

In recent years, the Schur convexity and Schur geometrical convexity of $S_{p, q}(a, b)$ have attracted the attention of a considerable number of mathematicians [4], [5, 17], [29], [30], [31], [33]. Qi [30] first proved that the Stolarsky means $S_{p, q}(a, b)$ are Schur convex on $(-\infty, 0] \times(-\infty, 0]$ and Schur concave on $[0, \infty) \times[0, \infty)$ with respect to (p, q) for fixed $a, b>0$ with $a \neq b$. Yang [45] improved Qi's result and proved that Stolarsky means $S_{p, q}(a, b)$ are Schur convex with respect to (p, q) for fixed $a, b>0$ with $a \neq b$ if and only if $p+q<0$ and Schur concave if and only if $p+q>0$.

Qi et al. [29] tried to obtain the Schur convexity of $S_{p, q}(a, b)$ with respect to (a, b) for fixed (p, q) and declared an incorrect conclusion. SHi et al. [33] observed that the above conclusion is wrong and obtained a sufficient condition for the Schur convexity of $S_{p, q}(a, b)$ with respect to (a, b). Chu and Zhang [5] improved Shi's results and gave a necessary and sufficient condition. This perfectly solved the Schur convexity of Stolarsky means with respect to (a, b).

The Schur geometrical convexity was introduced by Zhang [50], and there has many interesting results [10], [34], [39], [40]. For the Schur geometrical convexity of Stolarsky means $S_{p, q}(a, b)$, Chu and Zhang [4] proved that they are Schur geometrically convex with respect to $(a, b) \in \mathbb{R}_{+}^{2}$ if $p+q \geq 0$ and Schur geometrically concave if $p+q \leq 0$. Li et al. [17] also investigated the Schur geometrical convexity of generalized exponent mean $I_{p}(a, b)$. In 2010, a necessary and sufficient condition for Schur geometrical convexity of the four-parameter
means with respeto to a pair of parameters was given in [48]. This give a unified treatment for Schur geometrical convexity of Stolarsky and Gini means.

Recently, Anderson et al. [1] discussed an attractive class of inequalities, which arise from the notation of harmonic convexity. And then it was started to research for Schur harmonic convexity. Chu et al. [6] showed that the Hamy symmetric function is Schur harmonic convex and obtained some analytic inequalities including the well-known Weierstrass inequalities. XiaO [41] proved that the Lehmer mean values $L_{p}(a, b)$ are Schur harmonic convex (Schur harmonic concave) with respect to $(a, b) \in \mathbb{R}_{+}^{2}$ if and only if $p \geq(\leq) 0$.

The purpose of this paper is to generalize the notion of Schur convexity and investigated the so-called Schur power convexity of Stolarsky means $S_{p, q}(a, b)$. Our main results are as follows.

Theorem 1. For $m>0$ and fixed $(p, q) \in \mathbb{R}^{2}$, Stolarsky mean $S_{p, q}(a, b)$ is Schur m-power convex with respect to $(a, b) \in \mathbb{R}_{+}^{2}$ if and only if $p+q \geq 3 m$ and $\min (p, q) \geq m$.

Theorem 2. For $m>0$ and fixed $(p, q) \in \mathbb{R}^{2}$, Stolarsky mean $S_{p, q}(a, b)$ is Schur m-power concave with respect to $(a, b) \in \mathbb{R}_{+}^{2}$ if and only if $p+q \leq 3 m$ and $\min (p, q) \leq m$.

Theorem 3. For $m<0$ and fixed $(p, q) \in \mathbb{R}^{2}$, Stolarsky mean $S_{p, q}(a, b)$ is Schur m-power convex with respect to $(a, b) \in \mathbb{R}_{+}^{2}$ if and only if $p+q \geq 3 m$ and $\max (p, q) \geq m$.

Theorem 4. For $m<0$ and fixed $(p, q) \in \mathbb{R}^{2}$, Stolarsky mean $S_{p, q}(a, b)$ is Schur m-power concave with respect to $(a, b) \in \mathbb{R}_{+}^{2}$ if and only if $p+q \leq 3 m$ and $\max (p, q) \leq m$.

Theorem 5. For $m=0$ and fixed $(p, q) \in \mathbb{R}^{2}$, Stolarsky mean $S_{p, q}(a, b)$ is Schur m-power convex (Schur m-power concave) with respect to $(a, b) \in \mathbb{R}_{+}^{2}$ if and only if $p+q \geq(\leq) 0$.

The organization of the paper is as follows. In Section 2, based on the notion and lemmas of Schur convexity, we introduce the definition of Schur f-convex and Schur f-concave function, and prove decision theorem for Schur f-convexity. As a special case, the definition and decision theorem of Schur power convexity are deduced. In Section 3, some lemmas are given. In Section 4, our main results are proved.

2. Schur f-convexity and Schur power convexity

For convenience of readers, we recall some definitions as follows.
Definition $1([21],[38])$. Let $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $\mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in$ $\mathbb{R}^{n}(n \geq 2)$.
(i) x is said to by majorized by y (in symbol $\mathbf{x} \prec \mathbf{y}$) if

$$
\begin{equation*}
\sum_{i=1}^{k} x_{[i]} \leq \sum_{i=1}^{k} y_{[i]} \quad \text { for } 1 \leq k \leq n-1, \quad \sum_{i=1}^{n} x_{[i]}=\sum_{i=1}^{n} y_{[i]} \tag{2.1}
\end{equation*}
$$

where $x_{[1]} \geq x_{[2]} \cdots \geq x_{[n]}$ and $y_{[1]} \geq y_{[2]} \cdots \geq y_{[n]}$ are rearrangements of \mathbf{x} and \mathbf{y} in a decreasing order.
(ii) $\mathbf{x} \geq \mathbf{y}$ means $x_{i} \geq y_{i}$ for all $i=1,2, \ldots, n$. Let $\Omega \subseteq \mathbb{R}^{n}(n \geq 2)$. The function $\phi: \Omega \rightarrow \mathbb{R}$ is said to be increasing if $\mathbf{x} \geq \mathbf{y}$ implies that $\phi(\mathbf{x}) \geq \phi(\mathbf{y}) . \phi$ is said to be decreasing if and only if $-\phi$ is increasing.
(iii) $\Omega \subseteq \mathbb{R}^{n}$ is called a convex set if $\left(\alpha x_{1}+\beta y_{1}, \ldots, \alpha x_{n}+\beta y_{n}\right) \in \Omega$ for all \mathbf{x}, \mathbf{y} and all $\alpha, \beta \in[0,1]$ with $\alpha+\beta=1$.
(iv) Let $\Omega \subseteq \mathbb{R}^{n}(n \geq 2)$ be a set with nonempty interior. Then $\phi: \Omega \rightarrow \mathbb{R}$ is said to be Schur convex if $\mathbf{x} \prec \mathbf{y}$ on Ω implies that $\phi(\mathbf{x}) \leq \phi(\mathbf{y}) . \phi$ is said to be Schur concave if $-\phi$ is Schur convex.

Definition 2 ([21]). (i) $\Omega \subseteq \mathbb{R}^{n}(n \geq 2)$ is called symmetric set, if $\mathbf{x} \in \Omega$ implies that $\mathbf{x P} \in \Omega$ for every $n \times n$ permutation matrix \mathbf{P}.
(ii) The function $\phi: \Omega \rightarrow \mathbb{R}^{n}$ is called symmetric if for every permutation $\operatorname{matrix} \mathbf{P}, \phi(\mathbf{x P})=\phi(\mathbf{x})$ for all $\mathbf{x} \in \Omega$.

For the Schur convexity, there is the following well-known result.
Lemma 1 ([21], [38]). Let $\Omega \subseteq \mathbb{R}^{n}$ be a symmetric set with nonempty interior Ω^{0} and $\phi: \Omega \rightarrow \mathbb{R}$ be continuous on Ω and differentiable in Ω^{0}. Then ϕ is Schur convex (Schur concave) on Ω if and only if ϕ is symmetric on Ω and

$$
\begin{equation*}
\left(x_{1}-x_{2}\right)\left(\frac{\partial \phi}{\partial x_{1}}-\frac{\partial \phi}{\partial x_{2}}\right) \geq(\leq) 0 \tag{2.2}
\end{equation*}
$$

Next let us define the Schur f-convexity as follows.
Definition 3. Let $\Omega=\mathbb{U}^{n}(\mathbb{U} \subseteq \mathbb{R})$ and f be a strictly monotone function defined on \mathbb{U}. Denote by

$$
f(\mathbf{x})=\left(f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{n}\right)\right) \quad \text { and } \quad f(\mathbf{y})=\left(f\left(y_{1}\right), f\left(y_{2}\right), \ldots, f\left(y_{n}\right)\right) .
$$

(i) Ω is called a f-convex set if $\left(f^{-1}\left(\alpha f\left(x_{1}\right)+\beta f\left(y_{1}\right)\right), \ldots, f^{-1}\left(\alpha f\left(x_{n}\right)+\right.\right.$ $\left.\left.\beta f\left(y_{n}\right)\right)\right) \in \Omega$ for all $\mathbf{x}, \mathbf{y} \in \Omega$ and all $\alpha, \beta \in[0,1]$ with $\alpha+\beta=1$.
(ii) Let Ω be a set with nonempty interior. Then function $\phi: \Omega \rightarrow \mathbb{R}$ is said to be Schur f-convex on Ω if $f(\mathbf{x}) \prec f(\mathbf{y})$ on Ω implies that $\phi(\mathbf{x}) \leq \phi(\mathbf{y})$.
ϕ is said to be Schur f-concave if $-\phi$ is Schur f-convex.
Remark 1. Let $\Omega=\mathbb{U}^{n}(\mathbb{U} \subseteq \mathbb{R})$ and f be a strictly monotone function defined on \mathbb{U} and $f(\Omega)=\{f(\mathbf{x}): \mathbf{x} \in \Omega\}$. Then function $\phi: \Omega \rightarrow \mathbb{R}$ is Schur f-convex (Schur f-concave) if and only if $\phi \circ f^{-1}$ is Schur convex (Schur concave) on $f(\Omega)$.

