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Automorphisms on algebras of operator-valued Lipschitz maps

By MARÍA BURGOS (Jerez), A. JIMÉNEZ-VARGAS (Almeŕıa)

and MOISÉS VILLEGAS-VALLECILLOS (Puerto Real)

Abstract. Let Lip(X,B(H)) and lipα(X,B(H)) (0 < α < 1) be the big and

little Banach ∗-algebras of B(H)-valued Lipschitz maps on X, respectively, where X

is a compact metric space and B(H) is the C∗-algebra of all bounded linear opera-

tors on a complex infinite-dimensional Hilbert space H. We prove that every linear

bijective map that preserves zero products in both directions from Lip(X,B(H)) or

lipα(X,B(H)) onto itself is biseparating. We give a Banach–Stone type description for

the ∗-automorphisms on such Lipschitz ∗-algebras, and we show that the algebraic ref-

lexivity of the ∗-automorphism groups of Lip(X,B(H)) and lipα(X,B(H)) holds for H
separable.

1. Introduction

Let A be a Banach ∗-algebra. A continuous linear map Φ : A → A is a

local automorphism if for every a ∈ A, there exists an automorphism Φa of A,

possibly depending on a, such that Φ(a) = Φa(a). Similarly, a continuous linear

map Φ : A → A is an approximate local automorphism if for every a ∈ A, there

exists a sequence of automorphisms of A, {Φn}, that may depend on a, such that

Φ(a) = limn→∞ Φn(a).

Obviously, every automorphism of A is an (approximate) local automorp-

hism of A, but the converse is not true in general. Precisely, the automorphism
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group of A is said to be algebraically reflexive (topologically reflexive) if every

local automorphism (respectively, approximate local automorphism) of A is an

automorphism of A. Analogous definitions for ∗-automorphisms of A can be given.

The study of local automorphisms of Banach algebras was started by Larson

in [19, Some concluding remarks (5), p. 298], and since then they have been a

matter of interest, mainly in the theory of operator algebras. Concretely, if B(X)

is the algebra of all bounded linear operators on a complex infinite-dimensional

Banach space X, Larson and Sourour [20] proved that every surjective local

automorphism of B(X) is an automorphism. The real case was solved by Brešar

and Šemrl in [7]. Moreover, they showed in [8] that the automorphism group of

B(H) (no surjectivity is assumed now) is algebraically reflexive provided that H is

an infinite-dimensional separable Hilbert space. In fact, this group is topologically

reflexive as Molnár showed in [21]. Concerning local automorphisms on other

operator algebras, we refer to [3], [6], [22].

These results motivated further research on reflexivity in the setting of group

algebras and function algebras. Along this line, Molnár and Zalar, [24], stu-

died the algebraic reflexivity of the isometric automorphism group of the convolu-

tion algebra Lp(G) of a compact metric group G. Concerning function algebras,

Cabello Sánchez and Molnár investigated in [10] the reflexivity of the auto-

morphism group of Banach algebras of holomorphic functions, Fréchet algebras of

holomorphic functions, and algebras of continuous functions (see also [9]). In [11],

Cabello Sánchez proved that the automorphism group of L∞ is algebraically

reflexive. Recently, Botelho and Jamison [4] have studied the algebraic and

topological reflexivity properties of `p(X) spaces.

In this manuscript, we deal with the reflexivity of ∗-automorphisms on ∗-
algebras of big and little Lipschitz maps taking values in B(H), the C∗-algebra of

all bounded linear operators on a separable complex infinite-dimensional Hilbert

space H. Recently, Botelho and Jamison have established in [5], under a diffe-

rent approach, the algebraic reflexivity of the class of ∗-automorphisms preserving

the constant functions on algebras of B(H)-valued big Lipschitz maps.

The study of Banach algebras of complex-valued Lipschitz functions begins

with the works by Sherbert [26], [27]. We refer to Weaver’s book [28], mainly

Chapter 4, for a very comprehensive description of these algebras. The research

into spaces of vector-valued Lipschitz functions was initiated by Johnson in

[16]. He examined the Banach space properties of scalar-valued and Banach-

valued Lipschitz functions. Cao, Zhang and Xu [12] characterized Banach-

valued Lipschitz functions (known as Lipschitz α-operators in [12]), and studied

the Lipschitz extension of such functions.
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This paper is organized as follows. In Section 2 we introduce the big and little

Banach algebras (∗-algebras), Lipα(X,A) and lipα(X,A), where 0 < α ≤ 1, of

Lipschitz functions on a compact metric space X with values in a Banach algebra

(respectively, ∗-algebra) A. For α = 1, we write Lip(X,A) and lip(X,A).

Assuming that A is a prime unital Banach algebra, we prove in Section 3 that

every linear bijective map that preserves zero products in both directions from

Lip(X,A) or lipα(X,A) onto itself is biseparating. The proof uses a technique

introduced by Araujo and Jarosz in [2] to state an analogous result in the

setting of spaces of operator-valued continuous functions.

Section 4 deals with a Banach–Stone type description of the automorphisms

and ∗-automorphisms on Lip(X,B(H)) and lipα(X,B(H)) with α ∈ (0, 1) (no

separability is assumed now). Here we apply the results obtained in the preceding

section, and some results on biseparating linear maps between spaces of Banach-

valued Lipschitz functions established by Araujo and Dubarbie in [1], and

by the second and third author of the present manuscript in a joint work with

Wang, [15].

In Section 5, taking into account the characterization of the automorphisms

of Lip(X,C) and lipα(X,C) with α ∈ (0, 1) by Sherbert [26], we prove that they

are algebraically reflexive.

