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Automorphisms on algebras of operator-valued Lipschitz maps

By MARIA BURGOS (Jerez), A. JIMENEZ-VARGAS (Almeria)
and MOISES VILLEGAS-VALLECILLOS (Puerto Real)

Abstract. Let Lip(X,B(#H)) and lip,(X,B(H)) (0 < a < 1) be the big and
little Banach *-algebras of B(#)-valued Lipschitz maps on X, respectively, where X
is a compact metric space and B(H) is the C*-algebra of all bounded linear opera-
tors on a complex infinite-dimensional Hilbert space H. We prove that every linear
bijective map that preserves zero products in both directions from Lip(X,B(#)) or
lip,, (X, B(H)) onto itself is biseparating. We give a Banach—Stone type description for
the *-automorphisms on such Lipschitz *-algebras, and we show that the algebraic ref-
lexivity of the *-automorphism groups of Lip(X, B(#)) and lip, (X, B(?)) holds for H
separable.

1. Introduction

Let A be a Banach *-algebra. A continuous linear map ® : A — A is a
local automorphism if for every a € A, there exists an automorphism &, of A,
possibly depending on a, such that ®(a) = ®,(a). Similarly, a continuous linear
map ® : A — A is an approzimate local automorphism if for every a € A, there
exists a sequence of automorphisms of A, {®,,}, that may depend on a, such that
®(a) = lim, oo Pp(a).

Obviously, every automorphism of A is an (approximate) local automorp-
hism of A, but the converse is not true in general. Precisely, the automorphism
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group of A is said to be algebraically reflexive (topologically reflexive) if every
local automorphism (respectively, approximate local automorphism) of A is an
automorphism of A. Analogous definitions for *-automorphisms of A can be given.

The study of local automorphisms of Banach algebras was started by Larson
in [19, Some concluding remarks (5), p. 298], and since then they have been a
matter of interest, mainly in the theory of operator algebras. Concretely, if B(X)
is the algebra of all bounded linear operators on a complex infinite-dimensional
Banach space X, LARSON and SOUROUR [20] proved that every surjective local
automorphism of B(X) is an automorphism. The real case was solved by BRESAR
and SEMRL in [7]. Moreover, they showed in [8] that the automorphism group of
B(H) (no surjectivity is assumed now) is algebraically reflexive provided that H is
an infinite-dimensional separable Hilbert space. In fact, this group is topologically
reflexive as MOLNAR showed in [21]. Concerning local automorphisms on other
operator algebras, we refer to [3], [6], [22].

These results motivated further research on reflexivity in the setting of group
algebras and function algebras. Along this line, MOLNAR and ZALAR, [24], stu-
died the algebraic reflexivity of the isometric automorphism group of the convolu-
tion algebra L,(G) of a compact metric group G. Concerning function algebras,
CABELLO SANCHEZ and MOLNAR investigated in [10] the reflexivity of the auto-
morphism group of Banach algebras of holomorphic functions, Fréchet algebras of
holomorphic functions, and algebras of continuous functions (see also [9]). In [11],
CABELLO SANCHEZ proved that the automorphism group of L, is algebraically
reflexive. Recently, BOTELHO and JAMISON [4] have studied the algebraic and
topological reflexivity properties of £,(X) spaces.

In this manuscript, we deal with the reflexivity of *-automorphisms on *-
algebras of big and little Lipschitz maps taking values in B(#), the C*-algebra of
all bounded linear operators on a separable complex infinite-dimensional Hilbert
space H. Recently, BOTELHO and JAMISON have established in [5], under a diffe-
rent approach, the algebraic reflexivity of the class of *-automorphisms preserving
the constant functions on algebras of B(H)-valued big Lipschitz maps.

The study of Banach algebras of complex-valued Lipschitz functions begins
with the works by SHERBERT [26], [27]. We refer to Weaver’s book [28], mainly
Chapter 4, for a very comprehensive description of these algebras. The research
into spaces of vector-valued Lipschitz functions was initiated by JOHNSON in
[16]. He examined the Banach space properties of scalar-valued and Banach-
valued Lipschitz functions. CA0, ZHANG and XU [12] characterized Banach-
valued Lipschitz functions (known as Lipschitz a-operators in [12]), and studied
the Lipschitz extension of such functions.
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This paper is organized as follows. In Section 2 we introduce the big and little
Banach algebras (*-algebras), Lip,(X,.4) and lip,(X,.A), where 0 < o < 1, of
Lipschitz functions on a compact metric space X with values in a Banach algebra
(respectively, *-algebra) A. For a = 1, we write Lip(X, .A) and lip(X, A).

Assuming that A is a prime unital Banach algebra, we prove in Section 3 that
every linear bijective map that preserves zero products in both directions from
Lip(X,.A) or lip, (X,.A) onto itself is biseparating. The proof uses a technique
introduced by ARAUJO and JAROSZ in [2] to state an analogous result in the
setting of spaces of operator-valued continuous functions.