Indeed, if function $\phi: \Omega \rightarrow \mathbb{R}$ is Schur f-convex, then $\forall \mathbf{x}^{\prime}, \mathbf{y}^{\prime} \in f(\Omega)$, there are $\mathbf{x}, \mathbf{y} \in \boldsymbol{\Omega}$ such that $\mathbf{x}^{\prime}=f(\mathbf{x}), \mathbf{y}^{\prime}=f(\mathbf{y})$. If $f(\mathbf{x}) \prec f(\mathbf{y})$, that is, $\mathbf{x}^{\prime} \prec \mathbf{y}^{\prime}$, then $\phi(\mathbf{x}) \leq \phi(\mathbf{y})$, that is, $\phi\left(\left(f^{-1}\left(\mathbf{x}^{\prime}\right)\right) \leq \phi\left(\left(f^{-1}\left(\mathbf{y}^{\prime}\right)\right)\right.\right.$. This shows that $\phi \circ f^{-1}$ is Schur convex on $f(\Omega)$. Conversely, if $\phi \circ f^{-1}$ is Schur convex on $f(\Omega)$, then $\forall \mathbf{x}, \mathbf{y} \in \Omega$ such that $f(\mathbf{x}) \prec f(\mathbf{y})$, we have $\phi\left(\left(f^{-1}(f(\mathbf{x}))\right) \leq \phi\left(\left(f^{-1}(f(\mathbf{y}))\right)\right.\right.$, that is, $\phi(\mathbf{x}) \leq \phi(\mathbf{y})$. This indicates ϕ is Schur f-convex on Ω.

In the same way, we can show that ϕ is Schur f-concave on Ω if and only if $\phi \circ f^{-1}$ is Schur concave on $f(\Omega)$.

Remark 2. Let $\Omega \subseteq \mathbb{R}^{n}(n \geq 2)$ be a symmetric set and the function $\phi: \Omega \rightarrow \mathbb{R}$ be Schur f-convex (Schur f-concave). Then ϕ is symmetric on Ω.

In fact, for any $\mathbf{x} \in \Omega$ and every permutation matrix \mathbf{P}, we have $\mathbf{x P} \in \Omega$. Note $\mathbf{x P}$ is another permutation of \mathbf{x}, hence $f(\mathbf{x}) \prec f(\mathbf{x P}) \prec f(\mathbf{x})$. Since ϕ is Schur f-convex (Schur f-concave), we have $\phi(\mathbf{x}) \leq(\geq) \phi(\mathbf{x P}) \leq(\geq) \phi(\mathbf{x})$, that is, $\phi(\mathbf{x} \mathbf{P})=\phi(\mathbf{x})$ for all $\mathbf{x} \in \Omega$. This shows that ϕ is symmetric on Ω.

By Lemma 1 and Remark 1, 2, we have the following
Theorem 6. Assume that $\Omega=\mathbb{U}^{n}(\mathbb{U} \subseteq \mathbb{R})$ is a symmetric set with nonempty interior Ω^{0}, f is a strictly monotone and derivable function defined on \mathbb{U}, and $\phi: \Omega \rightarrow \mathbb{R}$ is continuous on Ω and differentiable in Ω^{0}. Then ϕ is Schur f-convex (Schur f-concave) on Ω if and only if ϕ is symmetric on Ω and

$$
\begin{equation*}
\left(f\left(x_{1}\right)-f\left(x_{2}\right)\right)\left(\frac{1}{f^{\prime}\left(x_{1}\right)} \frac{\partial \phi}{\partial x_{1}}-\frac{1}{f^{\prime}\left(x_{2}\right)} \frac{\partial \phi}{\partial x_{2}}\right) \geq(\leq) 0 \tag{2.3}
\end{equation*}
$$

holds for any $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \Omega^{0}$ with $x_{1} \neq x_{2}$.
Proof. We easily check that $\phi \circ f^{-1}$ is symmetric on $f(\Omega)$ if and only if ϕ is symmetric on Ω.

By Remark 1 and Lemma $1, \phi \circ f^{-1}$ is Schur convex (Schur concave) if and only if $\phi \circ f^{-1}$ is symmetric on $f(\Omega)$ and

$$
\left(y_{1}-y_{2}\right)\left(\frac{\partial\left(\phi \circ f^{-1}\right)}{\partial y_{1}}-\frac{\partial\left(\phi \circ f^{-1}\right)}{\partial y_{2}}\right) \geq(\leq) 0
$$

holds for any $\mathbf{y} \in f(\Omega)^{0}$ with $y_{1} \neq y_{2}$. Substituting $f^{-1}(y)=x$ yields (2.3), where $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \Omega^{0}$ with $x_{1} \neq x_{2}$.

This proof is finished.
Putting $f(x)=1, \ln x, x^{-1}$ in Definition 3 yield the Schur convexity, Schur geometrical convexity and Schur harmonic convexity. It is clear that the Schur f convexity is a generalization of the Schur convexity mentioned above. In general, we have

Definition 4. Let $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ be defined by $f(x)=\left(x^{m}-1\right) / m$ if $m \neq 0$ and $f(x)=\ln x$ if $m=0$. Then function $\phi: \Omega\left(\subseteq \mathbb{R}_{+}^{n}\right) \rightarrow \mathbb{R}$ is said to be Schur m-power convex on Ω if $f(\mathbf{x}) \prec f(\mathbf{y})$ on Ω implies that $\phi(\mathbf{x}) \leq \phi(\mathbf{y})$.
ϕ is said to be Schur m-power concave if $-\phi$ is Schur m-power convex.
For Schur power convexity, by Theorem 6 we have
Corollary 1. Let $\Omega \subseteq \mathbb{R}_{+}^{n}$ be a symmetric set with nonempty interior Ω^{0} and $\phi: \Omega \rightarrow \mathbb{R}$ be continuous on Ω and differentiable in Ω^{0}. Then ϕ is Schur m-power convex (Schur m-power concave) on Ω if and only if ϕ is symmetric on Ω and

$$
\begin{align*}
& \frac{x_{1}^{m}-x_{2}^{m}}{m}\left(x_{1}^{1-m} \frac{\partial \phi}{\partial x_{1}}-x_{2}^{1-m} \frac{\partial \phi}{\partial x_{2}}\right) \geq(\leq) 0 \quad \text { if } m \neq 0 \tag{2.4}\\
& \left(\ln x_{1}-\ln x_{2}\right)\left(x_{1} \frac{\partial \phi}{\partial x_{1}}-x_{2} \frac{\partial \phi}{\partial x_{2}}\right) \geq(\leq) 0 \quad \text { if } m=0 \tag{2.5}
\end{align*}
$$

holds for any $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \Omega^{0}$ with $x_{1} \neq x_{2}$.

3. Lemmas

Lemma 2. For fixed $(p, q) \in \mathbb{R}^{2}$, Stolarsky mean $S_{p, q}(a, b)$ is Schur mpower convex (Schur m-power concave) with respect to $(a, b) \in \mathbb{R}_{+}^{2}$ if and only if $g(t) \geq(\leq) 0$ for all $t>0$, where

$$
g(t)=g_{p, q}(t)= \begin{cases}\frac{(p-q) \sinh A t-p \sinh B t-q \sinh C t}{p q(p-q)} & \text { if } p q(p-q) \neq 0 \tag{3.1}\\ \frac{\sinh (p-m) t+\sinh (p+m) t-2 p t \cosh (p-m) t}{-p^{2}} & \text { if } p \neq 0, q=0 \\ \frac{\sinh (q-m) t+\sinh (q+m) t-2 q t \cosh (q-m) t}{-q^{2}} & \text { if } q \neq 0, p=0 \\ \frac{\sinh (2 p-m) t+\sinh m t-2 p t \cosh m t}{p^{2}} & \text { if } p=q \neq 0, \\ -2 t^{2} \sinh m t & \text { if } p=q=0\end{cases}
$$

and

$$
\begin{equation*}
A=p+q-m, \quad B=p-q-m \quad C=p-q+m \tag{3.2}
\end{equation*}
$$