In the last section, we state the algebraic reflexivity of the ∗-automorphism

groups of the Banach ∗-algebras Lip(X,B(H)) and lipα(X,B(H)), with α ∈ (0, 1)

and H being now separable.

We must point out that our study is motivated by a very nice work by

Molnár and Győry, [23], concerning the algebraic reflexivity of the automorp-

hism group of the C∗-algebra C0(X,B(H)) of all continuous functions from X to

B(H) that vanish at infinity, where X is a locally compact Hausdorff space and

H is a separable complex infinite-dimensional Hilbert space.

2. Preliminaries and notation

Let X and Y be metric spaces. We will use the letter d to denote the distance

in any metric space. A map f : X → Y is Lipschitz if there exists a constant

k ≥ 0 such that

d(f(x), f(y)) ≤ k d(x, y), ∀x, y ∈ X.

The smallest k fulfilling this condition is the Lipschitz constant for f , and we

denote it by L(f). A map f : X → Y is a Lipschitz homeomorphism if f is

bijective, and both f and f−1 are Lipschitz.
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Let (X, d) be a compact metric space, α a real parameter in (0, 1], and E

a complex Banach space. Clearly, the set X with the distance dα, defined by

dα(x, y) = d(x, y)α, for all x, y ∈ X, is also a compact metric space.

The big Lipschitz space Lipα(X,E) is the Banach space of all functions f :

X → E such that

Lα(f) := sup

{‖f(x)− f(y)‖
d(x, y)α

: x, y ∈ X, x 6= y

}

is finite, endowed with the norm

‖f‖α := Lα(f) + ‖f‖∞ ,

where

‖f‖∞ := sup {‖f(x)‖ : x ∈ X} .
The little Lipschitz space lipα(X,E) is the norm-closed linear subspace of

Lipα(X,E) formed by all functions f satisfying the condition

∀ε > 0 ∃δ > 0 : x, y ∈ X, 0 < d(x, y) < δ ⇒ ‖f(x)− f(y)‖
d(x, y)α

< ε

(see [12, Theorem 2.1]). When α = 1, we will drop the subscript and write simply

Lip(X,E) and lip(X,E). For E = C, it is usual to denote Lipα(X) and lipα(X).

The space Lip(X) is contained in lipα(X) for any α ∈ (0, 1), contains the

constant functions, and separates the points of X [27, Proposition 1.6]. Howe-

ver, there are spaces lip(X) whose elements are all constant functions (for ins-

tance, lip[0, 1] with the usual metric). Consequently, the spaces Lip(X,E) and

lipα(X,E) with α ∈ (0, 1) contain the constant functions and separate points.

Notice that if g ∈ Lip(X) (g ∈ lipα(X)) and e ∈ E, the map g · e defined by sett-

ing g · e(x) = g(x)e for all x ∈ X, belongs to Lip(X,E) (respectively, lipα(X,E))

and ‖g · e‖α = ‖g‖α‖e‖.
Given a ∗-algebra A, it is straightforward to verify that Lipα(X,A) is a

Banach ∗-algebra with the multiplication and involution defined pointwise, and

lipα(X,A) is a norm-closed ∗-subalgebra of Lipα(X,A). We denote by Aut(A)

and Aut∗(A) the group of all automorphisms and the group of all ∗-automorphisms

of A, respectively.

For a metric space X and a Hilbert space H, the unity of Lip(X) and lip(X),

that is, the function constantly equal to 1 on X, is denoted by 1X , and the unity

of B(H), that is, the identity operator on H, by IH.

If E is a Banach space, L(E)−1 stands for the set of all linear bijections of E,

B(E) for the space of all bounded linear operators of E equipped with the operator

canonical norm, and Iso(E) for the group of all surjective linear isometries of E.
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For any f : X → E, let c(f) = {x ∈ X : f(x) 6= 0} denote its cozero set.

Throughout this paper, we will use the following family of Lipschitz functions

on a compact metric space X. For any x ∈ X and δ > 0, let hx,δ : X → [0, 1] be

defined by

hx,δ(z) = max

{
0, 1− d(z, x)

δ

}
(z ∈ X).

Clearly, hx,δ ∈ Lip(X), hx,δ(x) = 1, and hx,δ(z) = 0 if and only if d(z, x) ≥ δ.

In order to simplify the notation, from now on we denote by Fα(X,E) either

Lip(X,E) if α = 1 or lipα(X,E) if α ∈ (0, 1). Similarly, Fα(X) stands for Lip(X)

if α = 1 or lipα(X) if α ∈ (0, 1), and Fα(X)−1 denotes the set of all nowhere

vanishing functions in Fα(X).

3. Zero product preserving maps and separating maps between

Lipschitz algebras

Let X be a compact metric space. Given a Banach space E, a linear map Φ :

Fα(X,E) → Fα(X,E) is said to be separating if c(Φ(f)) ∩ c(Φ(g)) = ∅ whenever

f, g ∈ Fα(X,E) satisfy c(f) ∩ c(g) = ∅. Moreover, Φ is called biseparating if it is

bijective and both Φ and Φ−1 are separating maps.

Given a Banach algebra A, a linear map Φ : Fα(X,A) → Fα(X,A) preserves

zero products if fg = 0 implies Φ(f)Φ(g) = 0 for all f, g ∈ Fα(X,A). It is said

that Φ preserves zero products in both directions if it is bijective and both Φ and

Φ−1 preserve zero products.

Our main goal in this section is to show that every linear bijective map that

preserves zero products in both directions from Fα(X,B(H)) onto itself is bise-

parating. This fact will be a key tool to get a Banach–Stone type representation

for automorphisms of Fα(X,B(H)) in the next section.

