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Weighted composition operators on Dirichlet-type spaces
and related Qp spaces

By YUAN CHENG (Tianjin), SANJAY KUMAR (Jammu) and ZE-HUA ZHOU (Tianjin)

Abstract. We generalize Gallardo-Gutiérrez and Partington’s results on BMOA

to the Dirichlet-type spaces with similar strategy. That is, we use the generalized Nevanl-

inna counting function associated to the weight function to characterize the boundedness

and compactness of weighted composition operators on the Dirichlet-type spaces.

1. Introduction

Let D denote the open unit disk of the complex plane C. For p ∈ (0,∞), the

Dirichlet-type space Dp is the Hilbert space of holomorphic functions on D for

which the norm

‖f‖Dp = |f(0)|+
(∫

D

|f ′(z)|2(1− |z|2)pdA(z)
)1/2

< ∞,

where dA(z) = 1
πdxdy is the normalized Lebesgue measure on the unit disk. The

inner product of f and g in Dp is given by

〈f, g〉 = |f(0)g(0)|+
(∫

D

f ′(z)g′(z)(1− |z|2)pdA(z)
)1/2

< ∞.
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Dp is a reproducing kernel Hilbert space with the kernel function Kw(z) =

K(z, w) = (1 − wz)−p. The space Dp has been extensively studied in number

of papers, e.g., [13], [14], [17], [18]. It is well known that when p = 1, Dp is the

classic Hardy space H2 and when p > 1, Dp is the weighted Bergman space with

weight (1− |z|2)p−2. In particular, D2 is the classic Bergman space L2
a. See [17],

for example.

The space of Möbius bounded functions in Dp is written as Qp. That is, Qp

is the Banach space of function f ∈ Dp with the norm

‖f‖Qp
= |f(0)|+ sup

w∈D
‖f ◦ ϕw − f‖Dp

< ∞,

where ϕw(z) = (w − z)/(1 − wz). For different p ∈ (0,∞), Qp1 ⊂ Qp2 when

0 < p1 < p2 ≤ 1. In particular, Q1 = BMOA, the bounded mean oscillation

space of analytic functions; and when p > 1, Qp = B, the Bloch space on D. See

[21], [22], and the reference therein.

For ϕ, a non-constant holomorphic map of the unit disk into itself, the com-

position operator Cϕ with the symbol ϕ is defined by

Cϕ(f) = f ◦ ϕ,
where f is a holomorphic function in D. It is well known that Cϕ on Dp is always

bounded when p ≥ 1 and may be unbounded when 0 < p < 1. For u holomorphic

on D, the weighted composition operator uCϕ is defined by uCϕ(f) = u · f ◦ ϕ.
Apparently, if u = 1, the weighted composition operator uCϕ becomes Cϕ; and if

ϕ(z) = z for z ∈ D, uCϕ becomes the multiplier Mu.

It is a long story to characterize the properties of (weighted) composition

operator on several function spaces. The boundedness, compactness, Schatten

class property are usually related to the pullback Carleson measure, Nevanlinna

counting function and generalized Berezin transform, see [3], [4], [12], [15], [16].

Recently, Gallardo-Gutiérrez and Partington characterized the boundedness

and compactness of weighted composition operators on Hardy and weighted Berg-

man spaces in [6] and [7]. Their characterization involved a condition related to a

Nevanlinna counting function associated to the symbols ϕ and the weight u. Their

method is based on the analyzing the weighted composition operator acting the

the normalized kernel function. It is shown that the spaces BMOA and VMOA

(resp. the Bloch space and little Bloch space) play key roles in the boundedness

and compactness of weighted composition operators on the Hardy spaces (reps.

the weighted Bergman spaces).

This manuscript is a generalization of Gallardo-Gutiérrez and Part-

ington’s work [6]. Consider the Hardy spaces and weighted Bergman spaces as
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the Dirichlet-type spaces Dp, [6] is about the case p ≥ 1. We characterize the

case for all p ∈ (0,∞). The idea is the same as that of [6]. We show that the

Qp plays the role on the boundedness of weighted composition operators on Dp

as BMOA related to the Hardy space.

