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On Lagrange and Hermite interpolation
based on the Laguerre abscissas

By XIE-HUA SUN (Hangzhou)

Abstract. A two-sided uniformal estimate of the Lebesgue function for Lagrange
and Hermite interpolation based on the Laguerre abscissas is established and an im-
proved rate of convergence for Lagrange and Hermite interpolation is given.

1. Introduction

Let

L(α)
n (x) = ex x−α(e−xxn+α)(n)/n!, n = 1, 2, . . . .

be the Laguerre polynomial of degree n for α > −1, with the normalization

L(α)
n (0) =

(
n + α

n

)

and

(1.1) (0 <)x(α)
1n < x

(α)
2n < · · · < x(α)

nn

its zeros. We shall write xk instead of x
(α)
kn if there is no misunderstanding.

Freud [1] and Névai [2–4] studied Lagrange interpolation based on
nodes (1.1). Balázs [5] considered the Hermite interpolation of degree
n + α with the nodes (1.1) and 0, if α is an integer and f is α-time
differentiable on [0,∞):

(1.2) Qnα(f, x) =
n∑

k=1

f(xk)lk(x)(x/xk)α+1 +
α∑

i=0

f (i)(0)ri(x),
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where

lk(x) = L(α)
n (x)/(L′(α)

n (xk)(x− xk)), k = 1, . . . , n

and

ri(x) = xiL(α)
n (x)

/ (
i!
(

n + α

n

))
, i = 0, 1, . . . , α

with the properties

r
(s)
i (0) =

{
1, if s = i

0, if 0 ≤ s < i

and
ri(xk) = 0, for k = 1, . . . , n; i = 1, . . . , α.

If α = 0, Qn0(f, x) is the Lagrange interpolation. Balázs established
some estimates of degree of approximation for functions and their deriva-
tives by (1.2).

In this paper we shall first establish a two-sided uniformal estimate of
the Lebesgue function

Λ(α)
n (x) :=

n∑

k=1

|lk(x)|(x/xk)α+1 +
α∑

i=0

|ri(x)|

for the interpolation (1.2). Second, we will give degrees of approximation
of functions and their derivatives by (1.2) that improve results of [5].

Throughout the paper, 0(1) or c are always independent of n, x, f
and f (i) but may depend on α. The sign “An(x) ∼ Bn(x)” means that
there exist two constants 0 < c1 < c2 independent of n, x such that

c1Bn(x) ≤ An(x) ≤ c2Bn(x).

2. Main Results

Now we state our main results.

Theorem 2.1. The estimate

(2.1)
(
Λ(α)

n (x)− 1
)
∼





|L(α)
n (x)|(n 1

4−α/2 x
1
4+α/2(| log nx|+ 1) + n−α),

x ≥ x1

|L(α)
n (x)|(nxα+1 + n−αx),

0 ≤ x < x1

holds uniformly for 0 ≤ x ≤ ∆, where ∆ is an arbitrary but fixed positive
number.
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Corollary 2.2. The following estimate is valid:

(2.2)
∥∥∥Λ(α)

n (x)
∥∥∥

[0,∆]
= 0(log n).

Theorem 2.3. Let f ∈ Cr[0,∞)(r ≥ α, r = 0, 1, . . . ). Then we have
for 0 ≤ x ≤ ∆

(2.3) |f(x)−Qnα(f, x)| = 0(1)ω(f (r), n−
1
2 )(x

1
2 r + x

1
2 α+3/4)n−

1
2 r log n,

where ω(f (r), ·) is the modulus of continuity of f (r) on [0, xn].

Corollary 2.4. If f satisfies the condition

ω(f, n−
1
2 ) log n → 0 (n →∞),

on [0, xn], then Qnα(f, x) coverges uniformly to f(x) on every finite subin-
terval of [0,∞).

Theorem 2.5. Suppose f (r) ∈ C[0,∞)(0 ≤ α ≤ r, α integer). Then
we have

|f (i)(x)−Q(i)
nα(f, x)| = 0(1)ω(f (r), n−

1
2 )ni− 1

2 r log n

for 1 ≤ i ≤ [ 12α] and 0 ≤ x ≤ ∆.

