A class of non-recurring sequences over a Galois field

By HASSAN AL-ZAID (Kuwait) and SURJEET SINGH (Kuwait)

Abstract

Let F be a Galois field and $\Gamma(F)$ be the set of all sequences $\left(s_{k}\right)_{k \geq 0}$ over F. For any non-zero polynomial $f(D)$ over F, the set $\Omega(f(D))$ of those $S^{\geq} \in$ $\Gamma(F)$ of which $f(D)$ is a charasteristic polynomial has been extensively studied by many authors for the recurrence properties of its members and for its module theoretic properties. However $\Gamma(F)$ has uncountably many non-recurring sequences. For any $f(D) \neq 0$ in $F[D]$ the concept of a pseudo-periodic sequence having $f(D)$ as its pseudocharasteristic polynomial is introduced. The set $\bar{\Omega}(f(D))$ of all such sequences in $\Gamma(F)$ contains uncountably many non-recurring sequences. The set $\bar{\Omega}(F(D))$ is found to have interesting module theoretic properties. The lattice $L(F)$ of these $\bar{\Omega}(f(D))$ is investigated. In this investigation $\bar{\Omega}(1)$ is found to play a crucial role.

Introduction

Let F be a Galois field and $F[D]$ be the ring of polynomials over F in the indeterminate D. The vector space $\Gamma(F)$ of all sequences over F is a divisible $F[D]$-module [3]. For any $f(D) \neq 0$ in $F[D]$

$$
\Omega(f(D))=\{S \in \Gamma(F): f(D) S=0\}
$$

is a finite $F[D]$-module, whose members are recurring sequences. The sum $W(F)$ of such $\Omega(f(D))$ is the torsion submodule of $\Gamma(F)$. There are uncountably many non-recurring sequences in $\Gamma(F)$. One of the simplest example of a non-recurring sequence is a sequence $S=\left(s_{k}\right)$ which is not eventually zero and in which between any two consecutive non-zero terms $s_{k}, s_{\ell}, k<\ell$, the number $\ell-k-1$ of zero terms strictly increases. This example has motivated the definition of a pseudo-periodic sequence and its pseudo-characteristic polynomial, given in section 3. The definition depends upon that of a sparse set of natural numbers given in section 2. The concept of a sparse set is a generalization of that of lacunary sets used in investigating power series. Some results on sparse sets that may also be of independent interest are proved in section 2. For any $f(D) \neq 0$ in $F[D]$,
the set $\bar{\Omega}(f(D))$ of pseudo-periodic sequences with pseudo-characteristic polynomial $f(D)$ is investigated in section 3. The class $L(F)$ of these $\bar{\Omega}(f(D))$ is shown to be closed under finite intersections and sums. Let $\bar{W}(F)$ be the sum of all $\bar{\Omega}(f(D)$)'s. Let L be any injective hull of $\bar{\Omega}(1)$ in $\Gamma(F)$. Beside other results it is shown that $\bar{W}(F)=W(F)+L$ and $L \cap W(F)=\Omega\left(D^{\infty}\right)$.

1. Preliminaries

Throughout F is a Galois field. For any $S=\left(s_{n}\right)_{n \geq 0}$ in $\Gamma(F)$ and $f(D)=\sum_{i=0}^{k} a_{i} D^{i} \in F[D]$, define $f(D) \cdot S=\left(w_{n}\right)$ such that $w_{n}=\sum_{i} a_{i} s_{n+i}$. This makes $\Gamma(F)$ a divisible left $F[D]$-module [3]. For $f(D) \in F[D]$ of degree $k \geq 0$,

$$
\Omega(f(D))=\{S \in \Gamma(F): f(D) \cdot S=0\}
$$

is a submodule of $\Gamma(F)$, whose dimension over F is $k . D S=\left(w_{n}\right)$, with $w_{n}=s_{n+1}$. The set $\Omega\left(f(D)^{\infty}\right)$ equals $\bigcup_{n>1} \Omega\left(f(D)^{n}\right)$; it is the smallest divisible (hence injective) submodule of $\Gamma(F)$ containing $\Omega(f(D)$). For any module $M, N \subset^{\prime} M$ denotes that N is an essential submodule of M. For basic concepts on rings and modules one may refer to [1] and for recurring sequences to [2].

2. Sparse subsets

Throughout, \mathbb{N} denotes the set of natural numbers.
Definition 2.1. An infinite subset A of \mathbb{N} is called a sparse set if there exists an integer $t \geq 2$, depending on A, with the property that given $k>0$, there exists $m \geq 0$ such that for any $m_{i} \in A, 1 \leq i \leq t$, satisfying

$$
m_{1}>m_{2}>\cdots>m_{t} \geq m
$$

one has $m_{1}-m_{t} \geq k$. The smallest t satisfying the above condition is called the sparsity of A and is denoted by $s(A)$.

Let $S(\mathbb{N})$ denote the set of all sparse subsets of \mathbb{N}. Each $A \in S(N)$ will be also written as an infinite sequence $\left(m_{i}\right)_{i \geq 0}$ such that $m_{i}<m_{i+1}$. We define $D A=\left(n_{i}\right)$ with $n_{i}=m_{i+1}$. Further m_{i+1} is called the successor of m_{i} in A and m_{i} is called the predecessor of m_{i+1}. For any $r \geq 0, m_{i+r}$ is called the r-th successor of m_{i} in A. Finally $\left\{m_{i}, m_{i+1}\right\}$ is called a consecutive pair in A.

