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Improved arithmetic-geometric and Heinz means inequalities
for Hilbert space operators

By FUAD KITTANEH (Amman), MARIO KRNIĆ (Zagreb), NEDA LOVRIČEVIĆ (Split)

and JOSIP PEČARIĆ (Zagreb)

Abstract. The main objective of this paper is an improvement of the original

weighted operator arithmetic-geometric mean inequality in Hilbert space. We define

the difference operator between the arithmetic and geometric means, and investigate

its properties. Due to the derived properties, we obtain a refinement and a converse of

the observed operator mean inequality. As an application, we establish one significant

operator mean, which interpolates the arithmetic and geometric means, that is, the

Heinz operator mean. We also obtain an improvement of this interpolation.

1. Introduction

Let H be a Hilbert space and let Bh(H) be the semi-space of all bounded

linear self-adjoint operators on H. Further, let B+(H) and B++(H), respectively,

denote the sets of all positive and positive invertible operators in Bh(H). The

weighted operator arithmetic mean ∇ν and geometric mean ]ν , for ν ∈ [0, 1] and

A,B ∈ B++(H), are defined as follows:

A∇νB = (1− ν)A+ νB, (1)

A]νB = A
1
2

(
A− 1

2BA− 1
2

)ν
A

1
2 . (2)
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If ν = 1/2, we denote the arithmetic and geometric means, respectively, by ∇
and ].

Like in the classical case, the arithmetic-geometric mean inequality holds

A]νB ≤ A∇νB, ν ∈ [0, 1], (3)

with respect to operator order. The above definitions and properties will be valid

throughout the whole paper. For more details, see [3].

Both the classical and the operator arithmetic-geometric mean inequalities

lie in the fields of interest of numerous mathematicians. For example, Kittaneh

and Manasrah (see [5], [6]) obtained the following improvement of the classical

arithmetic-geometric mean inequality:

aνb1−ν +max{ν, 1− ν}(√a−
√
b
)2 ≥ νa+ (1− ν)b

≥ aνb1−ν +min{ν, 1− ν}(√a−
√
b
)2
, a, b ≥ 0, ν ∈ [0, 1]. (4)

The first inequality in (4) can be regarded as a converse, and the second one as

a refinement of the arithmetic-geometric mean inequality.

On the other hand, one remarkable mean, which interpolates the arithmetic

and geometric means is the so called Heinz mean Hν , defined by

Hν(a, b) =
aνb1−ν + a1−νbν

2
, a, b ≥ 0, ν ∈ [0, 1]. (5)

It is obvious that
√
ab ≤ Hν(a, b) ≤ (a + b)/2, and Kittaneh and Manasrah

[5], obtained the following improvement:

Hν(a, b) + min{ν, 1− ν}(√a−
√
b
)2 ≤ a+ b

2
, a, b ≥ 0, ν ∈ [0, 1]. (6)

Further, they (see [5]) gave some matrix variants of inequalities (4) and (6),

including trace and norms, that are also improvements of previously known matrix

inequalities, from the literature. For more details about matrix variants of the

arithmetic, geometric, Heinz means, and related inequalities, the reader is referred

to [1], [2], and [4].

In [7], one can find a matrix form of (3) which asserts that if B,C ∈ Mn(C)
are such that B is positive definite, C is invertible, A = C∗C, and ν ∈ [0, 1],then

C∗ (C∗−1BC−1
)ν

C ≤ A∇νB. (7)



Improved arithmetic-geometric and Heinz means inequalities. . . 467

Clearly, if C = A
1
2 , then C∗ (C∗−1BC−1

)ν
C = A]νB, so we may regard the

operator C∗ (C∗−1BC−1
)ν

C as a generalization of the geometric mean.