Notation: Throughout the paper, we will denote a ≈ b whenever there exist

two positive universal constants c and C, such that cb ≤ a ≤ Cb. Further, for the

sake of simplicity, C will always denote an independent constant, which can be

different from one display to another.

2. The main result

Let T denote the boundary of D. Recall that a Carleson disk in D centered

at ζ ∈ T of radius r ∈ (0, 1) is given by D(ζ, r) = {z ∈ D : |z− ζ| < r}. It is easy
to check that A(D(ζ, r)) ≈ r2. For p ∈ (0,∞), a positive Borel measure µ on D

is called a p-Carleson measure, if

‖µ‖p = sup
ζ∈T

µ(D(ζ, r))

rp
< ∞.

When p = 1, we get the standard definition of the original Carleson measure.

The main result of this manuscript is the following theorem.

Theorem 1. Let ϕ be an analytic self-map of D. For p ∈ (0,∞), suppose

u ∈ Qp. Then uCϕ is bounded on Dp if and only if

sup
ζ∈T

∫

D(ζ,r)

( ∑

ϕ(z)=v

|u(z)|2(1− |z|)p
)
dA(v) = O(r2+p). (1)

The case for p ≥ 1, has been proved in [6], so we focus on the case for

p ∈ (0, 1). To give the proof we need some preliminary results. The following

lemmas are quoted from [21] or [2].

Lemma 1. Let p ∈ (0,∞) and let µ be a positive Borel measure on D. Then

µ is a p-Carleson measure if and only if

sup
w∈D

∫

D

(
1− |w|
|1− zw|2

)p

dµ(z) < ∞.

Lemma 2. Let p ∈ (0,∞) and f holomorphic on D with dµf,p(z) = |f ′(z)|2
× (1− |z|)pdA(z). Then f ∈ Qp if and only if µf,p is a p-Carleson measure.
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Proof of Theorem 1. We only consider p ∈ (0, 1). Firstly fix a Carleson

disk D(ζ0, r0) in D, centered at ζ0 ∈ T of radius r0. Consider w0 = (1 − r0)ζ0.

Then, if kw0
denotes the normalized reproducing kernel in Dp at w0 ∈ D, that is,

kw0(z) =
Kw0(z)

‖Kw0‖Dp

=
(1− |w0|2)p/2
(1− w0z)p

.

For all w ∈ D, it is well known that {kw} spans a dense subset of Dp. Consider

uCϕ acting on kw0
(z), we have

‖uCϕ(kw0
)‖2Dp

= |u(0)|2|kw0
(ϕ(0))|2 +

∫

D

|(u(kw0
◦ ϕ))′(z)|2(1− |z|2)pdA(z).

It follows that

|(u(kw0 ◦ ϕ))′(z)|2 = |u′(z)kw0(ϕ(z)) + u(z)k′w0
(ϕ(z))ϕ′(z)|2

= |u′(z)kw0(ϕ(z))|2 + |u(z)k′w0
(ϕ(z))ϕ′(z)|2

+ 2<u′(z)kw0(ϕ(z))u(z)k
′
w0

(ϕ(z))ϕ′(z) = T1 + T2 + T3.

If we write Ij =
∫
D
Tj(1− |z|2)pdA(z) for j = 1, 2, 3, the Cauchy–Schwarz inequ-

ality implies that I23 ≤ 4I1I2. We have

I1 =

∫

D

|u′(z)kw0(ϕ(z))|2(1− |z|2)pdA(z)

=

∫

D

∣∣∣∣
(1− |w0|2)p/2
(1− w0ϕ(z))p

∣∣∣∣
2

|u′(z)|2(1− |z|2)pdA(z)

and the Area Formula of change variables gives that

I2 =

∫

D

|u(z)k′w0
(ϕ(z))ϕ′(z)|2(1− |z|2)pdA(z)

=

∫

D

|k′w0
(v)|2

( ∑

ϕ(z)=v

|u(z)|2(1− |z|2)p
)
dA(v).

Now, since u ∈ Qp, it follows from Lemma 2 that |u′(z)|2(1 − |z|2)pdA(z) is a

p-Carleson measure. So

I1 ≤ C

∫

D

∣∣∣∣
(1− |w0|2)p/2
(1− w0ϕ(z))p

∣∣∣∣
2

dA(z) = C‖Cϕ(kw0)‖2L2
a
.
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Because kw0
∈ Dp ⊂ L2

a is bounded and Cϕ is bounded on L2
a, we conclude that

I1 is bounded.