Lemma 2.2. (i) $S(\mathbb{N})$ is closed under finite union. For any $A_{1}, A_{2} \in$ $S(\mathbb{N}), s\left(A_{1} \cup A_{2}\right) \leq s\left(A_{1}\right)+s\left(A_{2}\right)$.
(ii) For any $A \in S(\mathbb{N})$ any subset B of A is either finite or $B \in S(\mathbb{N})$ with $s(B) \leq s(A)$.
(iii) For any $A \in S(\mathbb{N}), D A \in S(\mathbb{N})$ with $s(D A)=s(A)$.
(iv) For any positive integer k the set $S_{k}(\mathbb{N})$ of those $A=\left(m_{i}\right) \in$ $S(\mathbb{N})$ with $m_{i+1}-m_{i} \geq k$ for every i, is uncountable.

Proof. Let $s\left(A_{1}\right)=t, s\left(A_{2}\right)=u$. Given any $k \geq 1$, there exists $m \in \mathbb{N}$ such that for any t members of A_{1} or u members of A_{2}, all greater than m, the difference between the largest and the smallest among them is at least k. Consider any $t+u$ members of $A_{1} \cup A_{2}$, all greater than m. Then either at least t of them are in A_{1} or at least u of them are in A_{2}. Consequently the difference between the largest and the smallest among them is at least k. This proves that $A_{1} \cup A_{2} \in S(\mathbb{N})$ and $s\left(A_{1} \cup A_{2}\right) \leq$ $s\left(A_{1}\right)+s\left(A_{2}\right)$. This proves (i). Further (ii) and (iii) are obvious. Finally (iv) follows from (ii).

Lemma 2.3. Let $A \in S(\mathbb{N})$ with $s(A)=t$ and k be any positive integer. Then there exists $m \in A$ such that for any $p, q \in A$ satisfying $p \geq q \geq m, p-q \geq t k$, there exist consecutive members $r, s \in A$ such that $q \leq s<r \leq p$ and $r-s \geq k$.

Proof. By definition there exists $m \in A$ such that given

$$
m_{1}>m_{2}>\cdots>m_{t} \geq m
$$

in $A, m_{1}-m_{t} \geq t k$. Let the result be false for some $p, q \in A$ with $p-q \geq t k$ and $p>q \geq m$. We get a sequence

$$
q=u_{0}<u_{1}<u_{2}<\cdots<u_{t} \leq p
$$

in A with each u_{i} a successor of u_{i-1} and $u_{i}-u_{i-1}<k$. This gives $u_{t}-u_{0}<t k$. This is a contradiction. This proves the result.

Lemma 2.4. Let $A \in S(\mathbb{N})$ with $s(A)=t$ and a be a positive integer. Define $A^{\prime} \subseteq \mathbb{N}$ such that $x \in A^{\prime}$ if and only if either $x \in A$ or x is the smallest or the largest multiple of a between two consecutive members n, m of A. Then $A^{\prime} \in S(\mathbb{N})$ with $s\left(A^{\prime}\right) \leq 3 t+1$.

Proof. Observe that given two consecutive members $u<v$ of A, there cannot be more than four members of A^{\prime} between u and v; two of these are u and v and the other two are of the type $p a$, where p is the smallest or the largest integer satisfying $u \leq p a \leq v$. Consider any $k \geq 1$. There exists $m \in A$ such that given any t members of A all $\geq m$, the difference between the largest and the smallest among them is at least k. Consider any $3 t+1$ members

$$
m \leq m_{1}<m_{2}<\cdots<m_{3 t+1}
$$

of A^{\prime}. Let p_{1} be the largest member of A such that $p_{1} \leq m_{1}$. Then $m \leq p_{1} \leq m_{1}$. Let p_{2} be the successor of p_{1} in A. The observation above
given shows that $m_{1} \leq p_{2} \leq m_{4}$. By continuing this process we get a successor sequence

$$
p_{1}<p_{2}<\cdots<p_{t+1}
$$

in A such that $p_{i} \leq m_{3(i-1)+1}$. Thus $p_{t+1} \leq m_{3 t+1}$. As $m_{1} \leq p_{2}<p_{t+1} \leq$ $m_{3 t+1}$ it is immediate that $m_{3 t+1}-m_{1} \geq k$.

Lemma 2.5. Let $A \in S(\mathbb{N})$ with $s(A)=t$. Let k be a fixed positive integer. The set A^{\prime} consisting of those $x \in \mathbb{N}$ for which either $x \in A$ or $x=n-k$ for some consecutive members n, m of A with $n-m>k$, is a sparse set with $s\left(A^{\prime}\right) \leq 2 t-1$.