Section 4 deals with a Banach—Stone type description of the automorphisms
and *-automorphisms on Lip(X, B(#)) and lip, (X, B(H)) with a € (0,1) (no
separability is assumed now). Here we apply the results obtained in the preceding
section, and some results on biseparating linear maps between spaces of Banach-
valued Lipschitz functions established by ARAUJO and DUBARBIE in [1], and
by the second and third author of the present manuscript in a joint work with
WaNGg, [15].

In Section 5, taking into account the characterization of the automorphisms
of Lip(X, C) and lip,, (X, C) with a € (0,1) by SHERBERT [26], we prove that they
are algebraically reflexive.

In the last section, we state the algebraic reflexivity of the *-automorphism
groups of the Banach *-algebras Lip(X, B(#)) and lip, (X, B(H)), with o € (0,1)
and ‘H being now separable.

We must point out that our study is motivated by a very nice work by
MOLNAR and GYORY, [23], concerning the algebraic reflexivity of the automorp-
hism group of the C*-algebra Co(X, B(H)) of all continuous functions from X to
B(H) that vanish at infinity, where X is a locally compact Hausdorff space and
‘H is a separable complex infinite-dimensional Hilbert space.

2. Preliminaries and notation

Let X and Y be metric spaces. We will use the letter d to denote the distance
in any metric space. A map f : X — Y is Lipschitz if there exists a constant
k > 0 such that

The smallest & fulfilling this condition is the Lipschitz constant for f, and we

denote it by L(f). A map f : X — Y is a Lipschitz homeomorphism if f is
bijective, and both f and f~! are Lipschitz.
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Let (X,d) be a compact metric space, « a real parameter in (0,1], and E
a complex Banach space. Clearly, the set X with the distance d%, defined by
d*(z,y) = d(x,y)®, for all z,y € X, is also a compact metric space.

The big Lipschitz space Lip, (X, E) is the Banach space of all functions f :
X — FE such that

1/ (=) = FW)l

R

rx,y € X, v # y}
is finite, endowed with the norm

[flla = La(f) + 1l »

where
[flloo == sup{[lf(@)] : € X}.
The little Lipschitz space lip, (X, E) is the norm-closed linear subspace of

Lip, (X, E) formed by all functions f satisfying the condition

Ve>0 3>0:z,ye X, 0<d(z,y) < = M<E

d(z,y)*
(see [12, Theorem 2.1]). When « = 1, we will drop the subscript and write simply
Lip(X, E) and lip(X, E). For E = C, it is usual to denote Lip, (X) and lip, (X).

The space Lip(X) is contained in lip, (X) for any a € (0, 1), contains the
constant functions, and separates the points of X [27, Proposition 1.6]. Howe-
ver, there are spaces lip(X) whose elements are all constant functions (for ins-
tance, lip[0, 1] with the usual metric). Consequently, the spaces Lip(X, E) and
lip, (X, E) with a € (0,1) contain the constant functions and separate points.
Notice that if g € Lip(X) (g € lip,,(X)) and e € E, the map g - e defined by sett-
ing g-e(z) = g(x)e for all x € X, belongs to Lip(X, E) (respectively, lip, (X, E))
and ||g - ella = gllallell

Given a *-algebra A, it is straightforward to verify that Lip,(X,.A) is a
Banach *-algebra with the multiplication and involution defined pointwise, and
lip,, (X, .A) is a norm-closed *-subalgebra of Lip, (X, A). We denote by Aut(A)
and Aut*(A) the group of all automorphisms and the group of all *-automorphisms
of A, respectively.

For a metric space X and a Hilbert space H, the unity of Lip(X) and lip(X),
that is, the function constantly equal to 1 on X, is denoted by 1x, and the unity
of B(H), that is, the identity operator on H, by Iy.

If E is a Banach space, £(F)~! stands for the set of all linear bijections of E,
B(E) for the space of all bounded linear operators of E equipped with the operator
canonical norm, and Iso(F) for the group of all surjective linear isometries of E.
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For any f: X — E, let ¢(f) = {x € X : f(x) # 0} denote its cozero set.

Throughout this paper, we will use the following family of Lipschitz functions
on a compact metric space X. For any z € X and § > 0, let hy 5 : X — [0,1] be
defined by

hy s(z) = max {0, 1-— d(zé, 2) } (z € X).
Clearly, hy s € Lip(X), hys(x) =1, and hy s(z) = 0 if and only if d(z,z) > .

In order to simplify the notation, from now on we denote by F, (X, F) either
Lip(X,E) if a =1 or lip, (X, E) if a € (0,1). Similarly, F,(X) stands for Lip(X)
if @ =1 or lip,(X) if @ € (0,1), and Fo(X)~! denotes the set of all nowhere
vanishing functions in F, (X).