In [6], the authors obtained matrix extensions of relations (4) and (6) in view

of (3) and (7). For example, a matrix variant of (4), obtained in [6], claims that

if B,C ∈ Mn(C) are such that B is positive definite, C is invertible, A = C∗C,

and ν ∈ [0, 1], then

2max{ν, 1− ν}
[
A∇B − C∗ (C∗−1BC−1

) 1
2 C

]
≥A∇νB − C∗ (C∗−1BC−1

)ν
C

≥ 2min{ν, 1− ν}
[
A∇B − C∗ (C∗−1BC−1

) 1
2 C

]
. (8)

As distinguished from matrices in [5] and [6], we shall consider more general

approach in extensions of inequalities (4) and (6), described at the beginning

of this Introduction. Namely, we shall get operator extensions of all presented

inequalities in the Hilbert space setting.

For example, in [10], the reader can find several refinements and converses

of the operator arithmetic-geometric mean inequality. The same problem area is

also considered in [8], [9], and [11]. In addition, for a comprehensive inspection of

the recent results about inequalities for bounded self-adjoint operators on Hilbert

space, the reader is referred to [3].

The paper is organized in the following way: After this Introduction, In Sec-

tion 2 we deduce some auxiliary results, concerning interpolation of the classical

weighted arithmetic-geometric mean inequality. Such interpolating inequalities

will be used in obtaining our main results. Afterwards, in Section 3 we define

the operator difference between the arithmetic and geometric means in Hilbert

space, and prove its important properties of superadditivity and monotonicity.

These properties enable us to establish improvements, that is, a refinement and

a converse of operator arithmetic-geometric mean inequality (3). As an applica-

tion, in Section 4 we define the Heinz operator mean and obtain an extension of

relation (6) in Hilbert space.

The techniques that will be used in the proofs are mainly based on classical

real and functional analysis, especially on the well known monotonicity property

for operator functions.

2. Auxiliary results

To reach inequalities for bounded self-adjoint operators on Hilbert space,

we shall use the following monotonicity property for operator functions: If X ∈
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Bh(H) with a spectrum Sp(X) and f , g are continuous real-valued functions on

Sp(X), then

f(t) ≥ g(t), t ∈ Sp(X) =⇒ f(X) ≥ g(X). (9)

For more details about this property, the reader is referred to [3].

In the sequel, we have to obtain a refinement, that is, an interpolating ine-

quality for the classical weighted arithmetic-geometric mean inequality. For that

sake, we define the functional J : R2
+ × R2

+ → R+ by

J(x,p) = (p1 + p2) [A(x,p)−G(x,p)] , (10)

where x = (x1, x2), p = (p1, p2), and

A(x,p) =
p1x1 + p2x2

p1 + p2
, G(x,p) = (xp1

1 xp2

2 )
1

p1+p2 .

Obviously, functional (10) is non-negative. Its properties are contained in the

following result.

Lemma 1. If x,p,q ∈ R2
+, then functional (10) possess the following

properties:

(i) J (x, ·) is superadditive on R2
+, i.e.,

J (x,p+ q) ≥ J (x,p) + J (x,q) . (11)

(ii) If p,q ∈ R2
+ with p ≥ q (i.e., p1 ≥ q1, p2 ≥ q2), then

J (x,p) ≥ J (x,q) ≥ 0, (12)

i.e., J (x, ·) is increasing on R2
+.

Proof. (i) The expression J (x,p+ q) can be rewritten in the following

form:

J (x,p+ q) = (p1 + q1)x1 + (p2 + q2)x2

− (p1 + q1 + p2 + q2)
(
xp1+q1
1 xp2+q2

2

) 1
p1+q1+p2+q2

= (p1x1 + p2x2) + (q1x1 + q2x2)

− (p1 + p2 + q1 + q2)

(
x

p1
p1+p2
1 x

p2
p1+p2
2

) p1+p2
p1+p2+q1+q2

×
(
x

q1
q1+q2
1 x

q2
q1+q2
2

) q1+q2
p1+p2+q1+q2

. (13)
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On the other hand, by the arithmetic-geometric mean inequality, we have