3. Preliminaries and Lemmas

In order to prove our theorems, we need some known results:

xk ∼ k2/n (0 < xk ≤ 2∆) [6, (8.9.10)](3.1)

|L′(α)
n (xk)| ∼ x

− 1
2 α−3/4

k n
1
2 α+ 1

4 ∼ k−α−3/2nα+1 [6, (8.9.11)](3.2)

L(α)
n (x) =

{
x−

1
2 α− 1

4 0(n
1
2 α− 1

4 ), if cn−1 ≤ x ≤ ∆
0(nα), if 0 ≤ x ≤ cn−1

[6, (7.6.8)](3.3–4)

Lemma 3.1 [6,(14.7.5)]. The following equation is valid:

(3.5)
n∑

k=1

xm−1
k

(
L′(α)

n (xk)
)−2

= Γ(n + 1)Γ(m + α + 1)/Γ(n + α + 1)

(m ≤ 2n + 1)
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Lemma 3.2 [7]. Let

(3.6) |x− xj | = min
1≤k≤n

|x− xk|.

Then for 0 ≤ x, xk ≤ 2∆,

(3.7) |x− xk| ∼ |k2 − j2|/n (k 6= j)

holds.

Lemma 3.3 [7]. If cn−1 ≤ x ≤ 2∆, then

(3.8) x ∼ j2/n,

where j is defined by (3.6).

Lemma 3.4. The following estimate is valid for α > −1:

(3.9) x
1
2 α+ 1

4 |L(α)
n (x)| = 0(n

1
2 α− 1

4 ), 0 ≤ x ≤ 2∆.

Proof. (3.9) follows from (3.3)–(3.4). ¤

Lemma 3.5. If f ∈ Cr[0,∞), then there exists a polynomial Gn(f, x)
of degree n ≥ 4r + 5 such that

(3.10) |f (i)(x)−G(i)
n (f, x)|

= 0(1)ω(f (i),
√

x(xn − x)/n)(
√

x(xn − x)/n)r−i

for 0 ≤ x ≤ xn and i = 1, . . . , r.

The lemma is an obvious consequence of Gopengauz’s theorem [8].

4. Proofs of the Theorems

Proof of Theorem 2.1. Set x0 = 0. If x = xk (k = 0, 1, . . . , n), (2.1)
holds obviously. Now suppose x 6= xk (k = 0, 1, . . . , n). Since

Qnα(1, x) =
n∑

k=1

lk(x)(x/xk)α+1 + r0(x) = 1,

observing that for xm ≤ x < xm+1 (0 ≤ m ≤ n− 1)

sign lk(x) =
{

(−1)m+k+1, k > m

(−1)m+k, k ≤ m,
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where l0(x) means r0(x), then we have

Λ(α)
n (x)− 1 =

n∑

k=1

|lk(x)|(x/xk)α+1 +
α∑

i=0

|ri(x)|

−
n∑

k=1

lk(x)(x/xk)α+1 − r0(x)

=
n∑

k=1

(|lk(x)| − lk(x))(x/xk)α+1 +
α∑

i=0

|ri(x)| − r0(x)

=
m−1∑

k=1

(1− (−1)m+k)|lk(x)|(x/xk)α+1(4.1)

+
n∑

k=m+2

(1− (−1)m+k+1)|lk(x)|(x/xk)α+1

+

(
α∑

i=0

|ri(x)| − r0(x)

)
:= R1 + R2 + R3.

First suppose x1 ≤ x ≤ ∆. We have m = 0(
√

n) and j = 0(
√

n). Write
(4.2)

R2 =


 ∑

xk≤2∆

+
∑

xk>2∆


 (1− (−1)m+k+1)|lk(x)|(x/xk)α+1 := R21 + R22.