3. Zero product preserving maps and separating maps between
Lipschitz algebras

Let X be a compact metric space. Given a Banach space E, a linear map & :
Fo(X,E) = Fo(X, E) is said to be separating if ¢(®(f)) Ne(P(g)) = 0 whenever
fr9 € Fo(X, E) satisfy c(f) Ne(g) = 0. Moreover, @ is called biseparating if it is
bijective and both ® and ®~! are separating maps.

Given a Banach algebra A, a linear map @ : F, (X, A) = F, (X, A) preserves
zero products if fg = 0 implies ®(f)®(g) = 0 for all f,g € Fo(X, A). Tt is said
that ® preserves zero products in both directions if it is bijective and both ® and
®~! preserve zero products.

Our main goal in this section is to show that every linear bijective map that
preserves zero products in both directions from F, (X, B(#H)) onto itself is bise-
parating. This fact will be a key tool to get a Banach—Stone type representation
for automorphisms of F (X, B(H)) in the next section.

Let X be a compact metric space and A be a unital Banach algebra with
unity 14, and f € Fo(X,A). We fix some additional notation according to [2]:

L(f) ={g € Fa(X, A) : gf = 0},
R(f) ={g € Fa(X, A): fg =0},
AT ={g e Fo(X, A) : L(g) C R(9)},
C(f) ={g e Fa(X, A) : R(f) N AT C R(g)}.

For every f,g € Fo (X, A), it is clear that fg = 0 whenever ¢(f) Nc(g) = 0.
If A is prime (that is, a.Ab = {0} implies a = 0 or b = 0) and g lies in AZ, the
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converse also holds. Indeed, assume fg = 0. If z € ¢(f) N¢c(g), then f(x) and
g(x) are nonzero elements in A. Since A is prime, there is a € A\ {0} such that
g@)af(xz) # 0. Let h € Fo(X, A) be given by h = (1x - a)f. It is clear that
hg =0 and gh(z) = g(x)af(z) # 0. Hence g ¢ AT.

Lemma 3.1. Let X be a compact metric space and A be a unital Banach
algebra. For every f € F,(X,.A), we have

C(f) < {g € FalX, A) s clg) € int(e(D) }

and the equality holds whenever A is prime.

PROOF. Let f,g € Fo(X, A) be such that ¢(g) is not included in int(c(f)).
Let us show that g ¢ C(f). We can choose = € ¢(g), € > 0 with B(z,¢) C ¢(g),
y € B(x,e) and § > 0 such that B(y,d) Nc(f) = 0. As usual, B(z,e) ={z € X :
d(z,x) < €}. Let h be the map hy 5-1 4 defined on X. It is clear that h € AZ and
c(h) = B(y, ). Hence c(h) Oc(f) = () and, in particular, fh = 0. Nevertheless as
gh(y) = g(y) # 0, gh # 0, which proves that g ¢ C(f)
Notice that by the comments above, if A is prime, we have

C(f) ={g € Fa(X, A): for all h € AZ[c(f) Ne(h) =0 = c(g) Nec(h) = 0]} .

Let g € Fo (X, A) be for which ¢(g) C int(c(f)). Take h € AT with ¢(f)Ne(h)
Then ¢(f)Ne(h) = 0 and thus int(c(f )) c(h) = 0. It follows that c(g) Ne(h)
that is, g € C(f).

Il
Oo=s=

Lemma 3.2. Let X be a compact metric space and A be a unital Banach
algebra. If c(f1)Nc(f2) = 0, then C(f1)NC(f2) = {0} for every f1, f2 € Fo (X, A).
The converse holds if A is prime.

PROOF. Let fi, fo € Fo(X,A). By Lemma 3.1, if g € C(f1) N C(f2) and
g # 0, then @ # ¢(g) C int(c(f1))Nint(c(f2)). It follows easily that ¢(f1)Ne(f2) # 0.
Conversely, if A is prime and ¢(f1) Ne(fz) #0, let 2 € X and § > 0 be so that
B(z,0) C ¢(f1) Nc(fz). For g = hys - 14, it is clear that ¢(g) = B(z,d) C
int(c(f1)) Nint(e(f2)) and hence, by Lemma 3.1, g € C(f1) N C(f2). O

The following result is inspired in [2, Theorem 2].

Theorem 3.3. Let X be a compact metric space and let A be a prime
unital Banach algebra. Let ® : F,(X,A) — F,(X,A) be a bijective linear map
preserving zero products in both directions. Then ® is biseparating.
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PRrOOF. As @ is bijective and preserves zero products in both directions,
an easy verification shows that AZ = ®(AZ) and C(®(f)) = ®(C(f)) for every
fEFLX,A).