(
x

p1
p1+p2
1 x

p2
p1+p2
2

) p1+p2
p1+p2+q1+q2

(
x

q1
q1+q2
1 x

q2
q1+q2
2

) q1+q2
p1+p2+q1+q2

≤ (p1 + p2)x
p1

p1+p2
1 x

p2
p1+p2
2 + (q1 + q2)x

q1
q1+q2
1 x

q2
q1+q2
2

p1 + p2 + q1 + q2
. (14)

Thus, relation (13), together with inequality (14), yields the inequality

J (x,p+ q) ≥ (p1 + p2)

[
p1x1 + p2x2

p1 + p2
− (xp1

1 xp2

2 )
1

p1+p2

]

+ (q1 + q2)

[
q1x1 + q2x2

q1 + q2
− (xq1

1 xq2
2 )

1
q1+q2

]
= J (x,p) + J (x,q) ,

that is, the superadditivity of J (x, ·) on R2
+.

(ii) Monotonicity follows easily from superadditivity. Since p ≥ q, we can rep-

resent the ordered pair p ∈ R2
+ as the sum of two ordered pairs in R2

+, namely

p = (p− q) + q. Now, from relation (11) we get

J (x,p) = J (x,p− q+ q) ≥ J (x,p− q) + J (x,q) .

Finally, since J (x,p− q) ≥ 0, it follows that J (x,p) ≥ J (x,q), which completes

the proof. ¤

As an immediate consequence of the monotonicity property (12), we obtain

lower and upper bounds for functional (10).

Corollary 1. If x,p ∈ R2
+, then

max{p1, p2}
(√

x1 −√
x2

)2 ≥ J (x,p) ≥ min{p1, p2}
(√

x1 −√
x2

)2
. (15)

Proof. We can compare the ordered pair p ∈ R2
+ with the constant ordered

pairs

pmax =
(
max{p1, p2},max{p1, p2}

)
and pmin =

(
min{p1, p2},min{p1, p2}

)
.

Clearly, pmax ≥ p ≥ pmin, hence, yet another use of property (12) yields an

interpolating series of inequalities:

J (x,pmax) ≥ J (x,p) ≥ J (x,pmin) .
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Now,

J (x,pmax) = 2max{p1, p2} [A(x,pmax)−G(x,pmax)]

= 2max{p1, p2}
[
x1 + x2

2
−√

x1x2

]
= max{p1, p2}

(√
x1 −√

x2

)2
,

and similarly, J (x,pmin) = min{p1, p2}
(√

x1 − √
x2

)2
, from which we get rela-

tion (15). ¤

Remark 1. It is obvious that the first inequality in (15), from the left, yields

a converse of the arithmetic-geometric mean inequality, while the second one

provides an appropriate refinement. In addition, if p1 + p2 = 1, then inequality

(15) becomes relation (4) from Introduction.

3. Main results

With the help of the results from Lemma 1 and Corollary 1, in this section,

we obtain a refinement and a converse of the operator arithmetic-geometric mean

inequality (3). Therefore, we have to establish the difference operator between

the arithmetic and geometric means in Hilbert space. In a more general manner,

we define the operator L : B++(H)× B−1(H)× R2
+ → B+(H) as

L(B,C,p) = (p1 + p2)
[
A∇ p1

p1+p2

B − C∗ (C∗−1BC−1
) p1

p1+p2 C
]
, (16)

where A = C∗C. Here, B−1(H) denotes the set of bounded linear invertible ope-

rators in the Hilbert space H. We have to justify the previous definition, i.e., to

conclude that L(B,C,p) is positive with respect to operator order. That will be

clarified in the sequel. Basic properties of the operator L are listed in our main

result.