Proof. Observe that for any $x \in A^{\prime}-A$, the successor of x in A^{\prime} is $x+k \in A$. Consider any $x>0$. There exists $m \in \mathbb{N}$ such that for any

$$
m \leq m_{1}<m_{2}<\cdots<m_{t}
$$

with $m_{i} \in A$ we have $m_{t}-m_{1} \geq x+k$. Consider

$$
m \leq n_{1}<n_{2}<\cdots<n_{2 t-1}
$$

with $n_{i} \in A^{\prime}$. This gives

$$
m_{1}<m_{2}<\cdots<m_{t}
$$

in A such that $m_{i}=n_{2 i-1}$ if $n_{2 i-1} \in A$ or $m_{i}=n_{2 i-1}+k$ if $n_{2 i-1} \notin A$. Then $m \leq m_{1}$ and $m_{t}-m_{1} \geq x+k$. By using this, it follows that $n_{2 t-1}-n_{1} \geq x$. Hence A^{\prime} is a sparse set with $s\left(A^{\prime}\right) \leq 2 t-1$.

We end this section by the remark that given two infinite subsets A, B of \mathbb{N}, their sum $C=\{x+y: x \in A, y \in B\}$ is not a sparse set. Suppose the contrary and let C be a sparse set with sparsity v. Let $A=\left(a_{i}\right), B=\left(b_{i}\right)$ with $a_{i}<a_{i+1}, b_{i}<b_{i+1}$. Choose $k>b_{v}-b_{1}$. By definition there exists $m \in \mathbb{N}$ such that given $z_{1}<z_{2}<\cdots<z_{v}$ in C with $m \leq z_{1}$, we have $z_{v}-z_{1} \geq k$. For some $s, a_{s} \geq m$. This gives $a_{s}+b_{i} \geq m$. Consequently $b_{v}-b_{1}=\left(a_{s}+b_{v}\right)-\left(a_{s}+b_{1}\right) \geq k$. This is a contradiction. Hence C is not a sparse set. In particular the sum of two sparse sets is never a sparse set.

3. Pseudo periodic sequences

Let $S=\left(s_{k}\right)$ be any sequence. For any $n \geq m \geq 0,\left[s_{m}, s_{n}\right]$ denotes the ordered $n-m+1$-tuple $\left(s_{m}, s_{m+1}, \ldots, s_{n}\right)$ and is called a section of S of length $n-m$. Further $\left[s_{m}, s_{n}\right]=0$ means that $s_{t}=0$ for $m \leq t \leq n$. Any section of the form $\left[s_{0}, s_{n}\right]$ is called an initial section. Let F be a Galois field and $f(D) \in F[D]$ with $\operatorname{deg} f(D) \geq 0$. Write $f(D)=D^{u} g(D)$ for some $u \geq 0$ and $g(D) \in F[D]$ satisfying $g(0) \neq 0$. Then u is called the index of $f(D)$ and is denoted by $i(f(D))$. Further the order of $f(D)$ denoted by $O(f(D))$ is the smallest positive integer k such that $g(D)$ divides $D^{k}-1[2]$. The sum $i(f(D))+O(f(D))$ is called the quasi-order
of $f(D)$ and is denoted by $O^{\prime}(f(D))$. For any $S \in \Omega(f(D))$ either $D^{u} S$ is zero or else it is a non-zero periodic sequence of least period a factor of $O(f(D))$. If $D^{u} S$ has a zero section of length $\geq O(f(D))$, then $D^{u} S=O$. For any non-zero $f(D), g(D) \in F[D], \Omega(f(D))+\Omega(g(D))=\Omega(h(D))$ and $\Omega(f(D)) \cap \Omega(g(D))=\Omega\left(h^{\prime}(D)\right)$ where $h(D)$ and $h^{\prime}(D)$ are the lcm and gcd respectively of $f(D)$ and $g(D)$ [2]. These observations give the following essentially known result:

Lemma 3.1. Let $f(D)$ be a non-zero member of $F[D]$.
(i) If $S \in \Omega(f(D))$ and an initial section of S of length \geq $O^{\prime}(f(D))$ is zero, then $S=0$.
(ii) Let $\operatorname{deg} f(D)=k>0, S \in \Gamma(F)$ and $w_{0}, w_{1}, \ldots, w_{k-1}$ be any k members of F. Then there exists a unique $S^{\prime}=\left(s_{n}^{\prime}\right) \in$ $\Gamma(F)$, such that $s_{n}^{\prime}=w_{n}$ for $0 \leq n \leq k-1$ and $f(D) S^{\prime}=S$.
(iii) Given $S_{1}, S_{2} \in \Omega(f(D))$ such that some section of S_{1} of length $\geq O^{\prime}(f(D))$ equals a section of S_{2}, we have $D^{r} S_{1}=$ $D^{s} S_{2}$ for some $r, s \geq 0$.
(iv) $\Omega\left(D^{k} f(D) \subseteq \Omega\left(D^{\infty}\right)+\Omega(f(D))\right.$.

Lemma 3.2. Let $S=\left(s_{k}\right) \in \Gamma(F)$ and $f(D), g(D)$ be two non-zero members of $F(D)$ with $\operatorname{deg} f(D)=r$. Let $f(D) S=S^{\prime}=\left(s_{k}^{\prime}\right)$. Consider any $n, m \in \mathbb{N}$ with $n-m \geq(r-1)$. If $\left[s_{m}^{\prime}, s_{n}^{\prime}\right]$ is a section of a member of $\Omega(g(D))$, then $\left[s_{m}, s_{n+r}\right]$ is a section of a member of $\Omega(f(D) g(D))$.