Let f1, fo € Fa(X, .A) be such that C(fl) ﬂc(fg) =0. By Lemma 3.2, O(fl) N
C(f2) = {0}, that is, C(®(f1)) N C(D(f2)) = {0}. As A is prime, we have also
c(@(f1)) Ne(P(f2)) = 0. Hence @ is separating. The same argument applied to
®~! shows that ® is biseparating. O

As a direct consequence we obtain the above announced result.

Corollary 3.4. Let X be a compact metric space and let H be a comp-
lex infinite-dimensional Hilbert space. Then every bijective linear map from
Fo(X,B(H)) onto itself that preserves zero products in both directions is bi-
separating.

4. Banach—Stone type representation of automorphisms
of Fo(X, B(H))

We describe the general form of the automorphisms and *-automorphisms on
Lipschitz *-algebras F, (X, B(#)). For the little Lipschitz spaces we require the
next result on Lipschitz functional calculus.

Lemma 4.1. Let X be a compact metric space, E be a Banach space, and
€(0,1). If h € lip,(X, E) and v : X — X is Lipschitz, then hop € lip (X, E).

PROOF. First observe that ho ¢ € Lip, (X, E) since

[h(p()) = M)l < La(h)d(p(2), (y))* < La(h)L(¢)*d(x, y)*
for every z,y € X. Now, let € > 0 be given. Then there exists § > 0 such that

Ih(z) =Ryl _ ¢
d(z, y)* 1+ L(g)™

Let z,y € X with 0 < d(z,y) < §/(1 + L(g)). If o(x) # ¢(y) (otherwise, the
result is trivial) then 0 < d(¢(x), p(y)) < § and

z,y€e X, 0<d(z,y) < =

1A (p(x)) — o@D _ [Ih(e(x)) — hle(y))| dle(z), p(y)”
d(z,y)" d(p(), p(y))> d(z,y)>
mL(gp)a <e.

This shows that ho ¢ € lip, (X, E). O
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Let us recall that every *-automorphism of a C*-algebra A is an isometry,
and every automorphism of A is continuous in the norm topology in A4 and its
norm equals the norm of its inverse (see, for example, [25, Corollary 1.2.6, Lem-
ma 4.1.12 and Proposition 4.1.13]). Therefore Aut*(A) C Aut(A) C B(A). We
next consider these sets as metric spaces with the metric induced by the operator
canonical norm.

Theorem 4.2. Let X be a compact metric space, H be a complex infinite-
dimensional Hilbert space, and « € (0,1). A map ® of lip,(X,B(H)) into
lip, (X, B(H)) is an automorphism if and only if there exist a unique Lipschitz
map 7 from (X,d*) into Aut(B(H)) and a unique Lipschitz homeomorphism
@ : X — X such that

(f)(x) = m(@)(f(p(x)) (f €lipo (X, B(H)), = € X). (1)

Moreover, if ® : lip, (X, B(H)) — lip,(X,B(H)) is an automorphism, and T :
X — Aut(B(H)) is the map given above, then ® is a *-automorphism if and only
if 7(x) is a *-automorphism for every x € X.

PRrROOF. Let @ : lip, (X, B(H)) — lip,(X,B(H)) be a map of the form (1)
with 7,¢ being as in the statement above. It is straightforward to check that
® is linear, injective and multiplicative. Observe that 7 € Lip, (X, B(B(#))) by
hypothesis. We prove that 7 € lip, (X, B(B(#))). Indeed, by (1)

7(z)(a) = ®(1x -a)(z) (v € X, a € B(H)),

and since ®(1x -a) € lip, (X, B(H)), for every a € B(H), the map 7(-)(a) belongs
to lip, (X, B(H)). From this we show that 7 € lip, (X, B(B(#))). Suppose to the
contrary that there exist € > 0 and, for each n € N, z,,,y, € X with z,, # y,
such that d(z,,y,) — 0 as n — oo, but

I7(zn) = T(yn)ll o

> e
d(xp, yn)®

for all n. Then we can find some a € B(H) with ||a]| = 1 such that
[(7(zn) = 7(yn)) (@) €
d(2n, yn)™ T2

for all n, and this says us that 7(-)(a) is not in lip,, (X, B(H)), which is impossible.
It remains to show that ® is surjective. To this end, pick h € lip (X, B(H))
and let f: X — B(H) be defined by

fl@) =17 (@) (h(e™ (@) (v € X).
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We only need to prove that f € lip, (X, B(H)), since ®(f) = h. Notice that for
any z,y € X and a € B(H)

[(r(@) ™" = 7)) @] = [ (r(2) @) r(y) ™ = (@) (@) 7(y) ) ()]
< llr@| |(r(z) = () (r(») " (@) ||

From this inequality, it follows that for every z,y € X

1£ @) = F@)l = (™" (@) 7 (h(e™ (2)) = A~ ()
(e @) =T W) T (e W)
< It @NlIh(e™ (@) = ke~ W)
)

(
@ @D (™ (@) = 7@ W)™ () " (e W)
< I7llselible™ (@) = hle™ W)
2T~ @) = (e )R o o™ oo
< I7llooLa(h o ™) d(@, y)* + [ITlI3 17 0 9™ s La(T)d(e™ (), 0~ (1))
< IrllsoLa(ho o™ )d(@,y)* + ITl3]1h 0 ¢ oo La (T) L ™) *d(z, y)*

Hence f € Lip,(X,B(H)). Moreover, h o ¢~ belongs to lip, (X, B(H)) and
70 ¢ ! lies in lip, (X, B(B(#)) by Lemma 4.1, so the second inequality yields
f €lip, (X, B(H)), as desired.