Theorem 1. Suppose H is a Hilbert space, A,B ∈ B++(H), C ∈ B−1(H),

A = C∗C, and p,q ∈ R2
+. Then, operator (16) satisfies the following properties:

(i) L (B,C, ·) is superadditive on R2
+, that is,

L (B,C,p+ q) ≥ L (B,C,p) + L (B,C,q) . (17)

(ii) If p,q ∈ R2
+ with p ≥ q (i.e., p1 ≥ q1, p2 ≥ q2), then

L (B,C,p) ≥ L (B,C,q) ≥ 0, (18)

i.e., L (B,C, ·) is increasing on R2
+.
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Proof. (i) We use the monotonicity property (9) for operator functions and

property (11) from Lemma 1. Namely, if we substitute x1 = x and x2 = 1 in (11),

we get inequality

j(x,p+ q) ≥ j(x,p) + j(x,q), (19)

where

j(x,p) = p1x+ p2 − (p1 + p2)x
p1

p1+p2 . (20)

On the other hand, since B ∈ B++(H), C ∈ B−1(H) the operator C∗−1BC−1

is well defined and strictly positive. This means that spectrum Sp
(
C∗−1BC−1

)

is positive.

Now, since inequality (19) holds for all x ∈ R+, according to the monotonicity

property (9), we can replace x in (19) with C∗−1BC−1. We get the inequality

j
(
C∗−1BC−1,p+ q

) ≥ j
(
C∗−1BC−1,p

)
+ j

(
C∗−1BC−1,q

)
, (21)

where j
(
C∗−1BC−1,p

)
= p1C

∗−1BC−1 + p21H − (p1 + p2)
(
C∗−1BC−1

) p1
p1+p2 .

Here, 1H denotes the identity operator on the Hilbert space H.

In addition, if we multiply inequality (21) by C∗ on the left, and C on the

right, we get

C∗j
(
C∗−1BC−1,p+q

)
C ≥C∗j

(
C∗−1BC−1,p

)
C +C∗j

(
C∗−1BC−1,q

)
C. (22)

Finally, since

C∗j
(
C∗−1BC−1,p

)
C = p1B + p2C

∗C − (p1 + p2)C
∗ (C∗−1BC−1

) p1
p1+p2 C

= (p1 + p2)
[
A∇ p1

p1+p2

B − C∗ (C∗−1BC−1
) p1

p1+p2 C
]

= L (B,C,p) , (23)

relation (22) becomes (17), that is, L (B,C, ·) is superadditive on R2
+.

(ii) Monotonicity follows easily from the deduced superadditivity property. Since

p ≥ q, the ordered pair p ∈ R2
+ can be represented as the sum of two ordered

pairs in R2
+, that is, p = (p − q) + q. Now, from the superadditivity property

(17), we get

L (B,C,p) = L (B,C,p− q+ q) ≥ L (B,C,p− q) + L (B,C,q) .

At last, relation (23), together with property (9), ensures the positivity of the

operator L, that is, L (B,C,p− q) ≥ 0. It follows that L(B,C,p) ≥ L(B,C,q).

The proof of Theorem 1 is now completed. ¤
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Remark 2. If we consider the function j, defined by (20), for x ∈ R+ and

p1, p2 > 0, we easily conclude that j(x,p) = 0 if and only if x = 1. Now, taking

into account the proof of Theorem 1, we see that L(B,C,p) = 0 for p1, p2 > 0, if

and only if C∗−1BC−1 = 1H , that is, B = C∗C = A.

As an operator analogue of Corollary 1, we also get lower and upper bounds

for operator (16). That result is contained in the following statement.

Corollary 2. Suppose H is a Hilbert space, A,B ∈ B++(H), C ∈ B−1(H),

A = C∗C, and p ∈ R2
+. Then, operator (16) satisfies the following series of

inequalities:

2max{p1, p2}
[
A∇B − C∗ (C∗−1BC−1

) 1
2 C

]
≥ L (B,C,p)

≥ 2min{p1, p2}
[
A∇B − C∗ (C∗−1BC−1

) 1
2 C

]
. (24)

Proof. We use the same procedure as in the proof of Corollary 1, but on

the level of operators. We have, pmax ≥ p ≥ pmin, where pmax and pmin are

constant ordered pairs composed of the minimum and maximum numbers in p.