Let X be a compact metric space and A be a unital Banach algebra with

unity 1A, and f ∈ Fα(X,A). We fix some additional notation according to [2]:

L(f) = {g ∈ Fα(X,A) : gf = 0} ,
R(f) = {g ∈ Fα(X,A) : fg = 0} ,
AI = {g ∈ Fα(X,A) : L(g) ⊂ R(g)} ,

C(f) = {g ∈ Fα(X,A) : R(f) ∩ AI ⊂ R(g)} .

For every f, g ∈ Fα(X,A), it is clear that fg = 0 whenever c(f) ∩ c(g) = ∅.
If A is prime (that is, aAb = {0} implies a = 0 or b = 0) and g lies in AI, the
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converse also holds. Indeed, assume fg = 0. If x ∈ c(f) ∩ c(g), then f(x) and

g(x) are nonzero elements in A. Since A is prime, there is a ∈ A \ {0} such that

g(x)af(x) 6= 0. Let h ∈ Fα(X,A) be given by h = (1X · a)f . It is clear that

hg = 0 and gh(x) = g(x)af(x) 6= 0. Hence g /∈ AI.
Lemma 3.1. Let X be a compact metric space and A be a unital Banach

algebra. For every f ∈ Fα(X,A), we have

C(f) ⊂
{
g ∈ Fα(X,A) : c(g) ⊂ int(c(f))

}
,

and the equality holds whenever A is prime.

Proof. Let f, g ∈ Fα(X,A) be such that c(g) is not included in int(c(f)).

Let us show that g /∈ C(f). We can choose x ∈ c(g), ε > 0 with B(x, ε) ⊂ c(g),

y ∈ B(x, ε) and δ > 0 such that B(y, δ) ∩ c(f) = ∅. As usual, B(x, ε) = {z ∈ X :

d(z, x) < ε}. Let h be the map hy,δ ·1A defined on X. It is clear that h ∈ AI and

c(h) = B(y, δ). Hence c(h)∩ c(f) = ∅ and, in particular, fh = 0. Nevertheless as

gh(y) = g(y) 6= 0, gh 6= 0, which proves that g /∈ C(f).

Notice that by the comments above, if A is prime, we have

C(f) = {g ∈ Fα(X,A) : for all h ∈ AI[c(f) ∩ c(h) = ∅ ⇒ c(g) ∩ c(h) = ∅]} .

Let g ∈ Fα(X,A) be for which c(g) ⊂ int(c(f)). Take h ∈ AI with c(f)∩c(h) = ∅.
Then c(f)∩c(h) = ∅ and thus int(c(f))∩c(h) = ∅. It follows that c(g)∩c(h) = ∅,
that is, g ∈ C(f). ¤

Lemma 3.2. Let X be a compact metric space and A be a unital Banach

algebra. If c(f1)∩c(f2) = ∅, then C(f1)∩C(f2) = {0} for every f1, f2 ∈ Fα(X,A).

The converse holds if A is prime.

Proof. Let f1, f2 ∈ Fα(X,A). By Lemma 3.1, if g ∈ C(f1) ∩ C(f2) and

g 6= 0, then ∅ 6= c(g) ⊂ int(c(f1))∩int(c(f2)). It follows easily that c(f1)∩c(f2) 6= ∅.
Conversely, if A is prime and c(f1) ∩ c(f2) 6= ∅, let x ∈ X and δ > 0 be so that

B(x, δ) ⊂ c(f1) ∩ c(f2). For g = hx,δ · 1A, it is clear that c(g) = B(x, δ) ⊂
int(c(f1)) ∩ int(c(f2)) and hence, by Lemma 3.1, g ∈ C(f1) ∩ C(f2). ¤

The following result is inspired in [2, Theorem 2].

Theorem 3.3. Let X be a compact metric space and let A be a prime

unital Banach algebra. Let Φ : Fα(X,A) → Fα(X,A) be a bijective linear map

preserving zero products in both directions. Then Φ is biseparating.
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Proof. As Φ is bijective and preserves zero products in both directions,

an easy verification shows that AI = Φ(AI) and C(Φ(f)) = Φ(C(f)) for every

f ∈ Fα(X,A).

Let f1, f2 ∈ Fα(X,A) be such that c(f1)∩c(f2) = ∅. By Lemma 3.2, C(f1)∩
C(f2) = {0}, that is, C(Φ(f1)) ∩ C(Φ(f2)) = {0}. As A is prime, we have also

c(Φ(f1)) ∩ c(Φ(f2)) = ∅. Hence Φ is separating. The same argument applied to

Φ−1 shows that Φ is biseparating. ¤

As a direct consequence we obtain the above announced result.

Corollary 3.4. Let X be a compact metric space and let H be a comp-

lex infinite-dimensional Hilbert space. Then every bijective linear map from

Fα(X,B(H)) onto itself that preserves zero products in both directions is bi-

separating.

4. Banach–Stone type representation of automorphisms

of Fα(X,B(H))

We describe the general form of the automorphisms and ∗-automorphisms on

Lipschitz ∗-algebras Fα(X,B(H)). For the little Lipschitz spaces we require the

next result on Lipschitz functional calculus.

Lemma 4.1. Let X be a compact metric space, E be a Banach space, and

α ∈ (0, 1). If h ∈ lipα(X,E) and ϕ : X → X is Lipschitz, then h◦ϕ ∈ lipα(X,E).

Proof. First observe that h ◦ ϕ ∈ Lipα(X,E) since

‖h(ϕ(x))− h(ϕ(y))‖ ≤ Lα(h)d(ϕ(x), ϕ(y))
α ≤ Lα(h)L(ϕ)

αd(x, y)α

for every x, y ∈ X. Now, let ε > 0 be given. Then there exists δ > 0 such that

x, y ∈ X, 0 < d(x, y) < δ ⇒ ‖h(x)− h(y)‖
d(x, y)α

<
ε

1 + L(ϕ)α
.