To prove the converse implication, we need some results from [15] on bise-
parating linear maps between spaces lip, (X, E), with 0 < o < 1. Let ® be an
automorphism of lip,, (X, B(H)). It is clear that ® preserves zero products in both
directions, and according to Corollary 3.4, @ is a biseparating linear map. Then,
by [15, Theorem 4.1], there exist a map 7: X — L(B(H))~! and a homeomorp-
hism ¢ : X — X such that

O(f)(z) = m(2)(f(e(x)), V[ €lip,(X,B(H)), V€ X.

Since ® is a homomorphism, it follows easily that 7(z) is multiplicative for every
x € X. Hence 7(x) € B(B(H)) for all z € X, and ® is continuous by [15, Theorem
4.2]. Now, according to [15, Theorem 4.3], ¢ is a Lipschitz homeomorphism.

Moreover, as
7(z)(a) = ®(1x -a)(z) (z € X, a€ B(H)),

for every z,y € X and a € B(H), we have

[(r(z) = 7(y)) (@)]| = [|®(1x - a)(z) = D(1x - a)(y)]|
< La(®(Lx - a))d(z,y)" < [|®(1x - a)ll, d(z,y)* <[|®[|[all d(z,y)*.
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Hencefore ||7(x) — 7(y)|| < ||®||d(z,y)* for all ,y € X, and thus 7 is a Lipschitz
map from (X, d*) into Aut(B(H)).

To prove the uniqueness, assume that there are a Lipschitz map 7’ from
(X,d*) into Aut(B(#)) and a Lipschitz homeomorphism ¢’ : X — X such that
O(f)(x) =7'(x)(f(¢'(x))) for all z € X and f € lip, (X, B(H)). For any z € X
and a € B(H), it is clear that 7/(z)(a) = ®(1x - a)(x) = 7(x)(a) and thus 7/ = 7.
Therefore, given any = € X, we have 7(z)(f(¢'(x))) = 7(z)(f(p(z))) for all
f € lip, (X, B(H)), which yields f(¢'(z)) = f(p(x)) for all f € lip, (X, B(H)).
Since lip,, (X, B(H)) separates the points of X, we infer that ¢’(z) = ¢(x). This
holds for every x € X, and so we conclude that ¢ = .

We finish the proof by characterizing the *-automorphisms of lip,, (X, B(H)).
Let @ : lip, (X, B(H)) — lip, (X, B(H)) be an automorphism and let 7, ¢ be the
maps that permit us to express ® in the form (1). Suppose first that ® preserves
the involution in lip, (X, B(#)). Then, given x € X, we have

7(z)(a”) = ®(1x - a”)(2) = ®((1x - a)")()
= (®(1x - a))*(z) = (2(1x - a)(z))" = (1(2)(a))*
for all @ € B(#), and therefore 7(x) is a *-automorphism. Conversely, assume

that 7(z) is a *-automorphism for every x € X. Given f € lip,(X,B(H)), we
have

(f)(x) = (@) (f*(p(2))) = 7(2)((f(p())")

for every z € X, and so ® preserves the involution. (I

The following result may be proved in the same way as Theorem 4.2. We only
need some facts from [1] on biseparating linear maps between spaces Lip(X, E).

Theorem 4.3. Let X be a compact metric space, and let H be a complex
infinite-dimensional Hilbert space. A map ® : Lip(X,B(H)) — Lip(X, B(#H))
is an automorphism if and only if there exist a unique Lipschitz map 7 : X —
Aut(B(#H)) and a unique Lipschitz homeomorphism ¢ : X — X such that ® is of
the form

(f)(x) = m(2)(f(p(x))) (f € Lip(X,B(H)), = € X).

Moreover, if ® : Lip(X, B(H)) — Lip(X, B(H)) is an automorphism and 7 : X —
Aut(B(H)) is the map given above, then ® is *-preserving if and only if T(x) is
*-preserving for every x € X.
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PROOF. Just the “only if” part deserves some comment. Let ® be an auto-
morphism of Lip(X, B(H)). By Corollary 3.4, ® is biseparating. From [1, The-
orem 3.1], there are a map 7: X — L(B(#H))~! and a Lipschitz homeomorphism
@ : X — X so that

(f)(x) = 7(2)(f((x))), VfeLip(X,B(H)), Vo € X.