Proof. The hypothesis gives $T=\left(t_{p}\right) \in \Omega(g(D))$ such that $\left[s_{m}^{\prime}, s_{n}^{\prime}\right]=$ $\left[t_{0}, t_{n-m}\right]$. By (3.1), there exists a unique $T^{\prime}=\left(t_{k}^{\prime}\right)$ with $t_{i}^{\prime}=s_{m+i}$ for $0 \leq i \leq r-1$ and $f(D) \cdot T^{\prime}=T$. Clearly $T^{\prime} \in \Omega(f(D) g(D))$. In $f(D) S=S^{\prime},\left[s_{m}^{\prime}, s_{n}^{\prime}\right]$ sorresponds to $\left[s_{m}, s_{n+r}\right]$. In $f(D) T^{\prime}=T,\left[t_{0}, t_{n-m}\right]$ corresponds to $\left[t_{0}^{\prime}, t_{n-m+r}^{\prime}\right]$. By comparing T^{\prime} with S, we get $\left[t_{0}^{\prime}, t_{n-m+r}^{\prime}\right]=$ $\left[s_{m}, s_{n+r}\right]$. Hence $\left[s_{m}, s_{n+r}\right]$ is a section of a member of $\Omega(f(D) g(D))$.

Definition 3.3. A sequence $S=\left(s_{n}\right) \in \Gamma(F)$ is called a pseudoperiodic sequence if there exists a sparse set A, a positive integer u and $f(D) \neq 0$ in $F[D]$ such that for any consecutive members n, m of A with $n-m \geq u,\left[s_{m}, s_{n}\right]$ is a section of a member of $\Omega(f(D)) ; u$ is called a pseudo-period of $S, f(D)$ is called a pseudo-characteristic polynomial of S and A is called a sparse set associated with S. Any such triple $(A, u, f(D))$ is called a companion of S.

Let $\bar{W}(F)$ denote the set of all pseudo-periodic sequences in $\Gamma(F)$. For any $A \in S(\mathbb{N})$, the sequence $\left(s_{n}\right)$ with $s_{n}=1$ if $n \in A$ and $s_{n}=0$ otherwise, is a member of $\bar{W}(F)$, with associated sparse set A^{\prime} such that $x \in A^{\prime}$ if and only if $x \geq 0$ and $x=n \pm 1$ for some $n \in A$. As $S(\mathbb{N})$ is uncountable, $\bar{W}(F)$ is uncountable. For any $f(D) \neq 0$ in $F[D], \bar{\Omega}(f(D))$ denotes the set
of those $S \in \bar{W}(F)$ for which $f(D)$ is a pseudo-characteristic polynomial of S.

Consider $S \in \bar{\Omega}(1)$. By definition there exists a sparse set A associated with S and a positive integer u such that for any two consecutive members n, m of A with $n-m \geq u$ one has $\left[s_{m}, s_{n}\right]=0$. Because of this, each member of $\bar{\Omega}(1)$ is called a pseudo-zero sequence. $\bar{\Omega}(1)$ is also uncountable.

Lemma 3.4. Let $(A, u, f(D))$ be a companion of an $S \in \bar{W}(F)$ and $g(D)$ be any multiple of $f(D)$. Then:
(i) For any $v \geq u,(A, v, g(D))$ is a companion of S.
(ii) Given $A^{\prime} \in S(N)$ such that $A \subseteq A^{\prime}$, there exists $w \geq u$ such that $\left(A^{\prime}, w, g(D)\right)$ is a companion of S.

Proof. That $\Omega(f(D)) \subseteq \Omega(g(D))$ gives (i). Let a be the smallest member of A. Let $w=a+u$. Let n, m be any two consecutive members of A^{\prime} such that $n-m \geq w$. This gives $n>a$. As $A \subseteq A^{\prime}$, the fact that n, m are consecutive in \bar{A}^{\prime}, gives $m \geq a$. We get two consecutive members, p, q of A such that $p \leq m<n \leq q$. By (i) $\left[s_{p}, s_{q}\right]$ is a section of a member of $\Omega(g(D))$. This yields that $\left[s_{m}, s_{n}\right]$ is a section of a member of $\Omega(g(D))$. Hence $\left(A^{\prime}, w, g(D)\right)$ is a companion of S.

Lemma 3.5. Let $S \in \Gamma(F), 0 \neq f(D) \in F[D]$ with $f(D) S \in \bar{W}(F)$. Then $S \in \bar{W}(F)$. Further if $(A, u, g(D)$) is a companion of $f(D) S$ with $u>\operatorname{deg} f(D)$, then $(A, u, f(D) g(D))$ is a companion of S.

Proof. Let $(A, u, g(D))$ be companion of $f(D) S$ with $u>r=$ $\operatorname{deg} f(D)$. Consider any two consecutive members n, m of A with $n-m \geq$ u. Let $f(D) S=S^{\prime}=\left(s_{k}^{\prime}\right)$. Then $\left[s_{m}^{\prime}, s_{n}^{\prime}\right]$ is a section of a member of $\Omega(g(D))$. By (3.2) [$\left.s_{m}, s_{n}\right]$ is a section of a member of $\Omega(f(D) g(D))$. This completes the proof.