Let x, y ∈ X with 0 < d(x, y) < δ/(1 + L(ϕ)). If ϕ(x) 6= ϕ(y) (otherwise, the

result is trivial) then 0 < d(ϕ(x), ϕ(y)) < δ and

‖h(ϕ(x))− h(ϕ(y))‖
d(x, y)α

=
‖h(ϕ(x))− h(ϕ(y))‖

d(ϕ(x), ϕ(y))α
d(ϕ(x), ϕ(y))α

d(x, y)α

<
ε

1 + L(ϕ)α
L(ϕ)α < ε.

This shows that h ◦ ϕ ∈ lipα(X,E). ¤
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Let us recall that every ∗-automorphism of a C∗-algebra A is an isometry,

and every automorphism of A is continuous in the norm topology in A and its

norm equals the norm of its inverse (see, for example, [25, Corollary 1.2.6, Lem-

ma 4.1.12 and Proposition 4.1.13]). Therefore Aut∗(A) ⊂ Aut(A) ⊂ B(A). We

next consider these sets as metric spaces with the metric induced by the operator

canonical norm.

Theorem 4.2. Let X be a compact metric space, H be a complex infinite-

dimensional Hilbert space, and α ∈ (0, 1). A map Φ of lipα(X,B(H)) into

lipα(X,B(H)) is an automorphism if and only if there exist a unique Lipschitz

map τ from (X, dα) into Aut(B(H)) and a unique Lipschitz homeomorphism

ϕ : X → X such that

Φ(f)(x) = τ(x)(f(ϕ(x))) (f ∈ lipα(X,B(H)), x ∈ X). (1)

Moreover, if Φ : lipα(X,B(H)) → lipα(X,B(H)) is an automorphism, and τ :

X → Aut(B(H)) is the map given above, then Φ is a ∗-automorphism if and only

if τ(x) is a ∗-automorphism for every x ∈ X.

Proof. Let Φ : lipα(X,B(H)) → lipα(X,B(H)) be a map of the form (1)

with τ, ϕ being as in the statement above. It is straightforward to check that

Φ is linear, injective and multiplicative. Observe that τ ∈ Lipα(X,B(B(H))) by

hypothesis. We prove that τ ∈ lipα(X,B(B(H))). Indeed, by (1)

τ(x)(a) = Φ(1X · a)(x) (x ∈ X, a ∈ B(H)),

and since Φ(1X · a) ∈ lipα(X,B(H)), for every a ∈ B(H), the map τ(·)(a) belongs
to lipα(X,B(H)). From this we show that τ ∈ lipα(X,B(B(H))). Suppose to the

contrary that there exist ε > 0 and, for each n ∈ N, xn, yn ∈ X with xn 6= yn
such that d(xn, yn) → 0 as n → ∞, but

‖τ(xn)− τ(yn)‖
d(xn, yn)α

≥ ε

for all n. Then we can find some a ∈ B(H) with ‖a‖ = 1 such that

‖(τ(xn)− τ(yn)) (a)‖
d(xn, yn)α

≥ ε

2

for all n, and this says us that τ(·)(a) is not in lipα(X,B(H)), which is impossible.

It remains to show that Φ is surjective. To this end, pick h ∈ lipα(X,B(H))

and let f : X → B(H) be defined by

f(x) = τ(ϕ−1(x))−1(h(ϕ−1(x))) (x ∈ X).
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We only need to prove that f ∈ lipα(X,B(H)), since Φ(f) = h. Notice that for

any x, y ∈ X and a ∈ B(H)

∥∥(τ(x)−1 − τ(y)−1
)
(a)

∥∥ =
∥∥(τ(x)−1τ(y)τ(y)−1 − τ(x)−1τ(x)τ(y)−1

)
(a)

∥∥
≤ ‖τ(x)‖∥∥(τ(x)− τ(y))

(
τ(y)−1(a)

)∥∥ .

From this inequality, it follows that for every x, y ∈ X

‖f(x)− f(y)‖ = ‖τ(ϕ−1(x))−1(h(ϕ−1(x))− h(ϕ−1(y)))

+ (τ(ϕ−1(x))−1 − τ(ϕ−1(y))−1)(h(ϕ−1(y)))‖
≤ ‖τ(ϕ−1(x))‖‖h(ϕ−1(x))− h(ϕ−1(y))‖
+ ‖τ(ϕ−1(x))‖‖(τ(ϕ−1(x))− τ(ϕ−1(y)))(τ(ϕ−1(y))−1)(h(ϕ−1(y)))‖

≤ ‖τ‖∞‖h(ϕ−1(x))− h(ϕ−1(y))‖
+ ‖τ‖2∞‖τ(ϕ−1(x))− τ(ϕ−1(y))‖‖h ◦ ϕ−1‖∞

≤ ‖τ‖∞Lα(h ◦ ϕ−1)d(x, y)α + ‖τ‖2∞‖h ◦ ϕ−1‖∞Lα(τ)d(ϕ
−1(x), ϕ−1(y))α

≤ ‖τ‖∞Lα(h ◦ ϕ−1)d(x, y)α + ‖τ‖2∞‖h ◦ ϕ−1‖∞Lα(τ)L(ϕ
−1)αd(x, y)α.

Hence f ∈ Lipα(X,B(H)). Moreover, h ◦ ϕ−1 belongs to lipα(X,B(H)) and

τ ◦ ϕ−1 lies in lipα(X,B(B(H)) by Lemma 4.1, so the second inequality yields

f ∈ lipα(X,B(H)), as desired.