Since ® is a homomorphism, 7(z) is multiplicative and thus continuous, for all
x € X. Equivalently, the set Yy := {x € X : 7(x) is discontinuous} is empty
and therefore ® is continuous by [1, Theorem 3.4]. A glance at the comments
preceding [1, Proposition 3.2] reveals that

[r(z) =)l < [I®ld(z,y), Vr,ye€ X,

and thus 7 : X — Aut(B(#)) is Lipschitz. The uniqueness of 7 and ¢ is proved
similarly as in Theorem 4.2. O

For the proof of our results we also need the following well-known facts on
the general form of the automorphisms of Lip(X) and lip,,(X) with 0 < a < 1.

Theorem 4.4. Let X be a compact metric space.

(1) [26, Corollary 5.2] A map ® : Lip(X) — Lip(X) is an automorphism if
and only if there exists a Lipschitz homeomorphism ¢ : X — X such that
O(f) = f o for every f € Lip(X).

(2) [15, Corollary 5.3] Given o € (0,1), a map ® : lip, (X) — lip,(X) is an
automorphism if and only if ® is of the form ®(f) = fop for all f € lip,, (X),
where ¢ is a Lipschitz homeomorphism of X .

5. Algebraic reflexivity of the automorphism group of F, (X)

In this section we prove that Aut(F,(X)) is algebraically reflexive. In view
of Theorem 4.4, note that Aut(F, (X)) = Aut™ (F(X)).

Let us recall that for a compact metric space X, Sherbert proved in [26,
Theorem 5.1] that a map ® : Lip(X) — Lip(X) is a unital homomorphism if
and only if there exists a Lipschitz map ¢ : X — X such that ®(f) = f o ¢ for
every f € Lip(X). By using the same idea of the proof of this statement, we
can see that an analogous result holds for unital endomorphisms of lip,, (X), with
0<a<l
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Theorem 5.1. Let X be a compact metric space. Then the automorphism
group of F,(X) is algebraically reflexive.

PROOF. Let ® be a local automorphism of F,(X). Then, for each f €
Fo(X), there exists an automorphism ®; of F,(X) so that ®(f) = ®&4(f). This
implies that ® is injective. As ®;(1x) = 1x, for every f € Fo(X), it follows that
®(lx) = P1,(1x) = 1x. By Theorem 4.4, there exists a Lipschitz homeomorp-
hism ¢ : X — X such that

Dr(9)(2) = g9(er(2)) (9 € Fa(X), z € X).
In particular,

O(f)(2) = 5(f)(2) = flps(2)) (2 €X).
Fix € X, and define the unital linear functional ®, : F,(X) — C by

(I)z(f):q)(f)(x)a vaFa(X)'

Let f € Fo(X)™!. Since @,(f) = ®(f)(z) = f(ps(x)), we have ®,(f) # 0. By
the Gleason-KahaneZelazko theorem [13], [17], we infer that ®,, is multiplicative.
Hence ® is a homomorphism, that is, there exists a Lipschitz map ¢ : X — X
such that

(f)(2) = fle(2)) (f € Fa(X), z € X). 2)

We claim that ¢ is onto. Suppose, to the contrary, that there exists z €
X\p(X). Then d(z,p(X)) > 0 since (X) is closed. For 6 = d(z, (X)), the
Lipschitz map h, s € Lip(X) C Fo(X) satisfies hy s5(0(X)) = {0}. By (2),
q)(hI’g) = 0, but ha;’(;(.%') =1,
injective.

which contradicts the fact that ® is linear and

To show that ¢ is injective, let z,y € X be such that ¢(x) = ¢(y). Define
h:X — Rby
h(z) =d(z,p(x)), VzeX.

Clearly, h belongs to Lip(X), and h(z) = 0 if and only if z = ¢(z). Since ® is a
local automorphism of F, (X),

®(h)(2) = hlen(2)) (2 € X), 3)

where ¢y, is a Lipschitz homeomorphism of X. From (2) and (3), it follows

h(en(x)) = ®(h)(x) = h(p(x)) =0,  hpn(y)) = ®(h)(y) = h(e(y)) = 0.

This implies that ¢p,(z) = ¢n(y) = ¢(x), and as ¢}, is injective, we get x = y.