If further (1) holds, denote

∆n(w0) = {v ∈ D : 2n−1r0 ≤ |ζ0 − v| < 2nr0}
for n ≥ 1 and denote ∆0(w0) = D(ζ0, r0). Notice that for any v ∈ ∆n(w0) one

has |1− wv| ≈ 2nr0. We can get

I2 =

∫

D

|k′w0
(v)|2

( ∑

ϕ(z)=v

|u(z)|2(1− |z|2)p
)
dA(v)

=

∫

∪∆n(w0)

|k′w0
(v)|2

( ∑

ϕ(z)=v

|u(z)|2(1− |z|2)p
)
dA(v)

=
∞∑

n=0

∫

∆n(w0)

|k′w0
(v)|2

( ∑

ϕ(z)=v

|u(z)|2(1− |z|2)p
)
dA(v)

≈
∞∑

n=0

(1− |w|2)p
(2nr0)2+2p

∫

∆n(w0)

( ∑

ϕ(z)=v

|u(z)|2(1− |z|2)p
)
dA(v).

Since 1 − |w|2 ≈ r0, ∆n(w0) ⊂ D(ζ0, 2
nr0) and A(D(ζ0, 2

nr0)) ≈ (2nr0)
2. Com-

bine these to (1) we have that
∫

∆n(w0)

( ∑

ϕ(z)=v

|u(z)|2(1− |z|2)p
)
dA(v) ≤ C(2nr0)

2+p,

and thus

I2 ≤ C

∞∑
n=0

1

2np
.

The above series converges when p > 0. Since kw spans a dense set of Dp, we

conclude that if (1) holds, then uCϕ is bounded.

Now suppose uCϕ is bounded, then I1 and I1 + I2 are bounded. Therefore,

I2 =

∫

D

|k′w0
(v)|2

( ∑

ϕ(z)=v

|u(z)|2(1− |z|2)p
)
dA(v).

is bounded. So
∫

D(ζ0,r0)

|k′w0
(v)|2

( ∑

ϕ(z)=v

|u(z)|2(1− |z|2)p
)
dA(v)

=

∫

D(ζ0,r0)

(1− |w0|2)p
(1− w0v)2+2p

( ∑

ϕ(z)=v

|u(z)|2(1− |z|2)p
)
dA(v) ≤ C.



84 Yuan Cheng, Sanjay Kumar and Ze-Hua Zhou

For v ∈ D(ζ0, r0), using the fact |1− w0v| ≈ 1− |w|2 ≈ r0 again, we have

sup
ζ∈T

∫

D(ζ,r)

( ∑

ϕ(z)=v

|u(z)|2(1− |z|)p
)
dA(v) = O(r2+p).

This means that we can get (1) from the boundedness of uCϕ. ¤

Let u = 1, we have the following corollary on the boundedness of composition

operators on Dp

Corollary 1. Let ϕ be an analytic self-map of D and p ∈ (0,∞). Then Cϕ

is bounded on Dp if and only if

sup
ζ∈T

∫

D(ζ,r)

( ∑

ϕ(z)=v

(1− |z|)p
)
dA(v) = O(r2+p).

If we let ϕ(z) = z for all z ∈ D, then the following corollary follows imme-

diately.

Corollary 2. Let u ∈ Dp. For p ∈ (0,∞), consider the following three

properties that u may possess:

(a) u ∈ Qp;

(b) Mu is bounded on Dp;

(c) sup
ζ∈T

∫

D(ζ,r)

|u(z)|2(1− |z|)pdA(z) = O(r2+p).

Then any two of these properties implies the third.