Proof. Let $m \neq 0$ and $S=S_{p, q}:=S_{p, q}(a, b)$ defined by (1.1).
In the case of $p q(p-q) \neq 0$. We have

$$
\begin{aligned}
\frac{\partial \ln S}{\partial a} & =\frac{1}{S} \frac{\partial S}{\partial a}=\frac{1}{p-q}\left(\frac{p a^{p-1}}{a^{p}-b^{p}}-\frac{q a^{q-1}}{a^{q}-b^{q}}\right) \\
\frac{\partial \ln S}{\partial b} & =\frac{1}{S} \frac{\partial S}{\partial b}=\frac{1}{p-q}\left(\frac{-p b^{p-1}}{a^{p}-b^{p}}-\frac{-q b^{q-1}}{a^{q}-b^{q}}\right)
\end{aligned}
$$

hence,

$$
a^{1-m} \frac{\partial S}{\partial a}-b^{1-m} \frac{\partial S}{\partial b}=\frac{S}{p-q}\left(p \frac{a^{p-m}+b^{p-m}}{a^{p}-b^{p}}-q \frac{a^{q-m}+b^{q-m}}{a^{q}-b^{q}}\right) .
$$

Substituting $\ln \sqrt{a / b}=t$ and using $\sinh x=\frac{1}{2}\left(e^{x}-e^{-x}\right), \cosh x=\frac{1}{2}\left(e^{x}+e^{-x}\right)$, the right hand side above can be written as

$$
\begin{aligned}
a^{1-m} \frac{\partial S}{\partial a}-b^{1-m} \frac{\partial S}{\partial b}= & \frac{S(a b)^{-m / 2}}{p-q}\left(p \frac{\cosh (p-m) t}{\sinh p t}-q \frac{\cosh (q-m) t}{\sinh q t}\right) \\
= & \frac{S}{2(a b)^{m / 2}} \frac{p}{\sinh p t} \frac{q}{\sinh q t} \\
& \cdot 2 \frac{p \cosh (p-m) t \sinh q t-q \cosh (q-m) t \sinh p t}{p q(p-q)}
\end{aligned}
$$

Using the "product into sum" formula for hyperbolic functions and (3.2), we have

$$
\begin{aligned}
\Delta & :=\frac{a^{m}-b^{m}}{m}\left(a^{1-m} \frac{\partial S_{p, q}}{\partial a}-b^{1-m} \frac{\partial S_{p, q}}{\partial b}\right) \\
& =\frac{a^{m}-b^{m}}{m(a-b)} \frac{(a-b) S_{p, q}}{2(a b)^{m / 2}} \frac{p}{\sinh p t} \frac{q}{\sinh q t} \frac{(p-q) \sinh A t-p \sinh B t-q \sinh C t}{p q(p-q)} \\
& =d_{p, q}(t) \cdot g_{p, q}(t),
\end{aligned}
$$

where

$$
\begin{equation*}
d_{p, q}(t)=\frac{a^{m}-b^{m}}{m(a-b)} \frac{(a-b) S_{p, q}}{2(a b)^{m / 2}} \frac{p}{\sinh p t} \frac{q}{\sinh q t} \quad(p q(p-q) \neq 0) \tag{3.3}
\end{equation*}
$$

and $g_{p, q}(t)$ is defined by (3.1).
In the case of $p \neq q=0$. Since $S_{p, q}(a, b) \in C^{\infty}$ we have

$$
\frac{\partial S_{p, 0}}{\partial a}=\lim _{q \rightarrow 0} \frac{\partial S_{p, q}}{\partial a}, \quad \frac{\partial S_{p, 0}}{\partial b}=\lim _{q \rightarrow 0} \frac{\partial S_{p, q}}{\partial b}
$$

$$
\begin{array}{ll}
\frac{\partial S_{p, p}}{\partial a}=\lim _{q \rightarrow p} \frac{\partial S_{p, q}}{\partial a}, & \frac{\partial S_{p, p}}{\partial b}=\lim _{q \rightarrow p} \frac{\partial S_{p, q}}{\partial b} \\
\frac{\partial S_{0,0}}{\partial a}=\lim _{p \rightarrow 0} \frac{\partial S_{p, p}}{\partial a}, & \frac{\partial S_{0,0}}{\partial b}=\lim _{p \rightarrow 0} \frac{\partial S_{p, p}}{\partial b}
\end{array}
$$

It follows that

$$
\begin{aligned}
\Delta & =\frac{a^{m}-b^{m}}{m}\left(a^{1-m} \frac{\partial S_{p, 0}}{\partial a}-b^{1-m} \frac{\partial S_{p, 0}}{\partial b}\right) \\
& =\lim _{q \rightarrow 0}\left(\frac{a^{m}-b^{m}}{m}\left(a^{1-m} \frac{\partial S_{p, q}}{\partial a}-b^{1-m} \frac{\partial S_{p, q}}{\partial b}\right)\right) \\
& =\lim _{q \rightarrow 0}\left(d_{p, q}(t) g_{p, q}(t)\right)=g_{p, 0}(t) \lim _{q \rightarrow 0} d_{p, q}(t)
\end{aligned}
$$

Likewise, in the case of $q \neq p=0$, we have

$$
\Delta=\frac{a^{m}-b^{m}}{m}\left(a^{1-m} \frac{\partial S_{0, q}}{\partial a}-b^{1-m} \frac{\partial S_{0, q}}{\partial b}\right)=g_{0, q}(t) \lim _{p \rightarrow 0} d_{p, q}(t)
$$

In the case of $p=q \neq 0$, we have

$$
\Delta=\frac{a^{m}-b^{m}}{m}\left(a^{1-m} \frac{\partial S_{p, p}}{\partial a}-b^{1-m} \frac{\partial S_{p, p}}{\partial b}\right)=g_{p, p}(t) \lim _{q \rightarrow p} d_{p, q}(t)
$$

In the case of $p=q=0$, we have

$$
\Delta=\frac{a^{m}-b^{m}}{m}\left(a^{1-m} \frac{\partial S_{0,0}}{\partial a}-b^{1-m} \frac{\partial S_{0,0}}{\partial b}\right)=g_{0,0}(t) \lim _{p \rightarrow 0} d_{p, p}(t)
$$

Summarizing all cases above yield

$$
\begin{align*}
\Delta & =\frac{a^{m}-b^{m}}{m}\left(a^{1-m} \frac{\partial S}{\partial a}-b^{1-m} \frac{\partial S}{\partial b}\right) \tag{3.4}\\
& = \begin{cases}g_{p, q}(t) \cdot d_{p, q}(t) & \text { if } p q(p-q) \neq 0 \\
g_{p, 0}(t) \lim _{q \rightarrow 0} d_{p, q}(t) & \text { if } p \neq 0, q=0 \\
g_{0, q}(t) \lim _{p \rightarrow 0} d_{p, q}(t) & \text { if } q \neq 0, p=0 \\
g_{p, p}(t) \lim _{q \rightarrow p} d_{p, q}(t) & \text { if } p=q \neq 0 \\
g_{0,0}(t) \lim _{p \rightarrow 0} d_{p, 0}(t) & \text { if } p=q=0\end{cases} \tag{3.5}
\end{align*}
$$

Since Δ is symmetric with respect to a and b, without loss of generality we assume that $a>b$. It is easy to verify that $\frac{a^{m}-b^{m}}{m(a-b)}>0, \frac{(a-b) S_{p, q}}{2(a b)^{m / 2}}>0$, $\frac{p}{\sinh p t}, \frac{q}{\sinh q t}>0$ if $p q(p-q) \neq 0$ for $t=\ln \sqrt{a / b}>0$, which implies that $d_{p, q}(t)$ and its limits at $(p, q) \in\{(p, q): p q(p-q)=0\}$ are all positive. Thus by Corollary 1 Stolarsky mean $S_{p, q}(a, b)$ is Schur m-power convex (Schur m-power concave) with respect to $(a, b) \in \mathbb{R}_{+}^{2}$ if and only if $\Delta \geq(\leq) 0$ if and only if $g(t)=g_{p, q}(t) \geq(\leq) 0$ for all $t>0$.

It is easy to check that for $m=0$ this lemma is also true.
This Lemma is proved.
Lemma 3. Both the $g(t)=g_{p, q}(t)$ defined by (3.1) and $g^{\prime}(t):=\partial g_{p, q}(t) / \partial t$ are symmetric with respect to p and q, and continuous with respect to (p, q) on \mathbb{R}^{2}.

Proof. Firstly, it is easy to check $g_{p, q}(t)$ is symmetric with respect to p an q. Hence, $\partial g_{q, p}(t) / \partial t=\partial g_{p, q}(t) / \partial t$, which implies that $\partial g_{p, q}(t) / \partial t$ is also symmetric with respect to p and q.

Secondly, by the proof of Lemma 2, it is easy to see that $g(t)=g_{p, q}(t)$ is continuous with respect to (p, q) on \mathbb{R}^{2}.

Lastly, we prove $g^{\prime}(t)=\partial g_{p, q}(t) / \partial t$ is also continuous with respect to (p, q) on \mathbb{R}^{2}.