Automorphisms on algebras of operator-valued Lipschitz maps 139

By taking into account Theorem 4.4, it remains to show that ¢! : X — X
is Lipschitz to ensure that ® is an automorphism of F,(X). In order to prove
this, we follow the argument used by BOTELHO and JAMISON in [4, Theorem 2.1].
Assume that ¢! is not Lipschitz. Then there exist sequences {x,} and {y,} in

X, with x,, # y, for all n, such that

i @(2n), ¢(yn))

n—00 d(xn7yn) =0

Let X = {(m,y) €X?: m;éy}, and let F : X — R be defined by

de(z), o))
d(z,y)

Denote by B)z the Stone-Cech compactification of X , and by SF the unique
continuous extension of F' to SX. By the compactness of X, there exists a

F(Qf,y) =

subnet {(z;,y;)} converging to £ € SX. By using the continuity of SF, we have
BF(€) = 0. Moreover, £ ¢ X since F(x,y) # 0 for all (z,y) € X. As X
is compact, taking subnets if necessary, we may assume that {z;} converges to
some z € X and y; # x for all 7. Define k: X — R by

k(z) =d(z,p(x)), VzeX.
Since @ is a local automorphism of F,(X), we get

(k) (2) = k(pr(z)) (2 € X), (4)

for some Lipschitz homeomorphism ¢ : X — X. By applying (2) and (4), we
have
d(p(2), p(2)) = d(pr(2), p(2)) (2 € X).

In particular, i () = ¢(x) and thus

d(p(2), () = d(pr(2), wr(z)) (2 € X).

Therefore

dle(yi), () _ dler(yi), or()) 1
d(yi,x) d(yi, ) = Lpih) >0

for all 7. If we use that

|BF (yi,x) — BF(E)| < |BF(yi, x) — BE (yis xi)| + |BF (ys, xi) — BE(E)]

for all ¢ and the uniform continuity of SF, it follows that {SF(y;,x)} converges
to BF(£). Hence BF(£) > 1/L(p; "), a contradiction. This proves that ¢! is
Lipschitz, as desired. ([
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*

6. Algebraic reflexivity of the *-automorphism group of F, (X, B(H))

Our aim is to prove that the *-automorphism group of F, (X, B(H)) is algeb-
raically reflexive whenever H is a separable complex infinite-dimensional Hilbert
space. We will use the following three lemmas. The first two appear essentially
in the manuscript by GYORY and MOLNAR [23].

We begin by showing that the set of all scalar multiples of *-automorphisms
on B(H) is algebraically reflexive.

Lemma 6.1. Let ‘H be a separable complex infinite-dimensional Hilbert
space. Let U : B(H) — B(H) be a continuous linear map with the property that
for each a € B(H), there exist A\, € C and 7, € Aut™(B(H)) such that ¥(a) =
XaTa(a). Then there exist A € C and 7 € Aut*(B(H)) such that ¥(a) = A7 (a) for
every a € B(H).

PROOF. Since the *-automorphisms of B(#) are both automorphisms and
surjective linear isometries, [23, Lemmas 2.3 and 2.4] ensure that there are Ay, Ay €
C, 1 € Aut(B(H)) and 72 € Iso(B(H)) such that ¥ = A\;7y and ¥ = Agrp. If
A1 = 0, then ¥ = 0 = 0/. So we can assume that A\; # 0. Therefore 71 =
(A2/A1)T2. Since 7; is unital, it follows that |[Ay/A1| = 1, and so 7, € Iso(B(H)).
According to [18, Lemma 8], 71 is a *-automorphism of B(H), which proves the
lemma. g

Lemma 6.2. [23, Lemma 2.2]. Let H be a separable complex infinite-
dimensional Hilbert space. Let T, 11, T2 be in Aut*(B(#)), and let \ and
0 # A1, A2 be in C satistying that A7(a) = A171(a) + A\a72(a) for every a € B(H).
Then 7 = 1.

Lemma 6.3. Let X be a compact metric space and let £ be a Banach
space. Then F, (X, E) is the uniformly closed linear span of the set of functions
{g-e:g€F,(X), ec E}.

PROOF. Let f € Fo(X, E) and € > 0. For every x € X the set

Ue={yeX:If) - f@)l < 5}

is open in X. Since X = |J,.x U, and X is compact, there exist x1,...,z, € X
such that X = (Jy_, Us,. Let {g1,...,9,} C Fo(X) be a partition of unity
on X subordinate to the open covering {U,,,...,U,,} (see, for example, [14,
Lemma 2.2]). Thus, ¢1,..., g, are functions in F,(X) from X into [0, 1] such
that Y7, gr = 1x and supp(gx) C U, for every k = 1,...,n. Here supp(gx)
denotes the closure of the cozero set of gy.
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Define f,, = >}_, g - e on X, where e = f(zy) for every k = 1,...,n.
Clearly, fn, € Fo(X, E). Given z € X and k € {1,...,n}, we have either || f(z) —
erll < €/2 or gx(x) = 0. Tt follows that

1f(2) = fa(@)]l = | D gn(@) (F(2) —en)|| < D grl@) 1f (@) — exll < g
k=1 k=1
and thus || f — fn||,, <€, as desired. O

We now are ready to state the last result of this paper.

Theorem 6.4. Let X be a compact metric space, and let H be a separable
complex infinite-dimensional Hilbert space. Then the *-automorphism group of
Fo(X,B(H)) is algebraically reflexive.