For R21, using (3.1)–(3.2) and (3.7),we get

R21 ∼ nxα+1|L(α)
n (x)|

∑

m+2≤k≤c
√

n

k−α− 1
2 |k2 − j2|−1

= nxα+1|L(α)
n (x)|


 ∑

m+2≤k≤2j

+
∑

2j+1≤k≤c
√

n


(4.3)

:= R′21 + R′′21.(4.4)

If 2j < m + 2, R′21 vanishes. Since j ≤ m + 2 ≤ k ≤ 2j, using (3.8), it
follows that

R′21 ∼ nxα+1|L(α)
n (x)|j−α−3/2

∑

m+2≤k≤2j

|k − j|−1

∼ nxα+1j−α−3/2|L(α)
n (x)| log j

∼ n−
1
2 α+ 1

4 x
1
2 α+ 1

4 |L(α)
n (x)| | log(nx)|(4.5)
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and

(4.6)
R′′21 ∼ nxα+1|L(α)

n (x)|
∑

2j+1≤k≤c
√

n

k−α−5/2

∼ nxα+1|L(α)
n (x)|j−α−3/2 ∼ n−

1
2 α+ 1

4 x
1
2 α+ 1

4 |L(α)
n (x)|.

Combining (4.4)–(4.6) yields

(4.7) R21 ∼ n−
1
2 α+ 1

4 x
1
2 α+ 1

4 |L(α)
n (x)|(| log(nx)|+ 1).

For R22, using (3.5), we get

R22 ≤ cxα+1|L(α)
n (x)|

∑

xk≥2∆

x−α−2
k |L′(α)

n (xk)|−1

≤ cxα+1|L(α)
n (x)|


 ∑

xk≥2∆

x−1
k

(
L′(α)

n (xk)
)−2




1
2


 ∑

k≥c
√

n

x−2α−3
k




1
2

≤ cn
1
4− 1

2 αxα+1|L(α)
n (x)| ≤ cn

1
4− 1

2 αx
1
4+ 1

2 α|L(α)
n (x)|.

(4.8)

Then combining (4.2) and (4.7)–(4.8) yields

(4.9) R2 ∼ n
1
4− 1

2 αx
1
4+ 1

2 α|L(α)
n (x)|(| log(nx)|+ 1).

For R1, we have

(4.10)

R1 ≤ 2xα+1|L(α)
n (x)|

m−1∑

k=1

(xα+1
k |L′(α)

n (xk)| |x− xk|)−1

≤ cnxα+1|L(α)
n (x)|

m−1∑

k=1

k−α−3/2|k − j|−1

≤ cnxα+1|L(α)
n (x)|




[ 12 j]∑

k=1

+
∑

[ 12 j]+1≤k≤m−1




≤ cnxα+1|L(α)
n (x)|

(
j−α−3/2 + j−α−3/2 log j

)

≤ cn−
1
2 α+ 1

4 x
1
2 α+ 1

4 |L(α)
n (x)| | log(nx)|.

It is clear that

(4.11) R3 ≤ cn−α|L(α)
n (x)|

α∑

i=0

xi/i! = 0(n−α|L(α)
n (x)|).
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Combining (4.1) and (4.9)–(4.11) yields (2.1) for x ≥ x1.
If 0 < x < x1, R1 vanishes in (4.1) and j = 1. From (4.3) and (4.8)

we obtain

(4.12) R21 ∼ nxα+1|L(α)
n (x)|

∑

2≤k≤c
√

n

(k2−1)−1 k−α− 1
2 ∼ nxα+1|L(α)

n (x)|

and

(4.13) R22 ∼ n
1
4− 1

2 α xα+1|L(α)
n (x)| ≤ nxα+1|L(α)

n (x)|.
Hence

(4.14) R2 ∼ nxα+1|L(α)
n (x)|.

Observing that r0(x) vanishes in this case, it is obvious that

(4.15) R3 ∼ n−α x|L(α)
n (x)|.

Finally, collecting (4.1) and (4.14)–(4.15) implies

(Λ(α)
n (x)− 1) ∼ x|L(α)

n (x)|(nxα + n−α) (0 ≤ x ≤ x1). ¤

Proof of Theorem 2.3. Applying (3.10) and the fact xn ≤ cn, we
have

|f (i)(x)−G(i)
n (f, x)| = 0(1)ω(f (r),

√
x/n)(

√
x/n)r−i.