To prove the converse implication, we need some results from [15] on bise-

parating linear maps between spaces lipα(X,E), with 0 < α < 1. Let Φ be an

automorphism of lipα(X,B(H)). It is clear that Φ preserves zero products in both

directions, and according to Corollary 3.4, Φ is a biseparating linear map. Then,

by [15, Theorem 4.1], there exist a map τ : X → L(B(H))−1 and a homeomorp-

hism ϕ : X → X such that

Φ(f)(x) = τ(x)(f(ϕ(x))), ∀f ∈ lipα(X,B(H)), ∀x ∈ X.

Since Φ is a homomorphism, it follows easily that τ(x) is multiplicative for every

x ∈ X. Hence τ(x) ∈ B(B(H)) for all x ∈ X, and Φ is continuous by [15, Theorem

4.2]. Now, according to [15, Theorem 4.3], ϕ is a Lipschitz homeomorphism.

Moreover, as

τ(x)(a) = Φ(1X · a)(x) (x ∈ X, a ∈ B(H)),

for every x, y ∈ X and a ∈ B(H), we have

‖(τ(x)− τ(y)) (a)‖ = ‖Φ(1X · a)(x)− Φ(1X · a)(y)‖
≤ Lα(Φ(1X · a))d(x, y)α ≤ ‖Φ(1X · a)‖α d(x, y)α ≤ ‖Φ‖ ‖a‖ d(x, y)α.
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Hencefore ‖τ(x)− τ(y)‖ ≤ ‖Φ‖d(x, y)α for all x, y ∈ X, and thus τ is a Lipschitz

map from (X, dα) into Aut(B(H)).

To prove the uniqueness, assume that there are a Lipschitz map τ ′ from

(X, dα) into Aut(B(H)) and a Lipschitz homeomorphism ϕ′ : X → X such that

Φ(f)(x) = τ ′(x)(f(ϕ′(x))) for all x ∈ X and f ∈ lipα(X,B(H)). For any x ∈ X

and a ∈ B(H), it is clear that τ ′(x)(a) = Φ(1X · a)(x) = τ(x)(a) and thus τ ′ = τ .

Therefore, given any x ∈ X, we have τ(x)(f(ϕ′(x))) = τ(x)(f(ϕ(x))) for all

f ∈ lipα(X,B(H)), which yields f(ϕ′(x)) = f(ϕ(x)) for all f ∈ lipα(X,B(H)).

Since lipα(X,B(H)) separates the points of X, we infer that ϕ′(x) = ϕ(x). This

holds for every x ∈ X, and so we conclude that ϕ′ = ϕ.

We finish the proof by characterizing the ∗-automorphisms of lipα(X,B(H)).

Let Φ : lipα(X,B(H)) → lipα(X,B(H)) be an automorphism and let τ, ϕ be the

maps that permit us to express Φ in the form (1). Suppose first that Φ preserves

the involution in lipα(X,B(H)). Then, given x ∈ X, we have

τ(x)(a∗) = Φ(1X · a∗)(x) = Φ((1X · a)∗)(x)
= (Φ(1X · a))∗(x) = (Φ(1X · a)(x))∗ = (τ(x)(a))∗

for all a ∈ B(H), and therefore τ(x) is a ∗-automorphism. Conversely, assume

that τ(x) is a ∗-automorphism for every x ∈ X. Given f ∈ lipα(X,B(H)), we

have

Φ(f∗)(x) = τ(x)(f∗(ϕ(x))) = τ(x)((f(ϕ(x))∗)

= (τ(x)(f(ϕ(x))))∗ = (Φ(f)(x))∗ = (Φ(f))∗(x)

for every x ∈ X, and so Φ preserves the involution. ¤

The following result may be proved in the same way as Theorem 4.2. We only

need some facts from [1] on biseparating linear maps between spaces Lip(X,E).

Theorem 4.3. Let X be a compact metric space, and let H be a complex

infinite-dimensional Hilbert space. A map Φ : Lip(X,B(H)) → Lip(X,B(H))

is an automorphism if and only if there exist a unique Lipschitz map τ : X →
Aut(B(H)) and a unique Lipschitz homeomorphism ϕ : X → X such that Φ is of

the form

Φ(f)(x) = τ(x)(f(ϕ(x))) (f ∈ Lip(X,B(H)), x ∈ X).

Moreover, if Φ : Lip(X,B(H)) → Lip(X,B(H)) is an automorphism and τ : X →
Aut(B(H)) is the map given above, then Φ is ∗-preserving if and only if τ(x) is
∗-preserving for every x ∈ X.
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Proof. Just the “only if” part deserves some comment. Let Φ be an auto-

morphism of Lip(X,B(H)). By Corollary 3.4, Φ is biseparating. From [1, The-

orem 3.1], there are a map τ : X → L(B(H))−1 and a Lipschitz homeomorphism

ϕ : X → X so that

Φ(f)(x) = τ(x)(f(ϕ(x))), ∀f ∈ Lip(X,B(H)), ∀x ∈ X.

Since Φ is a homomorphism, τ(x) is multiplicative and thus continuous, for all

x ∈ X. Equivalently, the set Yd := {x ∈ X : τ(x) is discontinuous} is empty

and therefore Φ is continuous by [1, Theorem 3.4]. A glance at the comments

preceding [1, Proposition 3.2] reveals that

‖τ(x)− τ(y)‖ ≤ ‖Φ‖ d(x, y), ∀x, y ∈ X,

and thus τ : X → Aut(B(H)) is Lipschitz. The uniqueness of τ and ϕ is proved

similarly as in Theorem 4.2. ¤

For the proof of our results we also need the following well-known facts on

the general form of the automorphisms of Lip(X) and lipα(X) with 0 < α < 1.

Theorem 4.4. Let X be a compact metric space.