Proposition 3.6. For any Galois field $F, \bar{W}(F)$ is a divisible submodule of $\Gamma(F)$. For any $f(D) \neq 0$ in $F[D], \bar{\Omega}(f(D))$ is a submodule of $\bar{W}(F)$.

Proof. Let $S_{1}, S_{2} \in \bar{W}(F)$. By using (2.2) (i) and (3.4) we get a triple $(A, u, f(D))$ which is a companion of both S_{1} and S_{2}. Then obviously $(A, u, f(D))$ is also a companion of $S_{1}+S_{2}, a S_{1}$ for any $a \in F$. Further $A^{\prime} \in S(\mathbb{N})$ such that $x \in A^{\prime}$ iff $x=n-1$ for some $n>0$ in A, is a sparse set such that $\left(A^{\prime}, u, f(D)\right)$ is a companion of $D S_{1}$. This proves that $\bar{W}(F)$ is a submodule of $\Gamma(F)$. Now $\Gamma(F)$ is an injective $F[D]$-module. So $\bar{W}(F)$ has an injective hull E in $\Gamma(F)$. Consider any $S \in E$. Then for some $0 \neq f(D) \in F[D], f(D) S \in \bar{W}(F)$. So by (3.5) $S \in \bar{W}(F)$. Consequently $\bar{W}(F)$ itself is injective. The last part is obvious.

Lemma 3.7. Let $S=\left(s_{n}\right) \in \bar{W}(F)$ have a companion $(A, u, f(D))$ with $u>\operatorname{deg} f(D)$. Then for any factor $h(D)$ of $f(D),\left(A^{\prime}, u, f(D) / h(D)\right)$ is a companion of $h(D) S$ for some A^{\prime} containing A.

Proof. Let $\underset{k}{h}(D)=\sum_{i=0}^{k} a_{i} D^{i}, k=\operatorname{deg} h(D)$. Then $S^{\prime}=h(D) S=$ $\left(w_{t}\right)$ with $w_{t}=\sum_{i=0}^{k} a_{i} s_{t+i}$. ${ }^{i=0}$ Consider any two consecutive members n, m of A with $n-m \geq u+k$. The formula for S^{\prime} shows that $\left[w_{m}, w_{n-k}\right]$ is a section of a member of $\Omega(f(D) / h(D))$. Define A^{\prime} such that $x \in A^{\prime}$ if and only if either $x \in A$ or for some consecutive members p, q of A with $p-q>k, x=p-k$. Then by (2.5) A^{\prime} is a sparse set. By what has been proved above it follows that $\left(A^{\prime}, u, f(D) / h(D)\right)$ is a companion of S^{\prime}.

The following is an immediate consequence of (3.5) and (3.7).
Lemma 3.8. For any $f(D) \neq 0$ in $F[D]$ any factor $h(D)$ of $f(D)$ in $F[D]$,
(i) $\quad h(D) \bar{\Omega}(f(D))=\bar{\Omega}(f(D) / h(D))$
(ii) $\quad f(D) \bar{\Omega}(f(D))=\bar{\Omega}(1)$
(iii) $\bar{\Omega}(f(D)) / \bar{\Omega}(1)$ is the annihilator of $f(D)$ in $\Gamma(F) / \bar{\Omega}(1)$.

For any torsion module M over $F[D]$, given any non-zero members $f(D), g(D)$ of $F[D]$,

$$
\begin{aligned}
\operatorname{ann}_{M}(f(D))+\operatorname{ann}_{M}(g(D)) & =\operatorname{ann}_{M}(\ell(D)) \\
\operatorname{ann}_{M}(f(D)) \cap \operatorname{anm}_{M}(g(D)) & =\operatorname{ann}_{M}(d(D))
\end{aligned}
$$

where $\ell(D)$ and $d(D)$ are the lcm and gcd respectively of $f(D)$ and $g(D)$. This observation and (3.8) (iii) give the following result analogous to that for the $\Omega(f(D))$'s.

Theorem 3.9. For any two non-zero polynomials $f(D), g(D)$ in $F[D]$

$$
\begin{aligned}
& \bar{\Omega}(f(D))+\bar{\Omega}(g(D))=\bar{\Omega}(\ell(D)) \\
& \bar{\Omega}(f(D)) \cap \bar{\Omega}(g(D))=\bar{\Omega}(d(D))
\end{aligned}
$$

where $\ell(D)$ and $g(D)$ are the lcm and gcd respectively of $f(D)$ and $g(D)$.
Observe that as every member of $\Omega\left(D^{\infty}\right)$ is eventually zero we have $\Omega\left(D^{\infty}\right) \subseteq \bar{\Omega}(1)$. The following result describes the torsion submodule of any $\bar{\Omega}(f(D))$.

Theorem 3.10. For any non-zero $f(D) \in F[D]$,

$$
\bar{\Omega}(f(D))=\left(\Omega\left(D^{\infty}\right)+\Omega(f(D)) \oplus L\right.
$$

for some torsion-free $F[D]$-module L of $\bar{\Omega}(f(D))$. Further $\bar{\Omega}(f(D))$ is divisible by D.