Now, the monotonicity property (18) implies the relation

L(B,C,pmax) ≥ L(B,C,p) ≥ L(B,C,pmin).

In addition,

L(B,C,pmax) = 2max{p1, p2}
[
A∇ max{p1,p2}

2max{p1,p2}
B − C∗ (C∗−1BC−1

) max{p1,p2}
2max{p1,p2} C

]

= 2max{p1, p2}
[
A∇B − C∗ (C∗−1BC−1

) 1
2 C

]
,

and similarly,

L(B,C,pmin) = 2min{p1, p2}
[
A∇B − C∗ (C∗−1BC−1

) 1
2 C

]
,

which completes the proof. ¤

Remark 3. Note that relations (18) and (24) are proved in the operator sett-

ing. These proofs could be established in another way, like the proof of property

(17), where we have used the monotonicity property for operator functions. More

precisely, we could apply property (9) to relations (12) and (15). Of course, as

a result, we would get relations (18) and (24) again. Moreover, we may regard

relations (17), (18), (24) as operator extensions of inequalities (11), (12), (15) in

Hilbert space. In addition, if H = Cn and p1+p2 = 1, then relation (24) becomes

relation (8) from Introduction.
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It is easy to see that Corollary 2 provides an improvement of the operator

arithmetic-geometric mean inequality.

Corollary 3. Let H be a Hilbert space, let A,B ∈ B++(H), and let p ∈ R2
+.

Then,

2max{p1, p2}[A∇B −A]B] ≥ J (A,B,p) ≥ 2min{p1, p2}[A∇B −A]B], (25)

where the operator J : B++(H)× B++(H)× R2
+ → B+(H) is defined by

J (A,B,p) = (p1 + p2)
[
A∇ p1

p1+p2

B −A] p1
p1+p2

B
]
. (26)

Proof. Follows immediately from relation (24) by replacing C with A
1
2 . ¤

Remark 4. Since J (A,B,p) represents the difference between the arithme-

tic and geometric operator means, the first inequality in (25) yields a converse

of inequality (3). On the other hand, the second inequality in (25) provides a

refinement of the operator inequality (3).

Remark 5. Note also that operator (26) possess the superadditivity and mo-

notonicity properties. Furthermore, according to Remark 2 and provided that

p1, p2 > 0, we see that J (A,B,p) = 0, i.e., A∇ p1
p1+p2

B = A] p1
p1+p2

B, if and only

if A = B.

4. Applications to Heinz means

In this section we apply our main results from Section 3 to the operator

Heinz means. According to the classical definition (5), the operator Heinz mean

is defined by

Hν(A,B) =
A]νB +A]1−νB

2
, (27)

where A,B ∈ B++(H), and ν ∈ [0, 1]. It is easy to show that, like in the classi-

cal case, the Heinz mean interpolates the arithmetic and geometric means, with

respect to operator order.

Proposition 1. If A,B ∈ B++(H), C ∈ B−1(H), A = C∗C, ν ∈ [0, 1], then

2C∗ (C∗−1BC−1
) 1

2 C

≤ C∗ (C∗−1BC−1
)ν

C + C∗ (C∗−1BC−1
)1−ν

C ≤ 2A∇B. (28)

In particular,

A]B ≤ Hν(A,B) ≤ A∇B. (29)
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Proof. By using Theorem 1, we have

C∗(C∗−1BC−1)νC + C∗(C∗−1BC−1)1−νC ≤ A∇νB +A∇1−νB = A+B,

which implies the second inequality in (28).