Proof. Theorem 1 has shown that (b) and (c) are equivalent under the

assumption (a). We need to prove that (b) and (c) imply (a). Indeed, according

to [17], u is a multiplier onDp if and only if u is bounded and |u′(z)|2(1−|z|)pdA(z)
is a p-Carleson measure. It follows from Lemma 2 that u ∈ Qp. This completes

the proof. ¤

If Qp,0 stands for the space of all functions f ∈ Qp with

lim
|w|→1

∫

D

|f ′(z)|2(1− |ϕw(z)|2)pdA(z) = 0,

then Qp,0 is a closed subspace of Qp. Since kw converges to 0 weakly in Dp, we

have the little-o version of Theorem 1.
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Theorem 2. Let ϕ be an analytic self-map of D. For p ∈ (0,∞), suppose

u ∈ Qp,0. Then uCϕ is compact on Dp if and only if

r−2 sup
ζ∈T

∫

D(ζ,r)

( ∑

ϕ(z)=v

|u(z)|2(1− |z|)p
)
dA(v) = o(rp) as r → 0.

Corollary 3. Let ϕ be an analytic self-map of D and p ∈ (0,∞). Then Cϕ

is compact on Dp if and only if

r−2 sup
ζ∈T

∫

D(ζ,r)

( ∑

ϕ(z)=v

(1− |z|)p
)
dA(v) = o(rp) as r → 0.

Corollary 4. Let u ∈ Dp. For p ∈ (0,∞), consider the following three

properties that u may possess:

(a) u ∈ Qp,0;

(b) Mu is compact on Dp;

(c) r−2 sup
ζ∈T

∫

D(ζ,r)

|u(z)|2(1− |z|)pdA(z) = o(rp) as r → 0.

Then any two of these properties implies the third.

3. Weighted composition operators on Dq
p spaces

For 0 < q < ∞ and −1 < p < ∞, the spaces of Dirichlet type Dq
p consist of

those functions f holomorphic on D such that

‖f‖Dq
p
=

(
|f(0)|q +

∫

D

|f ′(z)|q(1− |z|2)pdA(z)
)1/q

< ∞.

Obviously, Dq
p is a generalization of Dp and in particular, when q = 2, Dq

p is

Dp. For more details about Dq
p, see, [1], [19], [20]. Further, Dq1

p ⊂ Dq2
p , if

1 ≤ q2 < q1. For detail about Dirichlet type spaces one can refer to [8], [9], [10]

and the references therein.

In this section we characterize boundedness and compactness of Dq
p by taking

different values of p and q.

Theorem 3. Let ϕ be an analytic self-map of D. For p ∈ (0,∞), suppose

u ∈ Dp
p−1 with |u′(z)|p(1 − |z|)p−1dA(z) is a Carleson measure. Then uCϕ is

bounded on Dp if and only if

sup
ζ∈T

∫

D(ζ,r)

( ∑

ϕ(z)=v

|u(z)|p(1− |z|)p−1

)
dA(v) = O(r2+p). (2)
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Theorem 4. Let ϕ be an analytic self-map of D. For 0 < q < ∞, q < p+ 2

and p > −1, let u ∈ Dq
p with |u′(z)|q(1− |z|)pdA(z) is a Carleson measure. Then

uCϕ is bounded operator on Dq
p if and only if

sup
ζ∈T

∫

D(ζ,r)

( ∑

ϕ(z)=v

|u(z)|q(1− |z|)p
)
dA(v) = O(r2+p). (3)

Theorem 5. Let ϕ be an analytic self-map of D. For 0 < q < ∞, q = p+ 2

and p > −1, let u ∈ Dq
p with |u′(z)|q(1−|z|2)pdA(z) is a Carleson measure. Then

uCϕ is bounded operator on Dq
p if and only if

sup
ζ∈T

∫

D(ζ,r)

( ∑

ϕ(z)=v

|u(z)|q(1− |z|)p
)
dA(v) = O(r2+p log

1

r2
). (4)

The proof of Theorem 3, Theorem 4 and Theorem 5 follows on similar lines

as proof of Theorem 1, with the following minor modifications:

For different values of p and q , we have the different test functions. If

0 < q < ∞, p > −1:

• For q < p+ 2 with q 6= p+ 1, the test function is

fz(w) =
(1− |z|2) p+2−q

q

(1− z̄w)
2p+4−2q

q

, |z| < 1.

• For q = p+ 1, the test function is

fz(w) =
(1− |z|2) 1

q

(1− z̄w)
2
q

, |z| < 1.

• If q = p+ 2, then

fz(w) =
log 1

1−zw

(log 1
1−|z|2 )

1
q

, |z| < 1.
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