A simple calculation yields

$$
\begin{gather*}
g^{\prime}(t)=\frac{\partial g_{p, q}(t)}{\partial t} \\
=\left\{\begin{array}{l}
\frac{(p-q) A \cosh A t-p B \cosh B t-q C \cosh C t}{p q(p-q)} \\
\frac{(p+m) \cosh (p+m) t-(p+m) \cosh (p-m) t-2 p(p-m) t \sinh (p-m) t}{-p^{2}} \quad \text { if } p q(p-q) \neq 0, q=0, \\
\frac{(q+m) \cosh (q+m) t-(q+m) \cosh (q-m) t-2 q(q-m) t \sinh (q-m) t}{-q^{2}} \\
\frac{(2 p-m) \cosh (2 p-m) t-(2 p-m) \cosh m t-2 p m t \sinh m t}{p^{2}} \\
\frac{\text { if } p=q \neq 0, p=0,}{} \\
-4 t \sinh m t-2 m t^{2} \cosh m t
\end{array} \quad \text { if } p=q=0 .\right. \tag{3.6}
\end{gather*}
$$

It is obvious that $\partial g_{p, q}(t) / \partial t$ is continuous with respect to $(p, q) \in\{(p, q): p, q \in \mathbb{R}$, $p q(p-q) \neq 0\}$. We have also to verify that $\partial g_{p, q}(t) / \partial t$ is continuous on $(p, q) \in$
$\{(p, 0): p \in \mathbb{R}, p \neq 0\},\{(0, q): q \in \mathbb{R}, q \neq 0\},\{(p, p): p \in \mathbb{R}, p \neq 0\},\{(0,0)\}$. In fact, some simple calculations yield

$$
\begin{array}{ll}
\lim _{q \rightarrow 0} \frac{\partial g_{p, q}(t)}{\partial t}=\frac{\partial g_{p, 0}(t)}{\partial t}, & \lim _{p \rightarrow 0} \frac{\partial g_{p, q}(t)}{\partial t}=\frac{\partial g_{0, q}(t)}{\partial t} \\
\lim _{q \rightarrow p} \frac{\partial g_{p, q}(t)}{\partial t}=\frac{\partial g_{p, p}(t)}{\partial t}, & \lim _{p \rightarrow 0} \frac{\partial g_{p, p}(t)}{\partial t}=\frac{\partial g_{0,0}(t)}{\partial t}
\end{array}
$$

which completes this proof.
Lemma 4. We have

$$
\begin{equation*}
\lim _{t \rightarrow 0, t>0} \frac{3 g(t)}{2 t^{3}}=p+q-3 m \tag{3.7}
\end{equation*}
$$

Proof. It is easy to check that $g(0)=g^{\prime}(0)=g^{\prime \prime}(0)=0$.
In the case of $p q(p-q) \neq 0$. Applying L'Hospital's rule (three times) we have

$$
\begin{align*}
\lim _{t \rightarrow 0, t>0} \frac{3 g(t)}{2 t^{3}} & =\lim _{t \rightarrow 0, t>0} \frac{g^{\prime}(t)}{2 t^{2}}=\ldots \\
& =\frac{(p-q) A^{3}-p B^{3}-q C^{3}}{4 p q(p-q)}=p+q-3 m \tag{3.8}
\end{align*}
$$

In the case of $p q(p-q)=0$. Likewise, some simple calculations also lead to (3.7).

This completes the proof.
Lemma 5. Let $m>0$ and $\beta=\max (|A|,|B|,|C|)$ where A, B, C are defined by (3.2). Then
(i) If $p q(p-q) \neq 0$ and $p>q$, then

$$
\lim _{t \rightarrow \infty} \frac{2 \beta g(t)}{e^{\beta t}}= \begin{cases}\frac{p+q-m}{p q} & \text { if } p>q>m \text { or } q<p<0 \tag{3.9}\\ \frac{p-q-m}{q(p-q)} & \text { if } p>q=m \\ -\frac{p-q+m}{p(p-q)} & \text { if } p>0, q<m, p>q\end{cases}
$$

(ii) If $p \neq q=0$, then

$$
\lim _{t \rightarrow \infty} \frac{2 \beta g(t)}{e^{\beta t}}= \begin{cases}-\infty & \text { if } p<0 \tag{3.10}\\ -(p+m) p^{-2} & \text { if } p>0\end{cases}
$$

(iii) If $p=q \neq 0$, then

$$
\lim _{t \rightarrow \infty} \frac{2 \beta g(t)}{e^{\beta t}}= \begin{cases}(2 p-m) p^{-2} & \text { if } p>m \text { or } p<0 \tag{3.11}\\ -\infty & \text { if } 0<p \leq m\end{cases}
$$

(iv) If $p=q=0$, then

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{2 \beta g(t)}{e^{\beta t}}=-\infty \tag{3.12}
\end{equation*}
$$

Proof. (3.9)-(3.12) easily follow from the following limit relations:

$$
\begin{align*}
\lim _{t \rightarrow \infty} \frac{2 \cosh \alpha t}{e^{\beta t}} & = \begin{cases}1 & \text { if } \beta=|\alpha|, \\
0 & \text { if } \beta>|\alpha| ;\end{cases} \tag{3.13}\\
\lim _{t \rightarrow \infty} \frac{2 \alpha t \sinh \alpha t}{e^{\beta t}} & = \begin{cases}\infty & \text { if } \beta=|\alpha|, \\
0 & \text { if } \beta>|\alpha| .\end{cases} \tag{3.14}
\end{align*}
$$

(i) If $p q(p-q) \neq 0$ and $p>q$, then $\beta=\max (|A|,|B|,|C|)=\max (|A|,|C|)$ because $|C|^{2}-|B|^{2}=4 m(p-q)>0$. By (3.6) and (3.13) we have

$$
\begin{align*}
& p q(p-q) \lim _{t \rightarrow \infty} \frac{2 \beta g(t)}{e^{\beta t}}=p q(p-q) \lim _{t \rightarrow \infty} \frac{2 g^{\prime}(t)}{e^{\beta t}} \\
&=\lim _{t \rightarrow \infty} 2 \frac{(p-q) A \cosh A t-p B \cosh B t-q C \cosh C t}{e^{\beta t}} \\
&= \begin{cases}(p-q) A & \text { if }|A|>|C| \text {, i.e. } p(q-m)>0 \\
(p-q) A-q C & \text { if }|A|=|C|, \text { i.e. } p(q-m)=0 \\
-q C & \text { if }|A|<|C|, \text { i.e. } p(q-m)<0\end{cases} \tag{3.15}
\end{align*}
$$

Taking into account $p q(p-q) \neq 0$ and $p>q$, we obtain
$p q(p-q) \lim _{t \rightarrow \infty} \frac{2 \beta g(t)}{e^{\beta t}}= \begin{cases}(p-q)(p+q-m) & \text { if } p>q>m \text { or } q<p<0, \\ p(p-q-m) & \text { if } p>q=m, \\ -q(p-q+m) & \text { if } p>0, q<m, p>q .\end{cases}$
Divided by $p q(p-q)$ in the above limit relation yields (3.9).
(ii) If $p \neq q=0$, then $\beta=\max (|A|,|B|,|C|)=\max (|p-m|,|p+m|)$. By (3.6) and (3.13), (3.14) we have

$$
\lim _{t \rightarrow \infty} \frac{2 \beta g(t)}{e^{\beta t}}=\lim _{t \rightarrow \infty} \frac{2 g^{\prime}(t)}{e^{\beta t}}
$$

$=\lim _{t \rightarrow \infty} 2 \frac{(p+m) \cosh (p+m) t-(p+m) \cosh (p-m) t-2 p(p-m) t \sinh (p-m) t}{-p^{2} e^{\beta t}}$

$$
= \begin{cases}-\infty & \text { if }|p-m|>|p+m|, \text { i.e. } p<0 \\ -(p+m) p^{-2}>0 & \text { if }|p-m|<|p+m|, \text { i.e. } p>0\end{cases}
$$

(iii) If $p=q \neq 0$, then $\beta=\max (|A|,|B|,|C|)=\max (|2 p-m|, m)$. By (3.6) and (3.13), (3.14) we have

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} \frac{2 \beta g(t)}{e^{\beta t}}=\lim _{t \rightarrow \infty} \frac{2 g^{\prime}(t)}{e^{\beta t}} \\
& \quad=\lim _{t \rightarrow \infty} 2 \frac{(2 p-m) \cosh (2 p-m) t-(2 p-m) \cosh m t-2 p m t \sinh m t}{p^{2} e^{\beta t}} \\
& \quad= \begin{cases}(2 p-m) p^{-2} & \text { if }|2 p-m|>m, \text { i.e. } p>m \text { or } p<0, \\
-\infty & \text { if }|2 p-m|=m, \text { i.e. } p=m, \\
-\infty & \text { if }|2 p-m|<m, \text { i.e. } 0<p<m .\end{cases}
\end{aligned}
$$

(iv) If $p=q=0$, then $\beta=\max (|A|,|B|,|C|)=\max (m, m, m)=m$. By (3.6) and (3.13), (3.14) we have

$$
\lim _{t \rightarrow \infty} \frac{2 \beta g(t)}{e^{\beta t}}=\lim _{t \rightarrow \infty} 2 \frac{-2 m t^{2} \sinh m t}{e^{m t}}=-\infty
$$

This proof is complete.
Lemma 6. Suppose that $\left|t_{1}\right|,\left|t_{2}\right|,\left|t_{3}\right|$ are pairwise distinct numbers. Then the following identities

$$
\begin{equation*}
\operatorname{sgn}\left(u\left(t_{1}, t_{2}, t_{3}\right)\right)=\operatorname{sgn}\left(\cosh t_{1}-\cosh t_{3}\right)=\operatorname{sgn}\left(\left|t_{1}\right|-\left|t_{3}\right|\right) \tag{3.16}
\end{equation*}
$$

hold, where

$$
\begin{equation*}
u\left(t_{1}, t_{2}, t_{3}\right)=\frac{t_{1} \sinh t_{1}-t_{2} \sinh t_{2}}{\cosh t_{1}-\cosh t_{2}}-\frac{t_{2} \sinh t_{2}-t_{3} \sinh t_{3}}{\cosh t_{2}-\cosh t_{3}} \tag{3.17}
\end{equation*}
$$