Proof. First of all we prove that $W(F) \cap \bar{\Omega}(f(D))=\bar{\Omega}\left(D^{\infty}\right)+$ $\Omega(f(D))$. It is obvious that $\Omega\left(D^{\infty}\right)+\Omega(f(D))$ is contained in $W(F) \cap$ $\bar{\Omega}(f(D))$. Conversely, let $S=\left(s_{n}\right) \in \bar{\Omega}(f(D)) \cap W(F)$. Then, for some $g(D) \neq 0$ in $F[D], g(D) S=0$. Consider any companion $(A, u, f(D))$ of S. By using (2.3) we can find two consecutive members n, m of A such that $n-m$ is greater than u as well as $O^{\prime}(f(D) g(D))$. Then $\left[s_{m}, s_{n}\right]$ is a section of a member S^{\prime} of $\Omega(f(D))$ and clearly both S and S^{\prime} are in $\Omega(f(D) g(D))$. By (3.1) (iii)

$$
D^{r} S=D^{s} S^{\prime} \in \Omega(h(D))
$$

for some positive integers r, s, where $h(D)$ is the gcd of $f(D)$ and $g(D)$. Consequently $f(D) D^{r} S=0$. So by (3.1) (iv), $S \in \Omega\left(D^{\infty}\right)+\Omega(f(D))$. This proves $W(F) \cap \bar{\Omega}(f(D))=\Omega\left(D^{\infty}\right)+\Omega(f(D))$, the torsion submodule of $\bar{\Omega}(f(D))$. As $\Omega\left(D^{\infty}\right)$ is injective,

$$
\bar{\Omega}(f(D))=\Omega\left(D^{\infty}\right) \oplus L^{\prime}
$$

for some submodule L^{\prime} of $\bar{\Omega}(f(D))$. Then the torsion submodule $L^{\prime \prime}$ if L^{\prime} is a homomorphic image of $\Omega(f(D))$, is finitely generated; consequently $L^{\prime \prime}$ is a summand of L^{\prime}. This gives

$$
\begin{aligned}
\bar{\Omega}(f(D)) & =\Omega\left(D^{\infty}\right) \oplus\left(L^{\prime \prime} \oplus L\right) \\
& =\left(\Omega\left(D^{\infty}\right)+\Omega(f(D)) \oplus L\right.
\end{aligned}
$$

where L is torsion free.
Proposition 3.11. For any $f(D) \in F[D]$ with $f(0) \neq 0$ and $\operatorname{deg} f(D)>0$, $\bar{\Omega}(f(D)) \neq \bar{\Omega}(1)+\Omega(f(D))$. Further $\bar{\Omega}(1)+\Omega(f(D)) \subset \bar{\Omega}(f(D))$.

Proof. Clearly $\bar{\Omega}(1)+\Omega(f(D)) \subseteq \bar{\Omega}(f(D))$. Suppose the contrary and let $\bar{\Omega}(f(D))=\bar{\Omega}(1)+\Omega(f(D))$. Consider any sparse set $A=\left(n_{i}\right)_{i \geq 0}$ such that $n_{2 i}+1=n_{2 i+1}, n_{2 i+2}-n_{2 i+1}>O(f(D))$ and $n_{2 j+2}-n_{2 j+1}>$ $n_{2 i+2}-n_{2 i+1}$ for $j>i \geq 0$. We can construct a $T=\left(t_{k}\right)$ in $\Omega(f(D))$ such that $\left[t_{n_{2 i+1}}, t_{n_{2 i+2}}\right]$ is a section of non-zero member of $\Omega(f(D))$ for i odd, and is zero for i even. Then for some $S=\left(s_{k}\right) \in \Omega(f(D)), T-S \in \bar{\Omega}(1)$. We can find a sparse set A^{\prime} containing A and a $u>O(f(D))$ such that $(A, u, 1)$ is a companion of $T-S$. Let $t=s\left(A^{\prime}\right)$. We can find an m such that for $i \geq m, n_{2 i+2}-n_{2 i+1}>u t$. By (2.3) we choose m such that given $i \geq m$, we have consecutive members, $a_{i}<b_{i}$ of A^{\prime} such that
$n_{2 i+1} \leq a_{i}<b_{i}<n_{2 i+2}$ and $b_{i}-a_{i} \geq u$. Then $\left[t_{a_{i}}-s_{a_{i}}, t_{b_{i}}-s_{b_{i}}\right]=0$. If $S \neq 0$, then $\left[s_{a_{i}}, s_{b_{i}}\right] \neq 0$ and hence $\left[t_{n_{2 i+1}}, t_{n_{2 i+2}}\right] \neq 0$. If $S=0$, then $\left[t_{a_{i}}, t_{b_{i}}\right]=0$; in this cae $\left[t_{n_{2 i+1}}, t_{n_{2 i+2}}\right]=0$, as it has a zero subsection of length greater than $O(f(D))$. Thus either all the $\left[t_{n_{2 i+1}}, t_{n_{2 i+2}}\right]$ are nonzero or all of them are zero for $i \geq m$. This contradicts the construction of T. This proves that $\bar{\Omega}(1)+\bar{\Omega}(f(D)) \neq \bar{\Omega}(f(D))$. Finally consider any T^{\prime} in $\bar{\Omega}(f(D))$ such that $T^{\prime} \notin \Omega(f(D))$. Then $f(D) T^{\prime} \neq 0$. But $f(D) T^{\prime} \in \bar{\Omega}(1)+\Omega(f(D))$ by (3.8). Hence

$$
\bar{\Omega}(1)+\Omega(f(D)) \subset^{\prime} \Omega(f(D))
$$

This completes the proof.
Theorem 3.12.
(i) For any injective hull L of $\bar{\Omega}(1)+\Omega(f(D))$ in $\Gamma(F), \bar{\Omega}(f(D)) \subseteq L$.
(ii) For any injective hull K of $\bar{\Omega}(1)$ in $\Gamma(F), K+\Omega\left(f(D)^{\infty}\right)$ is an injective hull of $\bar{\Omega}(f(D))$.

