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A class of non-recurring sequences
over a Galois field

By HASSAN AL-ZAID (Kuwait) and SURJEET SINGH (Kuwait)

Abstract. Let F be a Galois field and Γ(F ) be the set of all sequences (sk)k≥0

over F . For any non-zero polynomial f(D) over F , the set Ω(f(D)) of those S ∈
Γ(F ) of which f(D) is a charasteristic polynomial has been extensively studied by
many authors for the recurrence properties of its members and for its module theoretic
properties. However Γ(F ) has uncountably many non-recurring sequences. For any
f(D) 6= 0 in F [D] the concept of a pseudo-periodic sequence having f(D) as its pseudo-
charasteristic polynomial is introduced. The set Ω̄(f(D)) of all such sequences in Γ(F )
contains uncountably many non-recurring sequences. The set Ω̄(F (D)) is found to
have interesting module theoretic properties. The lattice L(F ) of these Ω̄(f(D)) is
investigated. In this investigation Ω̄(1) is found to play a crucial role.

Introduction

Let F be a Galois field and F [D] be the ring of polynomials over F
in the indeterminate D. The vector space Γ(F ) of all sequences over F is
a divisible F [D]–module [3]. For any f(D) 6= 0 in F [D]

Ω(f(D)) = {S ∈ Γ(F ) : f(D)S = 0}
is a finite F [D]–module, whose members are recurring sequences. The
sum W (F ) of such Ω(f(D)) is the torsion submodule of Γ(F ). There are
uncountably many non-recurring sequences in Γ(F ). One of the simplest
example of a non-recurring sequence is a sequence S = (sk) which is not
eventually zero and in which between any two consecutive non-zero terms
sk, s`, k < `, the number ` − k − 1 of zero terms strictly increases. This
example has motivated the definition of a pseudo-periodic sequence and
its pseudo-characteristic polynomial, given in section 3. The definition
depends upon that of a sparse set of natural numbers given in section 2.
The concept of a sparse set is a generalization of that of lacunary sets used
in investigating power series. Some results on sparse sets that may also be
of independent interest are proved in section 2. For any f(D) 6= 0 in F [D],
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the set Ω̄(f(D)) of pseudo-periodic sequences with pseudo-characteristic
polynomial f(D) is investigated in section 3. The class L(F ) of these
Ω̄(f(D)) is shown to be closed under finite intersections and sums. Let
W̄ (F ) be the sum of all Ω̄(f(D))’s. Let L be any injective hull of Ω̄(1)
in Γ(F ). Beside other results it is shown that W̄ (F ) = W (F ) + L and
L ∩W (F ) = Ω(D∞).

1. Preliminaries

Throughout F is a Galois field. For any S = (sn)n≥0 in Γ(F ) and

f(D) =
k∑

i=0

aiD
i ∈ F [D], define f(D)·S = (wn) such that wn =

∑
i aisn+i.

This makes Γ(F ) a divisible left F [D]–module [3]. For f(D) ∈ F [D] of
degree k ≥ 0,

Ω(f(D)) = {S ∈ Γ(F ) : f(D) · S = 0}
is a submodule of Γ(F ), whose dimension over F is k. DS = (wn), with
wn = sn+1. The set Ω(f(D)∞) equals

⋃
n≥1

Ω(f(D)n); it is the smallest

divisible (hence injective) submodule of Γ(F ) containing Ω(f(D)). For
any module M, N ⊂′ M denotes that N is an essential submodule of M .
For basic concepts on rings and modules one may refer to [1] and for
recurring sequences to [2].

2. Sparse subsets

Throughout, N denotes the set of natural numbers.
Definition 2.1. An infinite subset A of N is called a sparse set if there

exists an integer t ≥ 2, depending on A, with the property that given
k > 0, there exists m ≥ 0 such that for any mi ∈ A, 1 ≤ i ≤ t, satisfying

m1 > m2 > · · · > mt ≥ m

one has m1 − mt ≥ k. The smallest t satisfying the above condition is
called the sparsity of A and is denoted by s(A).

Let S(N) denote the set of all sparse subsets of N. Each A ∈ S(N)
will be also written as an infinite sequence (mi)i≥0 such that mi < mi+1.
We define DA = (ni) with ni = mi+1. Further mi+1 is called the successor
of mi in A and mi is called the predecessor of mi+1. For any r ≥ 0, mi+r

is called the r-th successor of mi in A. Finally {mi,mi+1} is called a
consecutive pair in A.