Proof. To prove the first identity of (3.16), we note that both the function $t \rightarrow \cosh t$ and $t \rightarrow t \sinh t$ are even on \mathbb{R}, and so we have

$$
u\left(t_{1}, t_{2}, t_{3}\right)=u\left(\left|t_{1}\right|,\left|t_{2}\right|,\left|t_{3}\right|\right)
$$

Put $\cosh \left|t_{i}\right|=x_{i}, i=1,2,3$, then $x_{1}, x_{2}, x_{3}>1$ and are also pairwise distinct, and

$$
\left|t_{i}\right|=\ln \left(x_{i}+\sqrt{x_{i}^{2}-1}\right), \sinh \left|t_{i}\right|=\sqrt{x_{i}^{2}-1}
$$

Thus, the first identity of (3.16) is equivalent to

$$
\begin{equation*}
\operatorname{sgn}\left(\frac{f\left(x_{1}\right)-f\left(x_{2}\right)}{x_{1}-x_{2}}-\frac{f\left(x_{2}\right)-f\left(x_{3}\right)}{x_{2}-x_{3}}\right)=\operatorname{sgn}\left(x_{1}-x_{3}\right) \tag{3.18}
\end{equation*}
$$

where

$$
f(x)=\sqrt{x^{2}-1} \ln \left(x+\sqrt{x^{2}-1}\right), x>1 .
$$

By simple calculations, we get

$$
\begin{aligned}
f^{\prime}(x) & =1+\frac{x}{\sqrt{x^{2}-1}} \ln \left(x+\sqrt{x^{2}-1}\right) \\
f^{\prime \prime}(x) & =\frac{x \sqrt{x^{2}-1}-\ln \left(x+\sqrt{x^{2}-1}\right)}{\left(\sqrt{x^{2}-1}\right)^{3}}:=\frac{h(x)}{\left(\sqrt{x^{2}-1}\right)^{3}} .
\end{aligned}
$$

Since $h^{\prime}(x)=2\left(\sqrt{x^{2}-1}\right)^{-1}>0$, we have $h(x)>h(1)=0$, which yields $f^{\prime \prime}(x)>0$, and so f is convex on $(1, \infty)$. From the properties of convex functions it follows that

$$
\frac{1}{x_{1}-x_{3}}\left(\frac{f\left(x_{1}\right)-f\left(x_{2}\right)}{x_{1}-x_{2}}-\frac{f\left(x_{2}\right)-f\left(x_{3}\right)}{x_{2}-x_{3}}\right)>0
$$

which implies that the first identity of (3.16) holds.
Next we show that the second identity of (3.16) holds. Since the function $t \rightarrow \cosh t$ is even on \mathbb{R} and strictly increasing on \mathbb{R}_{+}, we have

$$
\cosh t_{1}-\cosh t_{3}=\left(\left|t_{1}\right|-\left|t_{3}\right|\right) \frac{\cosh \left|t_{1}\right|-\cosh \left|t_{3}\right|}{\left|t_{1}\right|-\left|t_{3}\right|}
$$

from which the second identity of (3.16) follows.
This proof is ended.
Lemma 7. Let

$$
\begin{equation*}
g^{\prime}(t)=\frac{\partial g_{p, q}(t)}{\partial t}=g_{1}(t) \cdot g_{2}(t) \quad \text { for } p q(p-q) \neq 0 \tag{3.19}
\end{equation*}
$$

where

$$
\begin{align*}
& g_{1}(t)=\frac{\cos B t-\cos C t}{p-q} \tag{3.20}\\
& g_{2}(t)=\frac{(p-q) A \frac{\cosh A t-\cosh C t}{\cos B t-\cos C t}-p B}{p q} \tag{3.21}
\end{align*}
$$

and A, B, C are defined by (3.2). Then for all $t>0$, we have
(i) $\operatorname{sgn}\left(g_{1}(t)\right)=-\operatorname{sgn}(m)$.
(ii) $\operatorname{sgn}\left(g_{2}(t)\right)=-\operatorname{sgn}(m) \operatorname{sgn}\left(g^{\prime}(t)\right)$.
(iii) $g_{2}(t)$ is monotone with $t>0$.

Proof. (i) By the second identity of (3.16) we have

$$
\operatorname{sgn}\left(g_{1}(t)\right)=\frac{\operatorname{sgn}(|B t|-|C t|)}{\operatorname{sgn}(p-q)}=-\operatorname{sgn}(m)
$$

for all $t>0$.
(ii) Using (3.19) and the first result of this lemma yield

$$
\operatorname{sgn}\left(g_{2}(t)\right)=\frac{\operatorname{sgn}\left(g^{\prime}(t)\right)}{\operatorname{sgn}\left(g_{1}(t)\right)}=\frac{\operatorname{sgn}\left(g^{\prime}(t)\right)}{-\operatorname{sgn}(m)}=-\operatorname{sgn}(m) \operatorname{sgn}\left(g^{\prime}(t)\right)
$$

(iii) To prove that $g_{2}(t)$ is monotone with $t>0$, it is enough to show that $\operatorname{sgn}\left(g_{2}^{\prime}(t)\right)$ does not depend on all $t>0$. In fact, we have

$$
\begin{equation*}
\operatorname{sgn}\left(g_{2}^{\prime}(t)\right)=-\operatorname{sgn}(m) \operatorname{sgn}(p-m) \operatorname{sgn}(q-m) \operatorname{sgn}(p+q-m) \tag{3.22}
\end{equation*}
$$

holds for $p q(p-q) \neq 0$.
A simple derivative computation yields

$$
\begin{aligned}
p q g_{2}^{\prime}(t)= & (p-q) A \frac{\cosh A t-\cosh C t}{\cos B t-\cos C t} \\
& \times\left(\frac{A \sinh A t-C \sinh C t}{\cosh A t-\cosh C t}-\frac{B \sinh B t-C \sinh C t}{\cos B t-\cos C t}\right) \\
= & t^{-1}(p-q) A \frac{\cosh A t-\cosh C t}{\cos B t-\cos C t} u(A t, C t, B t)
\end{aligned}
$$

where $u\left(t_{1}, t_{2}, t_{3}\right)$ is defined by (3.17). From (3.16) and $t>0$ it follows that

$$
\begin{aligned}
\operatorname{sgn}\left(p q g_{2}^{\prime}(t)\right) & =\operatorname{sgn}\left(t^{-1}(p-q)\right) \operatorname{sgn}(A) \frac{\operatorname{sgn}(|A t|-|C t|)}{\operatorname{sgn}(|B t|-|C t|)} \operatorname{sgn}(\cosh |A t|-\cosh |B t|) \\
& =\operatorname{sgn}(p-q) \operatorname{sgn}(p+q-m) \frac{\operatorname{sgn}(p(q-m))}{\operatorname{sgn}(-m(p-q))} \operatorname{sgn}(q(p-m)) \\
& =-\operatorname{sgn}(m) \operatorname{sgn}(p) \operatorname{sgn}(q) \operatorname{sgn}(p-m) \operatorname{sgn}(q-m) \operatorname{sgn}(p+q-m)
\end{aligned}
$$

which is equivalent to (3.22) for $p q(p-q) \neq 0$.
This accomplishes the proof.

4. Proofs of main results

Proof of Theorem 1. Denote by

$$
D=\{(p, q): p+q-3 m \geq 0, \min (p, q) \geq m\} \quad(m>0) .
$$

By Lemma 3.1, to prove Theorem 1, it suffices to prove that $g_{p, q}(t) \geq 0$ for all $t>0$ if and only if $(p, q) \in D$.
Necessity. We prove that $(p, q) \in D$ is the necessary conditions for $g(t)=$ $g_{p, q}(t) \geq 0$ for all $t>0$. It is obvious that

$$
\begin{equation*}
\lim _{t \rightarrow 0, t>0} \frac{3 g(t)}{2 t^{3}} \geq 0 \quad \text { and } \quad \lim _{t \rightarrow \infty} \frac{2 \beta g(t)}{e^{\beta t}} \geq 0 \tag{4.1}
\end{equation*}
$$

The necessary conditions will be obtained from (4.1) together with (3.7) and (3.9)-(3.12). We divide the proof of necessity into six cases.
(i) Case 1: $p q(p-q) \neq 0$ and $p>q$.