(1) [26, Corollary 5.2] A map Φ : Lip(X) → Lip(X) is an automorphism if

and only if there exists a Lipschitz homeomorphism ϕ : X → X such that

Φ(f) = f ◦ ϕ for every f ∈ Lip(X).

(2) [15, Corollary 5.3] Given α ∈ (0, 1), a map Φ : lipα(X) → lipα(X) is an

automorphism if and only if Φ is of the form Φ(f) = f ◦ϕ for all f ∈ lipα(X),

where ϕ is a Lipschitz homeomorphism of X.

5. Algebraic reflexivity of the automorphism group of Fα(X)

In this section we prove that Aut(Fα(X)) is algebraically reflexive. In view

of Theorem 4.4, note that Aut(Fα(X)) = Aut∗(Fα(X)).

Let us recall that for a compact metric space X, Sherbert proved in [26,

Theorem 5.1] that a map Φ : Lip(X) → Lip(X) is a unital homomorphism if

and only if there exists a Lipschitz map ϕ : X → X such that Φ(f) = f ◦ ϕ for

every f ∈ Lip(X). By using the same idea of the proof of this statement, we

can see that an analogous result holds for unital endomorphisms of lipα(X), with

0 < α < 1.
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Theorem 5.1. Let X be a compact metric space. Then the automorphism

group of Fα(X) is algebraically reflexive.

Proof. Let Φ be a local automorphism of Fα(X). Then, for each f ∈
Fα(X), there exists an automorphism Φf of Fα(X) so that Φ(f) = Φf (f). This

implies that Φ is injective. As Φf (1X) = 1X , for every f ∈ Fα(X), it follows that

Φ(1X) = Φ1X (1X) = 1X . By Theorem 4.4, there exists a Lipschitz homeomorp-

hism ϕf : X → X such that

Φf (g)(z) = g(ϕf (z)) (g ∈ Fα(X), z ∈ X).

In particular,

Φ(f)(z) = Φf (f)(z) = f(ϕf (z)) (z ∈ X).

Fix x ∈ X, and define the unital linear functional Φx : Fα(X) → C by

Φx(f) = Φ(f)(x), ∀f ∈ Fα(X).

Let f ∈ Fα(X)−1. Since Φx(f) = Φ(f)(x) = f(ϕf (x)), we have Φx(f) 6= 0. By

the Gleason–Kahane–Żelazko theorem [13], [17], we infer that Φx is multiplicative.

Hence Φ is a homomorphism, that is, there exists a Lipschitz map ϕ : X → X

such that

Φ(f)(z) = f(ϕ(z)) (f ∈ Fα(X), z ∈ X). (2)

We claim that ϕ is onto. Suppose, to the contrary, that there exists x ∈
X\ϕ(X). Then d(x, ϕ(X)) > 0 since ϕ(X) is closed. For δ = d(x, ϕ(X)), the

Lipschitz map hx,δ ∈ Lip(X) ⊂ Fα(X) satisfies hx,δ(ϕ(X)) = {0}. By (2),

Φ(hx,δ) = 0, but hx,δ(x) = 1, which contradicts the fact that Φ is linear and

injective.

To show that ϕ is injective, let x, y ∈ X be such that ϕ(x) = ϕ(y). Define

h : X → R by

h(z) = d(z, ϕ(x)), ∀z ∈ X.

Clearly, h belongs to Lip(X), and h(z) = 0 if and only if z = ϕ(x). Since Φ is a

local automorphism of Fα(X),

Φ(h)(z) = h(ϕh(z)) (z ∈ X), (3)

where ϕh is a Lipschitz homeomorphism of X. From (2) and (3), it follows

h(ϕh(x)) = Φ(h)(x) = h(ϕ(x)) = 0, h(ϕh(y)) = Φ(h)(y) = h(ϕ(y)) = 0.

This implies that ϕh(x) = ϕh(y) = ϕ(x), and as ϕh is injective, we get x = y.



Automorphisms on algebras of operator-valued Lipschitz maps 139

By taking into account Theorem 4.4, it remains to show that ϕ−1 : X → X

is Lipschitz to ensure that Φ is an automorphism of Fα(X). In order to prove

this, we follow the argument used by Botelho and Jamison in [4, Theorem 2.1].

Assume that ϕ−1 is not Lipschitz. Then there exist sequences {xn} and {yn} in

X, with xn 6= yn for all n, such that

lim
n→∞

d(ϕ(xn), ϕ(yn))

d(xn, yn)
= 0.

Let X̃ =
{
(x, y) ∈ X2 : x 6= y

}
, and let F : X̃ → R be defined by

F (x, y) =
d(ϕ(x), ϕ(y))

d(x, y)
.

Denote by βX̃ the Stone-Čech compactification of X̃, and by βF the unique

continuous extension of F to βX̃. By the compactness of βX̃, there exists a

subnet {(xi, yi)} converging to ξ ∈ βX̃. By using the continuity of βF , we have

βF (ξ) = 0. Moreover, ξ /∈ X̃ since F (x, y) 6= 0 for all (x, y) ∈ X̃. As X

is compact, taking subnets if necessary, we may assume that {xi} converges to

some x ∈ X and yi 6= x for all i. Define k : X → R by

k(z) = d(z, ϕ(x)), ∀z ∈ X.

Since Φ is a local automorphism of Fα(X), we get

Φ(k)(z) = k(ϕk(z)) (z ∈ X), (4)

for some Lipschitz homeomorphism ϕk : X → X. By applying (2) and (4), we

have

d(ϕ(z), ϕ(x)) = d(ϕk(z), ϕ(x)) (z ∈ X).