Proof. Let $\bar{\Omega}(f(D)) \not \subset L$. Then $\operatorname{deg} f(D)>0$ and L is a proper summand of $L+\bar{\Omega}(f(D))$. This gives $S=S_{1}+S_{2}$ with $S_{1} \in L$ and $S_{2} \in \bar{\Omega}(f(D))$ such that $S_{2} \neq 0$ and $L \cap F[D] S=0$. Now $f(D) S=$ $f(D) S_{1}+f(D) S_{2}$ with $f(D) S_{2} \in \bar{\Omega}(1)$. This yields $f(D) S \in L$. Hence $f(D) S \in L \cap F[D] S=0$. Consequently $S \in \Omega(f(D))$. But $\Omega(f(D)) \subseteq L$, so that $S \in L$. This is a contradiction. This proves (i). Consider any injective hull K of $\bar{\Omega}(1)$ in $\Gamma(F)$. Then $L=K+\Omega\left(f(D)^{\infty}\right)$, being a sum of two injective submodules, is injective. So by (i) $\bar{\Omega}(f(D)) \subseteq L$. Consider $0 \neq S \in L$. If $S \in K$ or $S \in \Omega\left(f(D)^{\infty}\right)$, then by using the fact that $\bar{\Omega}(1) \subseteq \bar{\Omega}(f(D))$ and (3.8) (iii), we get a $g(D) \in F[D]$ such that $0 \neq g(D) S \in \bar{\Omega}(f(D))$. So let $S \notin K$ and $S \notin \Omega\left(f(D)^{\infty}\right)$. Now $S=S_{1}+S_{2}$ for some $S_{1} \in K$ and $S_{2} \in \Omega\left(f(D)^{\infty}\right)$. Also, for some $k \geq 1, f(D)^{k} S_{2}=0$. This gives $0 \neq f(D)^{k} S=f(D)^{k} S_{1} \in K$. Thus for some $g(D) \in F[D], \quad 0 \neq g(D) f(D)^{k} S \in \bar{\Omega}(1) \subseteq \bar{\Omega}(f(D))$. Hence $\bar{\Omega}(f(D)) \subset^{\prime} K+\Omega\left(f(D)^{\infty}\right)$. This proves (ii).

Theorem 3.13. Let L be any injective hull of $\bar{\Omega}(1)$ in $\Gamma(F)$, then $\bar{W}(F)=W(F)+L$ and $L \cap W(F)=\Omega\left(D^{\infty}\right)$.

Proof. For any $f(D) \in F[D]$ of positive degree with $f(0) \neq 0, \bar{\Omega}(1) \cap$ $\Omega(f(D))=0$ and $\Omega\left(D^{\infty}\right) \subseteq \bar{\Omega}(1)$ gives $L \cap W(F)=\Omega\left(D^{\infty}\right)$. By (3.12) $\bar{\Omega}(f(D)) \subseteq L+\Omega\left(f(D)^{\infty}\right) \subseteq L+W(F)$. Hence $\bar{W}(F)=L+W(F)$.

We now discuss some divisibility properties of an $\bar{\Omega}(g(D))$. Given two relatively prime polynomials $f(D), g(D)$ in $F[D]$, it is well known that $f(D) \cdot \Omega(g(D))=\Omega(g(D))$. This need not be true for $\bar{\Omega}(g(D))$. We start with the following

Lemma 3.14. Let $f(D) \in F[D]$ with $\operatorname{deg} f(D)=k>0$ and $f(0) \neq 0$. Let $\beta>O(f(D))$. Consider any sparse set A constituted by $n_{i}, m_{i} \in \mathbb{N}$ such that $n_{0}=0, n_{i+1}-m_{i}>\beta, 0 \leq m_{i}-n_{i}<\operatorname{deg} f(D)$. Let $S=\left(s_{n}\right) \in$ $\Gamma(F)$ be such that for some i, $\left[s_{n_{i+1}}, s_{m_{i+1}}\right] \neq 0$, but $\left[s_{m_{i}}+1, s_{n_{i+1}}-1\right]=$ $0=\left[s_{m_{i+1}}+1, s_{n_{i+2}}-1\right]$. Let $S^{\prime}=\left(w_{n}\right) \in \Gamma(F)$ be such that $f(D) S^{\prime}=S$. If $\left[w_{m_{i}+1}, w_{n_{i+1}+k-1}\right]=0$, then $\left[w_{m_{i+1}+1}, w_{n_{i+2}+k-1}\right]$ is a non-zero section of a member of $\Omega(f(D))$.