To obtain the other inequality in (28), we consider the inequality

xν + x1−ν ≥ 2
√
x,

which holds for all x ∈ R+. On the other hand, since the operator C∗−1BC−1

has a positive spectrum, according to rule (9), we can insert C∗−1BC−1 in above

inequality, i.e., we have

(
C∗−1BC−1

)ν
+
(
C∗−1BC−1

)1−ν ≥ 2
(
C∗−1BC−1

) 1
2 . (30)

Finally, if we multiply inequality (30) by C∗ on the left and C on the right, we

get the first inequality in (28).

At last, if we replace C with A
1
2 in (28), we obtain the series of inequalities

(29), which completes the proof. ¤

Remark 6. If ν ∈ 〈0, 1〉, then, according to Remark 2, it follows that equality

in the second inequality in (28) holds if and only if A = B. Similarly, from the

proof of Proposition 1, we see that equality in first inequality in (28) holds if and

only if A = B, provided that ν ∈ 〈0, 1〉 and ν 6= 1
2 . Of course, the same discussion

is valid for (29).

Concerning relation (6) from Introduction, we want to decrease the difference

between the arithmetic and Heinz means. For that sake, we have to establish the

operator that measures the difference between the arithmetic and Heinz means in

Hilbert space. We define the operator M : B++(H)×B−1(H)×R2
+ → B+(H) as

M(B,C,p) =
1

2
(p1 + p2)

×
[
2A∇B − C∗ (C∗−1BC−1

) p1
p1+p2 C − C∗ (C∗−1BC−1

) p2
p1+p2 C

]
, (31)

where A = C∗C. It follows immediately from (28) that M(B,C,p) is positive

with respect to operator order. Further, it is interesting that the operator M
possess the same properties as operators (16) and (26) from the previous section.

These properties are listed in the following theorem.
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Theorem 2. Suppose H is a Hilbert space, A,B ∈ B++(H), C ∈ B−1(H),

A = C∗C, and p,q ∈ R2
+. Then, operator (31) satisfies the following properties:

(i) M (B,C, ·) is superadditive on R2
+, that is,

M (B,C,p+ q) ≥ M (B,C,p) +M (B,C,q) . (32)

(ii) If p,q ∈ R2
+ with p ≥ q (i.e,. p1 ≥ q1, p2 ≥ q2), then

M (B,C,p) ≥ M (B,C,q) ≥ 0, (33)

i.e,. M (B,C, ·) is increasing on R2
+.

Proof. (i) We use the superadditivity property of operator L, defined by

(16), for ordered pairs p = (p1, p2) and q = (q1, q2):

L (B,C,p+ q) ≥ L (B,C,p) + L (B,C,q) . (34)

In addition, let us rewrite relation (34) with the ordered pairs p̃ = (p2, p1) and

q̃ = (q2, q1):

L (B,C, p̃+ q̃) ≥ L (B,C, p̃) + L (B,C, q̃) . (35)

Now, since

L (B,C,p) + L (B,C, p̃) = (p1 + p2)
[
A∇ p1

p1+p2

B − C∗ (C∗−1BC−1
) p1

p1+p2 C
]

+ (p1 + p2)
[
A∇ p2

p1+p2

B − C∗ (C∗−1BC−1
) p2

p1+p2 C
]

= (p1 + p2)

[
2A∇B − C∗ (C∗−1BC−1

) p1
p1+p2 C

− C∗ (C∗−1BC−1
) p2

p1+p2 C

]
= 2M (B,C,p) ,

we get the superadditivity of operator (31) by adding inequalities (34) and (35).

(ii) Monotonicity follows in the same way as in Lemma 1 or Theorem 1. Since

p ≥ q, the ordered pairs p− q and q have non-negative coordinates, which

implies the inequality

M (B,C,p) = M (B,C,p− q+ q) ≥ M (B,C,p− q) +M (B,C,q) .

Finally, since M (B,C,p− q) ≥ 0, it follows that M (B,C,p) ≥ M (B,C,q),

which completes the proof. ¤
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In the sequel, we apply the monotonicity property (33) to get lower and

upper bounds for the operator M.