Subcase 1:

$$
\left\{\begin{array} { l }
{ p + q - 3 m \geq 0 , } \\
{ \frac { p + q - m } { p q } \geq 0 , } \\
{ p > q > m \text { or } q < p < 0 }
\end{array} \quad \Longrightarrow \left\{\begin{array}{l}
p+q-3 m \geq 0, \\
p>q>m
\end{array}\right.\right.
$$

which implies that $(p, q) \in\{(p, q): p>q>m\}=D_{11}$.
Subcase 2:

$$
\left\{\begin{array} { l }
{ p + q - 3 m \geq 0 , } \\
{ \frac { p - q - m } { q (p - q) } \geq 0 , } \\
{ p > q = m }
\end{array} \quad \Longrightarrow \left\{\begin{array}{l}
p \geq 2 m \\
q=m
\end{array}\right.\right.
$$

which implies that $(p, q) \in\{(p, q): p \geq 2 m, q=m\}=D_{12}$.
Subcase 3:

$$
\left\{\begin{array}{l}
p+q-3 m \geq 0 \\
-\frac{p-q+m}{p(p-q)} \geq 0, \\
p>0 \\
q<m \\
p>q
\end{array} \quad \Longrightarrow\right. \text { which is impossible. }
$$

(i') Case 1': $p q(p-q) \neq 0$ and $p<q$.
Since $g_{p, q}(t)$ is symmetric with respect to p and q, so $(p, q) \in D_{11}^{\prime} \cup D_{12}^{\prime}$ if (4.1) holds, where

$$
D_{11}^{\prime}=\{(p, q): q>p>m\}, \quad D_{12}^{\prime}=\{(p, q): q \geq 2 m, p=m\}
$$

(ii) Case 2: $p \neq q=0$.

Subcase 1:

$$
\left\{\begin{array}{l}
p+q-3 m \geq 0, \\
-\infty \geq 0, \\
p<0=q
\end{array} \quad \Longrightarrow\right. \text { which is impossible. }
$$

Subcase 2:

$$
\left\{\begin{array}{l}
p+q-3 m \geq 0 \\
-(p+m) p^{-2} \geq 0, \quad \Longrightarrow \text { which is impossible. } \\
p>0=q
\end{array}\right.
$$

(ii') Case 2': $q \neq p=0$.
Since $g_{p, q}(t)$ is symmetric with respect to p and q, so this case is also impossible if (4.1) holds.
(iii) Case 3: $p=q \neq 0$.

Subcase 1:

$$
\left\{\begin{array} { l }
{ p + q - 3 m \geq 0 , } \\
{ (2 p - m) p ^ { - 2 } \geq 0 , } \\
{ p > m \text { or } p < 0 , } \\
{ p = q \neq 0 }
\end{array} \quad \Longrightarrow \left\{\begin{array}{l}
p+q-3 m \geq 0 \\
p=q>m
\end{array}\right.\right.
$$

which implies that $(p, q) \in\{(p, q): p+q-3 m \geq 0, p=q>m\}=D_{31}$.
Subcase 2:

$$
\left\{\begin{array}{l}
p+q-3 m \geq 0 \\
-\infty \geq 0 \\
0<p \leq m \\
p=q \neq 0
\end{array} \quad \Longrightarrow\right. \text { which is impossible. }
$$

(iv) Case 4: $p=q=0$.

$$
\left\{\begin{array}{l}
p+q-3 m \geq 0, \\
-\infty \geq 0, \\
p=q=0
\end{array} \quad \Longrightarrow\right. \text { which is impossible. }
$$

Summarizing all the cases yield

$$
(p, q) \in\left(D_{11} \cup D_{12}\right) \cup\left(D_{11}^{\prime} \cup D_{12}^{\prime}\right) \cup D_{31}=D
$$

Sufficiency. We prove the condition $(p, q) \in D$ is sufficient for $g(t)=g_{p, q}(t) \geq 0$ for all $t>0$. Since $g(0)=0$, it is enough to prove $g^{\prime}(t) \geq 0$ if $(p, q) \in D$.
(i) In the case of $(p, q) \in D$ with $p q(p-q) \neq 0$. By (3.8) and (3.15), we see that

$$
\operatorname{sgn}\left(g^{\prime}(0)\right)=\operatorname{sgn}(g(0)) \geq 0 \quad \text { and } \quad \operatorname{sgn}\left(g^{\prime}(\infty)\right)=\operatorname{sgn}(g(\infty)) \geq 0
$$

if $(p, q) \in D$ with $p q(p-q) \neq 0$.
On the other hand, noting $m>0$ and by (ii) and (iii) of Lemma 7, we have

$$
\begin{gathered}
\operatorname{sgn}\left(g_{2}(0)\right)=-\operatorname{sgn}(m) \operatorname{sgn}\left(g^{\prime}(0)\right) \leq 0, \\
\operatorname{sgn}\left(g_{2}(\infty)\right)=-\operatorname{sgn}(m) \operatorname{sgn}\left(g^{\prime}(\infty)\right) \leq 0
\end{gathered}
$$

and $g_{2}(t)$ is monotone with $t>0$, which mean that $g_{2}(t) \leq 0$ for all $t>0$. Taking into account $\operatorname{sgn}\left(g_{1}(t)\right)=-\operatorname{sgn}(m)<0$, we obtain that $g^{\prime}(t)=g_{1}(t) g_{2}(t) \geq 0$ for all $t>0$.
(ii) In the case of $(p, q) \in D$ with $p q(p-q)=0$. Form Lemma 3 it follows that

$$
g^{\prime}(t)=\frac{\partial g_{p, 0}(t)}{\partial t}=\lim _{q \rightarrow 0} \frac{\partial g_{p, q}(t)}{\partial t} \geq 0 \quad \text { if }(p, q) \in D \text { with } p \neq q=0
$$

Similarly, we have

$$
\begin{aligned}
& g^{\prime}(t)=\frac{\partial g_{0, q}(t)}{\partial t} \geq 0 \quad \text { if }(p, q) \in D \text { with } q \neq p=0 \\
& g^{\prime}(t)=\frac{\partial g_{p, p}(t)}{\partial t} \geq 0 \quad \text { if }(p, q) \in D \text { with } p=q \neq 0 \\
& g^{\prime}(t)=\frac{\partial g_{0,0}(t)}{\partial t} \geq 0 \quad \text { if }(p, q) \in D \text { with } p=q=0
\end{aligned}
$$

Therefore, $g^{\prime}(t)=\partial g_{p, q}(t) / \partial t \geq 0$ if $(p, q) \in D$.
This completes the proof of Theorem 1.

Proof of Theorem 2. Denote by

Then

$$
\begin{aligned}
E & =\{(p, q\}: p+q-3 m \leq 0, p \geq q, q \leq m\} \\
E^{\prime} & =\{(p, q\}: p+q-3 m \leq 0, q \geq p, p \leq m\}
\end{aligned} \quad(m>0) .
$$

$$
E \cup E^{\prime}=\{(p, q\}: p+q-3 m \leq 0 \text { and } \min (p, q) \leq m\} \quad(m>0)
$$

By Lemma 3.1, to prove Theorem 2, it suffices to show that $g_{p, q}(t) \leq 0$ for all $t>0$ if and only if $(p, q) \in E \cup E^{\prime}$.
Necessity. We prove $(p, q) \in E \cup E^{\prime}$ is the necessary conditions for $g(t)=$ $g_{p, q}(t) \leq 0$ for all $t>0$. It is clear that

$$
\begin{equation*}
\lim _{t \rightarrow 0, t>0} \frac{3 g(t)}{2 t^{3}} \leq 0 \quad \text { and } \quad \lim _{t \rightarrow \infty} \frac{2 \beta g(t)}{e^{\beta t}} \leq 0 \tag{4.2}
\end{equation*}
$$

We derive the necessary conditions from (4.2) together with (3.7) and (3.9)-(3.12).
To this aim, we divide the proof of necessity into six cases.
(i) Case 1: $p q(p-q) \neq 0$ and $p>q$.

Subcase 1:

$$
\left\{\begin{array}{l}
p+q-3 m \leq 0, \\
\frac{p+q-m}{p q} \leq 0, \\
p>q>m \text { or } q<p<0
\end{array} \quad \Longrightarrow 0>p>q\right.
$$

which implies that $(p, q) \in\{(p, q): 0>p>q\}=E_{11}$.
Subcase 2:

$$
\left\{\begin{array} { l }
{ p + q - 3 m \leq 0 , } \\
{ \frac { p - q - m } { q (p - q) } \leq 0 , } \\
{ p > q = m }
\end{array} \quad \Longrightarrow \left\{\begin{array}{l}
p \leq 2 m \\
q=m \\
p>q
\end{array}\right.\right.
$$

which implies that $(p, q) \in\{(p, q): q=m, p \leq 2 m\}=E_{12}$.
Subcase 3:

$$
\left\{\begin{array} { l }
{ p + q - 3 m \leq 0 , } \\
{ - \frac { p - q + m } { p (p - q) } \leq 0 , } \\
{ p > 0 , } \\
{ q < m , } \\
{ p > q }
\end{array} \quad \Longrightarrow \left\{\begin{array}{l}
p+q-3 m \leq 0 \\
p>0 \\
q<m \\
p>q
\end{array}\right.\right.
$$

which implies that $(p, q) \in\{(p, q): p+q-3 m \leq 0, p>0, q<m, p>q\}=E_{13}$.
(i') Case 1': $p q(p-q) \neq 0$ and $p<q$.
Since $g_{p, q}(t)$ is symmetric with respect to p and q, so $(p, q) \in E_{11}^{\prime} \cup E_{12}^{\prime} \cup E_{13}^{\prime}$ if (4.2) holds, where

$$
\begin{aligned}
& E_{11}^{\prime}=\{(p, q): 0>q>p\} \\
& E_{12}^{\prime}=\{(p, q): p=m, q \leq 2 m, q>p\} \\
& E_{13}^{\prime}=\{(p, q): p+q-3 m \leq 0, q>0, p<m, q>p\} .
\end{aligned}
$$

(ii) Case 2: $p \neq q=0$.