In particular, ϕk(x) = ϕ(x) and thus

d(ϕ(z), ϕ(x)) = d(ϕk(z), ϕk(x)) (z ∈ X).

Therefore
d(ϕ(yi), ϕ(x))

d(yi, x)
=

d(ϕk(yi), ϕk(x))

d(yi, x)
≥ 1

L(ϕ−1
k )

> 0

for all i. If we use that

|βF (yi, x)− βF (ξ)| ≤ |βF (yi, x)− βF (yi, xi)|+ |βF (yi, xi)− βF (ξ)|
for all i and the uniform continuity of βF , it follows that {βF (yi, x)} converges

to βF (ξ). Hence βF (ξ) ≥ 1/L(ϕ−1
k ), a contradiction. This proves that ϕ−1 is

Lipschitz, as desired. ¤
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6. Algebraic reflexivity of the ∗-automorphism group of Fα(X,B(H))

Our aim is to prove that the ∗-automorphism group of Fα(X,B(H)) is algeb-

raically reflexive whenever H is a separable complex infinite-dimensional Hilbert

space. We will use the following three lemmas. The first two appear essentially

in the manuscript by Győry and Molnár [23].

We begin by showing that the set of all scalar multiples of ∗-automorphisms

on B(H) is algebraically reflexive.

Lemma 6.1. Let H be a separable complex infinite-dimensional Hilbert

space. Let Ψ : B(H) → B(H) be a continuous linear map with the property that

for each a ∈ B(H), there exist λa ∈ C and τa ∈ Aut∗(B(H)) such that Ψ(a) =

λaτa(a). Then there exist λ ∈ C and τ ∈ Aut∗(B(H)) such that Ψ(a) = λτ(a) for

every a ∈ B(H).

Proof. Since the ∗-automorphisms of B(H) are both automorphisms and

surjective linear isometries, [23, Lemmas 2.3 and 2.4] ensure that there are λ1, λ2 ∈
C, τ1 ∈ Aut(B(H)) and τ2 ∈ Iso(B(H)) such that Ψ = λ1τ1 and Ψ = λ2τ2. If

λ1 = 0, then Ψ = 0 = 0IH. So we can assume that λ1 6= 0. Therefore τ1 =

(λ2/λ1)τ2. Since τ1 is unital, it follows that |λ2/λ1| = 1, and so τ1 ∈ Iso(B(H)).

According to [18, Lemma 8], τ1 is a ∗-automorphism of B(H), which proves the

lemma. ¤

Lemma 6.2. [23, Lemma 2.2]. Let H be a separable complex infinite-

dimensional Hilbert space. Let τ , τ1, τ2 be in Aut∗(B(H)), and let λ and

0 6= λ1, λ2 be in C satisfying that λτ(a) = λ1τ1(a) + λ2τ2(a) for every a ∈ B(H).

Then τ1 = τ2.

Lemma 6.3. Let X be a compact metric space and let E be a Banach

space. Then Fα(X,E) is the uniformly closed linear span of the set of functions

{g · e : g ∈ Fα(X), e ∈ E}.
Proof. Let f ∈ Fα(X,E) and ε > 0. For every x ∈ X the set

Ux =
{
y ∈ X : ‖f(y)− f(x)‖ <

ε

2

}

is open in X. Since X =
⋃

x∈X Ux and X is compact, there exist x1, . . . , xn ∈ X

such that X =
⋃n

k=1 Uxk
. Let {g1, . . . , gn} ⊂ Fα(X) be a partition of unity

on X subordinate to the open covering {Ux1 , . . . , Uxn} (see, for example, [14,

Lemma 2.2]). Thus, g1, . . . , gn are functions in Fα(X) from X into [0, 1] such

that
∑n

k=1 gk = 1X and supp(gk) ⊂ Uxk
for every k = 1, . . . , n. Here supp(gk)

denotes the closure of the cozero set of gk.
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Define fn =
∑n

k=1 gk · ek on X, where ek = f(xk) for every k = 1, . . . , n.

Clearly, fn ∈ Fα(X,E). Given x ∈ X and k ∈ {1, . . . , n}, we have either ‖f(x)−
ek‖ < ε/2 or gk(x) = 0. It follows that

‖f(x)− fn(x)‖ =

∥∥∥∥∥
n∑

k=1

gk(x) (f(x)− ek)

∥∥∥∥∥ ≤
n∑

k=1

gk(x) ‖f(x)− ek‖ <
ε

2
,

and thus ‖f − fn‖∞ < ε, as desired. ¤

We now are ready to state the last result of this paper.

Theorem 6.4. Let X be a compact metric space, and let H be a separable

complex infinite-dimensional Hilbert space. Then the ∗-automorphism group of

Fα(X,B(H)) is algebraically reflexive.

Proof. Let Φ be a local ∗-automorphism of Fα(X,B(H)), that is, Φ is a

continuous linear map satisfying that for every f ∈ Fα(X,B(H)), there is Φf ∈
Aut∗(Fα(X,B(H))) such that Φ(f) = Φf (f). In light of Theorems 4.2 and 4.3, for

every f ∈ Fα(X,B(H)) there are a Lipschitz map τf from (X, dα) into Aut∗(B(H))

and a Lipschitz homeomorphism ϕf : X → X such that

Φ(f)(x) = τf (x)(f(ϕf (x))) (x ∈ X). (5)

Since τf (x) is a linear isometry for every x ∈ X, we have

‖Φ(f)(x)‖ = ‖τf (x)(f(ϕf (x)))‖ = ‖f(ϕf (x))‖

for all x ∈ X, and hence ‖Φ(f)‖∞ = ‖f‖∞. Consequently, Φ preserves the

supremum norm.