Corollary 4. Suppose H is a Hilbert space, A,B ∈ B++(H), C ∈ B−1(H),

A = C∗C, and p ∈ R2
+. Then, operator (31) satisfies the following series of

inequalities:

(p1 + p2)
[
A∇B − C∗ (C∗−1BC−1

) 1
2 C

]
≥ M (B,C,p)

≥ 2min{p1, p2}
[
A∇B − C∗ (C∗−1BC−1

) 1
2 C

]
. (36)

Proof. The first inequality in (36) holds trivially, due to inequality (28).

To get the other inequality in (36), we compare the ordered pair p with constant

ordered pair pmin composed of the minimum number in p. Namely, since p ≥
pmin, the monotonicity property of the operator M implies the inequality

M (B,C,p) ≥ M (B,C,pmin) .

Finally, since

M (B,C,pmin) = min{p1, p2}
[
2A∇B − 2C∗ (C∗−1BC−1

) 1
2 C

]

= 2min{p1, p2}
[
A∇B − C∗ (C∗−1BC−1

) 1
2 C

]
,

we get the other inequality in (36), as well. ¤

Corollary 4 provides an improvement of the inequality between the arithmetic

and Heinz means. More precisely, we have the following result.

Corollary 5. Let H be a Hilbert space, let A,B ∈ B++(H), and let p ∈ R2
+.

Then,

(p1 + p2) [A∇B −A]B] ≥ R (A,B,p) ≥ 2min{p1, p2} [A∇B −A]B] , (37)

where the operator R : B++(H)× B++(H)× R2
+ → B+(H) is defined by

R(A,B,p) = (p1 + p2)
[
A∇B −H p1

p1+p2

(A,B)
]
. (38)

Proof. Follows immediately from relation (36) by replacing C with A
1
2 . ¤

Remark 7. It is obvious that operator (38) also possess the superadditivity

and monotonicity properties.
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Remark 8. The first inequality in (37) yields a converse of the arithmetic-

Heinz mean inequality, while the second one yields a refinement of that inequality.

Furthermore, we can regard the second inequality in (37) as an operator extension

of the classical inequality (6) in Hilbert space.

Remark 9. Note that in Corollaries 4 and 5 we do not consider the constant

ordered pair pmax. Let us explain why on the example of relation (37). Due to

the monotonicity property of the operator R, the relation pmax ≥ p implies the

inequality

2max{p1, p2} [A∇B −A]B] ≥ R (A,B,p) . (39)

Furthermore, if we denote r = 2max{p1, p2}/(p1 + p2), inequality (39) can be

rewritten in the form

H p1
p1+p2

(A,B) ≥ A]B − (r − 1) [A∇B −A]B] . (40)

Now, since r ≥ 1 and A∇B −A]B ≥ 0, inequality (40) is worse than the original

relationship between the Heinz and geometric means, i.e., H p1
p1+p2

(A,B) ≥ A]B.

That is, the reason why inequality (39) is omitted in the statement of Corollary 5.

Remark 10. It is interesting that the relationship between the geometric and

Heinz means can be deduced from the superadditivity property of the operator R.

Namely, if we use the mentioned property for the ordered pairs p = (p1, p2) and

p̃ = (p2, p1), we get

R (A,B,p+ p̃) ≥ R (A,B,p) +R (A,B, p̃) ,

i.e.,

2(p1 + p2)
[
A∇B −H 1

2
(A,B)

]
≥ (p1 + p2)

[
A∇B −H p1

p1+p2

(A,B)
]

+ (p1 + p2)
[
A∇B −H p2

p1+p2

(A,B)
]
.

Now, since H 1
2
(A,B) = A]B and H p1

p1+p2

(A,B) = H p2
p1+p2

(A,B), the previous

inequality reduces to the original relationship between the Heinz and geometric

means.
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Mond-Pečarić method and its applications, Development of Operator Theory and Problems
(Kyoto 2001), RIMS, Kokyuroku 1189 (2001), 1–9.
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