PROOF. Let ® be a local *-automorphism of F, (X, B(#)), that is, ® is a
continuous linear map satisfying that for every f € F,(X,B(H)), there is ®; €
Aut*(Fo (X, B(H))) such that ®(f) = ®;(f). In light of Theorems 4.2 and 4.3, for
every f € Fo(X, B(H)) there are a Lipschitz map 77 from (X, d*) into Aut™(B(H))
and a Lipschitz homeomorphism ¢ : X — X such that

(f)(x) = 74 (2)(fpr(2))) (2 € X). ()

Since 7¢(z) is a linear isometry for every x € X, we have

1) @) = [l7r (@) (f (s @I = [ (@s (@)l

for all z € X, and hence [|®(f)|lcc = [|fllco- Consequently, ® preserves the
supremum norm.

Moreover, for every g € Fo(X) there are a unique Lipschitz map 7.5, from
(X,d*) into Aut™(B(H)) and a unique Lipschitz homeomorphism ¢g.7,, : X — X
such that

(g In) (%) = 7910, (2)(9 - T (pg. 15, (2)))
= 9(@g-1,, (@) Tg.1,, (@) Ixy) = g(pg.1,, () I3 (z € X). (6)

Let ¥ : Fo(X) — Fo(X) be the map given by ¥(g) = g o @41, for all
g € Fo(X). By the uniqueness of ¢4.1,, and (6), ¥ is well-defined and, clearly,
it is linear and continuous. Notice that ¥ is a local *-automorphism of F,(X),
and since Aut”(F, (X)) is algebraically reflexive by Theorem 5.1, we deduce that
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there is a Lipschitz homeomorphism ¢ : X — X such that U(g) = g o ¢ for all
g € Fo(X). Then we can rewrite (6) as

(g - In)(x) = g(p(@)) I (9 € Fa(X), z € X). (7)

Fix a function g € Fo(X)~! and a point « € X, and consider ®, , : B(H) —
B(H) defined by
Pyo(a) =2(g-a)(z) (a€B(H)). (8)

Clearly, ®,, is linear and continuous. Since ® is a local *-automorphism of
Fo(X,B(#H)), from Theorems 4.2 and 4.3, for each a € B(H) there exist a Lips-
chitz homeomorphism ¢, of X, a complex number g(¢,(x)) and a *-automorphism
To(x) of B(H) such that

Dy2(a) = (g~ a)(x) = 7a(x)(g - a(va(®))) = g(pa(z))Ta()(a).
Then, by Lemma 6.1, there are Ay, € C and 7,5, € Aut™(B(#)) for which
Py a(a) = AgaTyala) (a€B(H)). (9)
By using (7) and taking a = I3; in (8) and (9), we deduce that
9(p(@)) Iy = (g - In) () = AgaTga(In) = Agaln, (10)
and thus g(p(x)) = Ay . Now from (9), we obtain
®(g-a)(z) = g(p(2))7g2(a) (a € B(H)).
Since g and = are arbitrary, we have proved that
O(g-a)(z) = g(p(2))Tgu(a) (9 € Fa(X)™, z € X, a € B(H)). (11)
Now let x € X and g1,92 € Fo(X)™1. By (11) and (5), we get that

91(0(2))7g,,2(a) + 92(0(7))7go 2 (a) = (g1 - a)(z) + P(g2 - a)(x)
= (I)((gl + 92) : a)(m) = (gl + g2)(90(91+92)'a('r))T(QlJrgz)'a(m)(a)

for every a € B(H). By Lemma 6.2, it follows that 74, , = 74, ». Therefore
7: X — Aut*(B(H)) given by 7(x) = 7, for some g € F,(X)™! is well-defined.
From (11) we infer

B(g-a)(z) =7(2)(g9-a(p(2))) (g€ Fa(X)™", v € X, acBH)). (12
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To see that 7 is a Lipschitz map from (X, d®) into Aut*(B(H)), let z,y € X.
If we set g = 1x in (12), we have

[(m(z) = 7)) (a)[| = [®(1x - a)(z) — (1x - a)(y)]
< La(®(Lx - a))d(z,y)" < [|®(1x - a)llad(z,y)* < [|2][la]ld(z,y)*

for all a € B(H), and thus ||7(z) — 7(y)|| < ||®||d(z,y)*.
Since every function in F,(X) can be expressed as a linear combination of
functions in F,(X)~, from (12) we deduce

®(g-a)(x) = 1(x)(g-alp(r))) (9 €Fa(X), v € X, acB(H)). (13)

As ® is linear and continuous for the supremum norm, Lemma 6.3 together with
(13) yield
(f)(x) =7(x)(fle(2)) (f €FalX,B(H)), z € X).

In view of Theorems 4.2 and 4.3, ® is a *-automorphism of F, (X, B(H)), and the
proof is complete. O
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