Moreover, for every g ∈ Fα(X) there are a unique Lipschitz map τg·IH from

(X, dα) into Aut∗(B(H)) and a unique Lipschitz homeomorphism ϕg·IH : X → X

such that

Φ(g · IH)(x) = τg·IH(x)(g · IH(ϕg·IH(x)))

= g(ϕg·IH(x))τg·IH(x)(IH) = g(ϕg·IH(x))IH (x ∈ X). (6)

Let Ψ : Fα(X) → Fα(X) be the map given by Ψ(g) = g ◦ ϕg·IH for all

g ∈ Fα(X). By the uniqueness of ϕg·IH and (6), Ψ is well-defined and, clearly,

it is linear and continuous. Notice that Ψ is a local ∗-automorphism of Fα(X),

and since Aut∗(Fα(X)) is algebraically reflexive by Theorem 5.1, we deduce that
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there is a Lipschitz homeomorphism ϕ : X → X such that Ψ(g) = g ◦ ϕ for all

g ∈ Fα(X). Then we can rewrite (6) as

Φ(g · IH)(x) = g(ϕ(x))IH (g ∈ Fα(X), x ∈ X). (7)

Fix a function g ∈ Fα(X)−1 and a point x ∈ X, and consider Φg,x : B(H) →
B(H) defined by

Φg,x(a) = Φ(g · a)(x) (a ∈ B(H)). (8)

Clearly, Φg,x is linear and continuous. Since Φ is a local ∗-automorphism of

Fα(X,B(H)), from Theorems 4.2 and 4.3, for each a ∈ B(H) there exist a Lips-

chitz homeomorphism ϕa ofX, a complex number g(ϕa(x)) and a ∗-automorphism

τa(x) of B(H) such that

Φg,x(a) = Φ(g · a)(x) = τa(x)(g · a(ϕa(x))) = g(ϕa(x))τa(x)(a).

Then, by Lemma 6.1, there are λg,x ∈ C and τg,x ∈ Aut∗(B(H)) for which

Φg,x(a) = λg,xτg,x(a) (a ∈ B(H)). (9)

By using (7) and taking a = IH in (8) and (9), we deduce that

g(ϕ(x))IH = Φ(g · IH)(x) = λg,xτg,x(IH) = λg,xIH, (10)

and thus g(ϕ(x)) = λg,x. Now from (9), we obtain

Φ(g · a)(x) = g(ϕ(x))τg,x(a) (a ∈ B(H)).

Since g and x are arbitrary, we have proved that

Φ(g · a)(x) = g(ϕ(x))τg,x(a) (g ∈ Fα(X)−1, x ∈ X, a ∈ B(H)). (11)

Now let x ∈ X and g1, g2 ∈ Fα(X)−1. By (11) and (5), we get that

g1(ϕ(x))τg1,x(a) + g2(ϕ(x))τg2,x(a) = Φ(g1 · a)(x) + Φ(g2 · a)(x)
= Φ((g1 + g2) · a)(x) = (g1 + g2)(ϕ(g1+g2)·a(x))τ(g1+g2)·a(x)(a)

for every a ∈ B(H). By Lemma 6.2, it follows that τg1,x = τg2,x. Therefore

τ : X → Aut∗(B(H)) given by τ(x) = τg,x for some g ∈ Fα(X)−1 is well-defined.

From (11) we infer

Φ(g · a)(x) = τ(x)(g · a(ϕ(x))) (g ∈ Fα(X)−1, x ∈ X, a ∈ B(H)). (12)
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To see that τ is a Lipschitz map from (X, dα) into Aut∗(B(H)), let x, y ∈ X.

If we set g = 1X in (12), we have

‖(τ(x)− τ(y))(a)‖ = ‖Φ(1X · a)(x)− Φ(1X · a)(y)‖
≤ Lα(Φ(1X · a))d(x, y)α ≤ ‖Φ(1X · a)‖αd(x, y)α ≤ ‖Φ‖‖a‖d(x, y)α

for all a ∈ B(H), and thus ‖τ(x)− τ(y)‖ ≤ ‖Φ‖d(x, y)α.
Since every function in Fα(X) can be expressed as a linear combination of

functions in Fα(X)−1, from (12) we deduce

Φ(g · a)(x) = τ(x)(g · a(ϕ(x))) (g ∈ Fα(X), x ∈ X, a ∈ B(H)). (13)

As Φ is linear and continuous for the supremum norm, Lemma 6.3 together with

(13) yield

Φ(f)(x) = τ(x)(f(ϕ(x))) (f ∈ Fα(X,B(H)), x ∈ X).

In view of Theorems 4.2 and 4.3, Φ is a ∗-automorphism of Fα(X,B(H)), and the

proof is complete. ¤
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[8] M. Brešar and P. Šemrl, On local automorphisms and mappings that preserve idempo-
tents, Studia Math. 113 (1995), 101–108.

[9] F. Cabello Sánchez, Local isometries on spaces of continuous functions, Math. Z. 251
(2005), 735–749.

[10] F. Cabello Sánchez and L. Molnár, Reflexivity of the isometry group of some classical
spaces, Rev. Mat. Iberoamericana 18 (2002), 409–430.

[11] F. Cabello Sánchez, The group of automorphisms of L∞ is algebraically reflexive, Studia
Math. 161 (2004), 19–32.



144 M. Burgos, et al. : Automorphisms on algebras of operator-valued. . .

[12] H. X. Cao, J. H. Zhang and Z. B. Xu, Characterizations and extensions of Lipschitz-α
operators, Acta Math. Sin. (English Series) 22 (2006), 671–678.

[13] A. M. Gleason, A characterization of maximal ideals, J. Analyse Math. 19 (1967),
171–172.
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SPAIN

E-mail: maria.burgos@uca.es
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