Then

$$
\begin{equation*}
s_{n_{1+j}}=\sum_{i=0}^{k} a_{1} w_{n_{1+j+i}} \tag{1}
\end{equation*}
$$

By the hypothesis $\left[s_{n_{1}}, s_{m_{1}}\right] \neq 0$ and $\left[w_{m_{0}+1}, w_{n_{1}+k-1}\right]=0$. Consequently by (1) $\left[w_{n_{1}+k}, w_{m_{1}+k}\right] \neq 0$. As $n_{1}+k>m_{1}$ and $m_{1}+k \leq n_{2}-1<n_{2}+k-1$, we get $\left[w_{m_{1}+1}, w_{n_{2}+k-1}\right] \neq 0$. In the equation $f(D) S^{\prime}=S,\left[s_{m_{1}+1}, s_{n_{2}-1}\right]$ corresponds to $\left[w_{m_{1}+1}, w_{n_{2}+k-1}\right]$. As $\left[s_{m_{1}+1}, s_{n_{2}-1}\right]=0$, it follows that [$\left.w_{m_{1}+1}, w_{n_{2}+k-1}\right]$ is an initial section of a member of $\bar{\Omega}(f(D))$.

Theorem 3.15. $\bar{\Omega}(1)$ is not divisible by any $f(D) \in F[D]$ of positive degree such that $f(0) \neq 0$. Indeed, given any $g(D) \neq 0$ in $F[D]$ with $\operatorname{deg} g(D)<\operatorname{deg} f(D)$, there exists $S \in \bar{\Omega}(1)$ such that $g(D) S$ is not divisible by $f(D)$ in $\bar{\Omega}(1)$.

Proof. Let $\operatorname{deg} g(D)=u, \operatorname{deg} f(D)=k$. Consider any $\beta>O(f(D))+u+1$. Let $A=\left(n_{i}\right)$ be a sparse set such that

$$
\beta<\left(n_{i+1}-n_{i}\right)<\left(n_{i+2}-n_{i+1}\right)
$$

for every i. Consider a sequence $S=\left(s_{n}\right) \in \Gamma(F)$ such that $s_{n}=1$ for $n \in A$ and $s_{n}=0$ otherwise. Let $g(D) S=S^{\prime}=\left(s_{n}^{\prime}\right)$. Then for any $i \geq 1,\left[s_{n_{i}-u}^{\prime}, s_{n_{i}}^{\prime}\right] \neq 0$ and for $0<n \notin\left[n_{i}-u, n_{i}\right], s_{n}^{\prime}=0$. Suppose the contrary and for some $S_{1}=\left(w_{n}\right) \in \bar{\Omega}(1)$ let $f(D) S_{1}=S^{\prime}$. By using (2.5) and (3.4) we get a companion $\left(A^{\prime}, v, 1\right)$ of S_{1} such that $A \subseteq A^{\prime}, n_{i}-u \in A^{\prime}$ for $i>0$, and $v>\beta$. Let $t=s\left(A^{\prime}\right)$. We can find $j>0$ such that $n_{j+1}-u-n_{j}>t v$. By (2.3) we choose j, such that for $i \geq j$ we have consecutive members $a_{i}, b_{i} \in A$ satisfying

$$
n_{i}<a_{i}<b_{i} \leq n_{i+1}-u
$$

$b_{i}-a_{i}>v$. As $\left[s_{n_{j}+1}^{\prime}, s_{n_{j+1}-u-1}^{\prime}\right]=0$ we get that $\left[w_{n_{j}+1}, w_{n_{j}-u+k-1}\right]$ is a section of a member T of $\Omega(f(D))$. As $\left[w_{a_{j}}, w_{b_{j}}\right]=0$ and $b_{j}-a_{j}>O(f(D))$ we get $T=0$ and hence $\left[w_{n_{j}+1}, w_{n_{j}-u+k-1}\right]=0$. Then for every $i \geq j$ we have $\left[w_{n_{i}+1}, w_{n_{i}-u+k-1}\right]=0$. This contradicts (3.14) and hence the result follows.

Corollary 3.16. For any non-zero $f(d), g(D) \in F[D]$ with $\operatorname{deg}(g(D))>0$ and $g(0) \neq 0, \bar{\Omega}(f(D))$ is not divisible by $g(D)$.

Proof. Suppose the contrary and let $g(D) \bar{\Omega}(f(D))=\bar{\Omega}(f(D))$. Then $g(D) f(D) \bar{\Omega}(f(D))=f(D) \bar{\Omega}(f(D))$ i. e. $g(D) \bar{\Omega}(1)=\bar{\Omega}(1)$. This contradicts (3.15). This proves the result.

References

[1] C. Faith, Algebra II, Ring Theory, vol. 191, Springer Verlag, 1976.
[2] R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia Math. Appl., vol. 20, Addison Wesley, 1983.
[3] S. Singh, A note on linear recurring sequences, Linear Algebra Appl. 104 (1988), 97-101.

```
HASSAN AL-ZAID
DEPARTMENT OF MATHEMATICS
KUWAIT UNIVERSITY
P. O. BOX 5969-13060 SAFAT
KUWAIT
SURJEET SINGH
DEPARTMENT OF MATHEMATICS
KUWAIT UNIVERSITY
P. O. BOX 5969-13060 SAFAT
KUWAIT
```

(Received February 2, 1993)