Subcase 1:

$$
\left\{\begin{array} { l }
{ p + q - 3 m \leq 0 , } \\
{ - \infty \leq 0 , } \\
{ p < 0 = q }
\end{array} \Longrightarrow \left\{\begin{array}{l}
p+q-3 m \leq 0 \\
p<0=q
\end{array}\right.\right.
$$

which implies that $(p, q) \in\{(p, q): p+q-3 m \leq 0, p<0=q\}=E_{21}$.
Subcase 2:

$$
\left\{\begin{array} { l }
{ p + q - 3 m \leq 0 , } \\
{ - (p + m) p ^ { - 2 } \leq 0 , } \\
{ p > 0 = q }
\end{array} \quad \Longrightarrow \left\{\begin{array}{l}
p+q-3 m \leq 0 \\
p>0=q
\end{array}\right.\right.
$$

which implies that $(p, q) \in\{(p, q): p+q-3 m \leq 0, p>0=q\}=E_{22}$.
(ii') Case 2': $q \neq p=0$.
Since $g_{p, q}(t)$ is symmetric with respect to p and q, so $(p, q) \in E_{21}^{\prime} \cup E_{22}^{\prime}$ if (4.2) holds, where

$$
\begin{aligned}
& E_{21}^{\prime}=\{(p, q): p+q-3 m \leq 0, q<0=p\} \\
& E_{22}^{\prime}=\{(p, q): p+q-3 m \leq 0, q>0=p\}
\end{aligned}
$$

(iii) Case 3: $p=q \neq 0$.

Subcase 1:

$$
\left\{\begin{array} { l }
{ p + q - 3 m \leq 0 , } \\
{ (2 p - m) p ^ { - 2 } \leq 0 , } \\
{ p > m \text { or } p < 0 , } \\
{ p = q \neq 0 }
\end{array} \quad \Longrightarrow \left\{\begin{array}{l}
p+q-3 m \leq 0 \\
p=q<0
\end{array}\right.\right.
$$

which implies that $(p, q) \in\{(p, q): p+q-3 m \leq 0, p=q<0\}=E_{31}$.

Subcase 2:

$$
\left\{\begin{array} { l }
{ p + q - 3 m \leq 0 , } \\
{ - \infty \leq 0 , } \\
{ 0 < p \leq m , } \\
{ p = q \neq 0 }
\end{array} \quad \Longrightarrow \left\{\begin{array}{l}
p+q-3 m \leq 0 \\
0<p=q \leq m
\end{array}\right.\right.
$$

which implies that $(p, q) \in\{(p, q): p+q-3 m \leq 0,0<p=q \leq m\}=E_{32}$.
(iv) Case 4: $p=q=0$.

$$
\left\{\begin{array}{l}
p+q-3 m \leq 0, \\
-\infty \leq 0, \\
p=q=0
\end{array} \quad \Longrightarrow \text { which implies that }(p, q) \in\{(0,0)\}=E_{4}\right.
$$

Summarizing all the cases yield

$$
\begin{aligned}
(p, q) \in & \left(E_{11} \cup E_{12} \cup E_{13}\right) \cup\left(E_{11}^{\prime} \cup E_{12}^{\prime} \cup E_{13}^{\prime}\right) \\
& \cup\left(E_{21} \cup E_{22}\right) \cup\left(E_{21}^{\prime} \cup E_{22}^{\prime}\right) \cup\left(E_{31} \cup E_{32}\right) \cup E_{24}=E \cup E^{\prime} .
\end{aligned}
$$

Sufficiency. Similarly to proof of sufficiency of Theorem 1, we can prove $g^{\prime}(t) \leq 0$ if $(p, q) \in E \cup E^{\prime}$. Hence $g(t)=g_{p, q}(t) \leq g(0)=0$ for all $t>0$.

The proof of Theorem 2 is completed.
Proof of Theorem 3. Let $g_{p, q, m}(t):=g_{p, q}(t)$ defined by (3.1) and

$$
p^{\prime}=-p, q^{\prime}=-q, m^{\prime}=-m
$$

We easily verify that, for $p, q, p^{\prime}, q^{\prime}, m, m^{\prime} \in \mathbb{R}$,

$$
g_{p, q, m}(t)=-g_{p^{\prime}, q^{\prime}, m^{\prime}}(t)
$$

From this and Lemma 2, for $m<0$ Stolarsky mean $S_{p, q}(a, b)$ is Schur m-power convex if and only if $S_{p^{\prime}, q^{\prime}}(a, b)$ is Schur m^{\prime}-power concave with respect to $(a, b) \in$ \mathbb{R}_{+}^{2}, which, by Theorem 2 , if and only if

$$
p^{\prime}+q^{\prime} \leq 3 m^{\prime} \quad \text { and } \quad \min \left(p^{\prime}, q^{\prime}\right) \leq m^{\prime}
$$

that is,

$$
p+q \geq 3 m \quad \text { and } \quad \max (p, q) \geq m
$$

Theorem 3 follows.

Proof of Theorem 4. Similarly to the proof of Theorem 3, we have that for $m<0$ Stolarsky mean $S_{p, q}(a, b)$ is Schur m-power concave if and only if $S_{p^{\prime}, q^{\prime}}(a, b)$ is Schur m^{\prime}-power convex with respect to $(a, b) \in \mathbb{R}_{+}^{2}$, which, by Theorem 1 , if and only if

$$
p^{\prime}+q^{\prime} \geq 3 m^{\prime} \quad \text { and } \quad \min \left(p^{\prime}, q^{\prime}\right) \geq m^{\prime}
$$

that is,

$$
p+q \leq 3 m \quad \text { and } \quad \max (p, q) \leq m
$$

The proof of Theorem 4 ends.
Proof of Theorem 5. By Lemma 3.1, to prove Theorem 5, it is enough to prove that $g_{p, q}(t) \geq(\leq) 0$ for all $t>0$ if and only if $p+q \geq(\leq) 0$ for $m=0$. For this end, we divide the proof into four cases.
(i) Case 1: $p q(p-q) \neq 0$. By (3.1) we have

$$
\begin{aligned}
g_{p, q}(t) & =\frac{(p-q) \sinh (p+q) t-(p+q) \sinh (p-q) t}{p q(p-q)} \\
& =t(p+q) \frac{k((p+q) t)-k((p-q) t)}{p q}
\end{aligned}
$$

Denote by $k(x)=(\sinh x) / x$ if $x \neq 0$ and $k(0)=1$. We easily check that $k(-x)=k(x)$ and $k^{\prime}(x)>(<) 0$ for $x>(<) 0$. In fact, $k^{\prime}(x)=x^{-2} w(x), w(x)=$ $x \cosh x-\sinh x>(<) 0$ for $x>(<) 0$ because $w^{\prime}(x)=x \sinh x>0$ for $x \neq 0$. Thus,

$$
\begin{aligned}
& \operatorname{sgn}\left(\frac{k((p+q) t)-k((p-q) t)}{p q}\right) \\
& \quad=\operatorname{sgn}\left(\frac{|(p+q) t|-|(p-q) t|}{p q}\right) \operatorname{sgn}\left(\frac{k(|(p+q) t|)-k(|(p-q) t|}{|(p+q) t|)-|(p-q) t|}\right) \\
& \quad=\operatorname{sgn}\left(\frac{t}{|p+q|+|p-q|} \frac{(p+q)^{2}-(p-q)^{2}}{p q}\right)=1,
\end{aligned}
$$

it follows that

$$
\operatorname{sgn}\left(g_{p, q}(t)\right)=\operatorname{sgn}(t(p+q)) \operatorname{sgn}\left(\frac{k((p+q) t)-k((p-q) t)}{p q}\right)=\operatorname{sgn}(p+q)
$$

This shows that $g_{p, q}(t) \geq(\leq) 0$ for all $t>0$ if and only if $p+q \geq(\leq) 0$.
(ii) Case 2: $p q=0, p \neq q$. By (3.1) we have

$$
g_{p, 0}(t)=\frac{2}{p^{2}}(p t \cosh (p t)-\sinh (p t)) \quad(p \neq 0)
$$

Since $w(x)=x \cosh x-\sinh x>(<) 0$ for $x>(<) 0, g_{p, 0}(t) \geq(\leq) 0(p \neq 0)$ for all $t>0$ if and only if $p t>(<) 0$, that is, $p>(<) 0$.

In the same way, we can prove that $g_{0, q}(t) \geq(\leq) 0(q \neq 0)$ for all $t>0$ if and only if $q>(<) 0$.
(iii) Case 3: $p=q \neq 0$. By (3.1) we have

$$
g_{p, p}(t)=\frac{\sinh (2 p t)-2 p t}{p^{2}}=\frac{2 t}{p}\left(\frac{\sinh (2 p t)}{2 p t}-1\right)=\frac{2 t}{p}(k(2 p t)-k(0)) .
$$

Since $k^{\prime}(x)>(<) 0$ for $x>(<) 0$, we get $k(2 p t)>k(0)$. It follows that $g_{p, p}(t) \geq$ $(\leq) 0(p \neq 0)$ for all $t>0$ if and only if $2 t / p>(<) 0$, that is, $p>(<) 0$.
(iv) Case 4: $p=q=0$. Clearly, $g_{0,0}(t)=0$.