Observing the invariability of Hermite interpolation (1.2) for a polynomial
of degree ≤ n + α, we obtain

|f(x)−Qnα(f, x)| ≤ |f(x)−Gn+α(f, x)|+ |Gn+α(f, x)−Qnα(f, x)|

= 0(1)

{
ω(f (r),

√
x/n)(

√
x/n)r

+
n∑

k=1

|f(xk)−Gn+α(f, xk)| |lk(x)|(x/xk)α+1

}

= 0(1)

{
ω(f (r), n−

1
2 )(x/n)

1
2 r

+
n∑

k=1

ω(f (r),
√

xk/n)(
√

xk/n)r|lk(x)|(x/xk)α+1

}
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= 0(1)ω(f (r), n−
1
2 )

{
(x/n)

1
2 r

+
n∑

k=1

(1 + x
1
2
k )(xk/n)

1
2 r|lk(x)|(x/xk)α+1

}

= 0(1)ω(f (r), n−
1
2 )



(x/n)

1
2 r +

∑

0<xk≤2∆

+
∑

xk>2∆





:= 0(1)ω(f (r), n−
1
2 )

{
(x/n)

1
2 r + r1 + r2

}
.(4.16)

Noting that xk ≤ 2∆ and using (3.1)–(3.2) and (3.7), it follows

r1 = 0(xα+1)n−
1
2 r|L(α)

n (x)|
∑

0<xk≤2∆
k 6=j

x
1
2 r−α−1

k (|L′(α)
n (xk)(x− xk)|)−1

+ n−
1
2 rxα+1x

1
2 r−α−1
j |lj(x)| := r11 + r12,(4.17)

and

r11 = 0(xα+1)n1−r|L(α)
n (x)|

[cn
1
2 ]∑

k=1, k 6=j

kr−α− 1
2 |k2 − j2|−1

= 0(xα+1)n1−r|L(α)
n (x)|




[ 12 j]∑

k=1

+
2j∑

k=[ 12 j]+1, k 6=j

+
[cn

1
2 ]∑

k=2j+1




= 0(xα+1)n1−r|L(α)
n (x)|(jr−α−3/2 + jr−α−3/2 log j+

+ max(n
1
2 r− 1

2 α−3/4, jr−α−3/2))

=

{
0(x

1
2 rn−

1
2 r log n), if r − α− 3/2 ≤ 0

0(x
1
2 α+3/4n−

1
2 r + x

1
2 rn−

1
2 r log n), if r − α− 3/2 > 0

= 0(n−
1
2 r log n)(x

1
2 r + x

1
2 α+3/4).(4.18)

For r12, if x ≥ c/n, using Lemma 3.3 and the fact xj ∼ x and lj(x) =
0(1), we get

r12 = 0(x
1
2 rn−

1
2 r) (x ≥ c/n).
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If 0 ≤ x < c/n, then j = 1 and

(4.19)
r12 = 0(xα+1)|L(α)

n (x)|n1−r = 0(x
1
2 α+3/4)(n−

1
2 rn−

1
2 r+ 1

2 α+3/4)

= 0(n−
1
2 r)(x

1
2 r + x

1
2 α+3/4) (x < c/n).

Combining (4.17)–(4.19) yields

(4.20) r1 = 0(n−
1
2 r log n)(x

1
2 r + x

1
2 α+3/4).

Colleting (2.1), (3.5) and (3.9), we get

r2 = 0(xα+1)|L(α)
n (x)|n− 1

2 r
∑

xk>2∆

xr
k(xα+3/2

k |L′(α)
n (xk)|)−1

= 0(xα+1n−
1
2 r)|L(α)

n (x)|
(

n∑

k=1

x2r
k (L′(α)

n (xk)−2

) 1
2




∑

k>[cn
1
2 ]

x−2α−3
k




1
2

= 0(x
1
2 α+3/4n−

1
2 r).(4.21)

Finally, collecting (4.16) and (4.20)–(4.21) yields (2.3). ¤

Proof of Theorem 2.5. Since the proof is similar to [5], we omit the
detail. ¤
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