To sum up, for $m=0, g_{p, q}(t) \geq(\leq) 0$ for all $t>0$ if and only if $p+q \geq(\leq) 0$. The proof of Theorem 5 is completed.

References

[1] G. D. Anderson, M. K. Vamanamurthy and M. Vuorinen, Generalized convexity and inequalities, J. Math. Anal. Appl. 335(2) (2007), 1294-1308.
[2] J. S. Aujla and F. C. Silva, Weak majorization inequalities and convex functions, Linear Algebra Appl. 369 (2003), 217-233.
[3] Ch.-P. Chen, The monotonicity of the ratio between Stolarsky means, RGMIA Res. Rep. Coll. 11(4) (2008), Art. 15.
[4] Y.-M. Chu, X.-M. Zhang and and G.-D. Wang, The Schur geometrical convexity of the extended mean values, J. Convex. Anal. 15(4) (2008), 707-718.
[5] Y. M. Chu and and X. M. Zhang, Necessary and sufficient conditions such that extended mean values are Schur-convex or Schur-concave, J. Math. Kyoto Univ. 48(1) (2008), 229-238.
[6] Y.-M. Chu and and Y.-P. Lv, The Schur harmonic convexity of the Hamy symmetric function and its applications, J. Inequal. Appl. 2009 (2009), Art. ID 838529.
[7] G. M. Constantine, Schur convex functions on the spectra of graphs, Disc. Math. 45(2-3) (1983), 181-188.
[8] P. Czinder and Zs. PÁles, An extension of the Hermite-Hadmard inequality and an application for Gini and stolarsky means, J. Inequal. Pure Appl. Math. 5(2) (2004), Art. 42.
[9] A. Forcina and A. Giovagnoli, Homogeneity indices and Schur-convex functions, Statistica 42(4) (1982), 529-542.
[10] Ch. Gu and H. N. Shi, Schur-convexity and Schur-geometric convexity of Lehmer Means, Math. Prac. Theory 39(12) (2009), 183-188.
[11] G. H. Hardy, J. E. Littlewood and G. Pólya, Some simple inequalities satisfied by convex functions, Messenger Math. 58 (1929), 145-152.
[12] Peter. A. Hästö, A monotonicity property of ratios of symmetric homogeneous means, J. Inequal. Pure Appl. Math. 35 (2002), Art. 71.
[13] F. K. Hwang, U. G. Rothblum and and L. Shepp, Monotone optimal multipartitions using Schur convexity with respect to partial orders, SIAM J. Discrete Math. 6(4) (1993), 533-547.
[14] F. K. Hwang and U. G. Rothblum, Partition-optimization with Schur convex sum objective functions, SIAM J. Discrete Math. 18(3) (2004), 512-524.
[15] E. B. Leach and M. C. Sholander, Extended mean values, Amer. Math. Monthly 85 (1978), 84-90.
[16] E. B. Leach and M. C. Sholander, Extended mean values II, J. Math. Anal. Appl. 92 (1983), 207-223.
[17] D.-M. Li and H.-N. Shi, Schur convexity and Schur-geometrically concavity of generalized exponent mean, J. Math. Inequal. 3(2) (2009), 217-225.
[18] ZH. LiU, Minkowski's inequality for extended mean values, Proceedings of the Second ISAAC Congress, Vol. 1 (Fukuoka, 1999), 585-592, Int. Soc. Anal. Appl. Comput. 7, Kluwer Acad. Publ., Dordrecht, 2000.
[19] L. Losonczi and Zs. PÁles, Minkowski's inequality for two variable difference means, Proc. Amer. Math. Soc. 126 (1998), 779-789.
[20] L. Losonczi, Ratio of Stolarsky means: monotonicity and comparison, Publ. Math. Debrecen 75 (2009), 221-238.
[21] A. W. Marshall and I. Olkin, Inequalities: Theory of Majorization and Its Applications, Academic Press, New York, 1979.
[22] M. Merkle, Convexity, Schur-convexity and bounds for the gamma function involving the digamma function, Rocky Mountain J. Math. 28(3) (1998), 1053-1066.
[23] E. Neuman and J. SÁndor, Inequalities involving Stolarsky and Gini means, Math. Pannon. 14(1) (2003), 29-44.
[24] E. Neuman and Zs. Páles, On comparison of Stolarsky and Gini means, J. Math. Anal. Appl. 278(2) (2003), 274-284.
[25] Zs. PÁles, Inequalities for differences of powers, J. Math. Anal. Appl. 131 (1988), 271-281.
[26] Zs. PÁles, Comparison of two variable homogeneous means, General Inequal. 6. Proc. 6th Internat. Conf. Math. Res. Inst. Oberwolfach, Birkhäuser Verlag Basel (1992), 59-69.
[27] F. QI, Logarithmically convexities of the Extended Mean values, Proc. Amer. Math. Soc. 130(6) (2002), 1787-1796.
[28] F. QI, The extended mean values: definition, properties, monotonicities, comparison, convexities, generalizations, and applications, Cubo Mat. Educ. 5(3) (2003), 63-90.
[29] F. Qi, J. SÁndor and S. S. Dragomir, Notes on the Schur-convexity of the extended mean values, Taiwanese J. Math. 9(3) (2005), 411-420.
[30] F. Qi, A note on Schur-convexity of extended mean values, Rocky Mountain J. Math. 35(5) (2005), 1787-1793.
[31] J. SÁndor, The Schur-convexity of Stolarsky and Gini means, Banach J. Math. Anal. 1(2) (2007), 212-215.
[32] M. Shaked, J. G. Shanthikumar and Y. L. Tong, Parametric Schur convexity and arrangement monotonicity properties of partial sums, J. Multivariate Anal. 53(2) (1995), 293-310.
[33] H. N. Shi, S. H. Wu and F. Qi, An alternative note on the Schur-convexity of the extended mean values, Math. Inequal. Appl. 9(2) (2006), 219-224.
[34] H.-N. Shi, Y.-M. Jiang and W.-D. Jiang, Schur-convexity and Schur-geometrically concavity of Gini means, Comp. Math. Appl. 57(2) (2009), 266-274.
[35] C. Stepniak, Stochastic ordering and Schur-convex functions in comparison of linear experiments, Metrika 36(5) (1989), 291-298.
[36] K. B. Stolarsky, Generalizations of the Logarithmic Mean, Math. Mag. 48 (1975), 87-92.
[37] K. B. Stolarsky, The power and generalized Logarithmic Means, Amer. Math. Monthly 87 (1980), 545-548.
[38] B.-Y. Wang, Foundations of Majorization Inequalities, Beijing Normal Univ. Press, Beijing, China, 1990 (in Chinese).
[39] Z.-H. Wang and X.-M. Zhang, Necessary and sufficient conditions for Schur convexity and Schur-geometrically convexity of Gini means, Communications of inequalities researching 14(2) (2007), 193-197 (in Chinese).
[40] Z.-H. Wang, The necessary and sufficient condition for S-convexity and S-geometrically convexity of Gini mean, J. Beijing Ins. Edu. (Natural Science) 2(5) (2007), 1-3.
[41] W.-F. XIA, The Schur harmonic convexity of Lehmer means, Int. Math. Forum 4(41) (2009), 2009-2015.
[42] Zh.-H. Yang, ON the homogeneous functions with two parameters and its monotonicity, J. Inequal. Pure Appl. Math. 6(4) (2005), Art. 101.
[43] Zh.-H. Yang, ON the log-convexity of two-parameter homogeneous functions, Math. Inequal. Appl. 10(3) (2007), 499-516.
[44] Zh. -H. Yang, On the monotonicity and log-convexity of a four-parameter homogeneous mean, J. Inequal. Appl. 2008 (2008), Art. ID 149286.
[45] Zh.-H. YaNg, Necessary and sufficient conditions for Schur convexity the two-parameter symmetric homogeneous means, Applied Mathemathical Sciences 5(64) (2011), 3183-3190.
[46] Zh.-H. Yang, Some monotonictiy results for the ratio of two-parameter symmetric homogeneous functions, Int. J. Math. Math. Sci. 2009 (2009), Art. ID 591382.
[47] Zh.-H. YANG, Log-convexity of ratio of the two-parameter symmetric homogeneous functions and an appliation, J. Inequal. Spec. Funct. 1(1) (2010), 16-29.
[48] Zh.-H. YaNg, Necessary and sufficient conditions for Schur geometrical convexity of the four-parameter homogeneous means, Abstr. Appl. Anal. 2010 (2010), Art. ID 830163.
[49] X.-M. Zhang, Schur-convex functions and isoperimetric inequalities, Proc. Amer. Math. Soc. 126(2) (1998), 461-470.
[50] X.-M. Zhang, Geometrically Convex Functions, Hefei, An'hui University Press, 2004 (in Chinese).

ZHEN-HANG YANG
SYSTEM DIVISION
ZHEJIANG PROVINCE ELECTRIC POWER TEST
AND RESEARCH INSTITUTE
HANGZHOU, ZHEJIANG
CHINA, 310014
E-mail: yzhkm@163.com