Lemma 2.2. (i) S(N) is closed under finite union. For any A1, A2 ∈
S(N), s(A1 ∪A2) ≤ s(A1) + s(A2).
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(ii) For any A ∈ S(N) any subset B of A is either finite or
B ∈ S(N) with s(B) ≤ s(A).

(iii) For any A ∈ S(N), DA ∈ S(N) with s(DA) = s(A).
(iv) For any positive integer k the set Sk(N) of those A = (mi) ∈

S(N) with mi+1 −mi ≥ k for every i, is uncountable.

Proof. Let s(A1) = t, s(A2) = u. Given any k ≥ 1, there exists
m ∈ N such that for any t members of A1 or u members of A2, all greater
than m, the difference between the largest and the smallest among them
is at least k. Consider any t + u members of A1 ∪A2, all greater than m.
Then either at least t of them are in A1 or at least u of them are in A2.
Consequently the difference between the largest and the smallest among
them is at least k. This proves that A1 ∪ A2 ∈ S(N) and s(A1 ∪ A2) ≤
s(A1) + s(A2). This proves (i). Further (ii) and (iii) are obvious. Finally
(iv) follows from (ii).

Lemma 2.3. Let A ∈ S(N) with s(A) = t and k be any positive
integer. Then there exists m ∈ A such that for any p, q ∈ A satisfying
p > q ≥ m, p− q ≥ tk, there exist consecutive members r, s ∈ A such that
q ≤ s < r ≤ p and r − s ≥ k.

Proof. By definition there exists m ∈ A such that given

m1 > m2 > · · · > mt ≥ m

in A, m1−mt ≥ tk. Let the result be false for some p, q ∈ A with p−q ≥ tk
and p > q ≥ m. We get a sequence

q = u0 < u1 < u2 < · · · < ut ≤ p

in A with each ui a successor of ui−1 and ui − ui−1 < k. This gives
ut − u0 < tk. This is a contradiction. This proves the result.

Lemma 2.4. Let A ∈ S(N) with s(A) = t and a be a positive integer.
Define A′ ⊆ N such that x ∈ A′ if and only if either x ∈ A or x is the
smallest or the largest multiple of a between two consecutive members
n,m of A. Then A′ ∈ S(N) with s(A′) ≤ 3t + 1.

Proof. Observe that given two consecutive members u < v of A,
there cannot be more than four members of A′ between u and v; two of
these are u and v and the other two are of the type pa, where p is the
smallest or the largest integer satisfying u ≤ pa ≤ v. Consider any k ≥ 1.
There exists m ∈ A such that given any t members of A all ≥ m, the
difference between the largest and the smallest among them is at least k.
Consider any 3t + 1 members

m ≤ m1 < m2 < · · · < m3t+1

of A′. Let p1 be the largest member of A such that p1 ≤ m1. Then
m ≤ p1 ≤ m1. Let p2 be the successor of p1 in A. The observation above
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given shows that m1 ≤ p2 ≤ m4. By continuing this process we get a
successor sequence

p1 < p2 < · · · < pt+1

in A such that pi ≤ m3(i−1)+1. Thus pt+1 ≤ m3t+1. As m1 ≤ p2 < pt+1 ≤
m3t+1 it is immediate that m3t+1 −m1 ≥ k.

Lemma 2.5. Let A ∈ S(N) with s(A) = t. Let k be a fixed positive
integer. The set A′ consisting of those x ∈ N for which either x ∈ A or
x = n − k for some consecutive members n,m of A with n −m > k, is a
sparse set with s(A′) ≤ 2t− 1.

Proof. Observe that for any x ∈ A′ −A, the successor of x in A′ is
x + k ∈ A. Consider any x > 0. There exists m ∈ N such that for any

m ≤ m1 < m2 < · · · < mt

with mi ∈ A we have mt −m1 ≥ x + k. Consider

m ≤ n1 < n2 < · · · < n2t−1

with ni ∈ A′. This gives

m1 < m2 < · · · < mt

in A such that mi = n2i−1 if n2i−1 ∈ A or mi = n2i−1 + k if n2i−1 6∈ A.
Then m ≤ m1 and mt − m1 ≥ x + k. By using this, it follows that
n2t−1 − n1 ≥ x. Hence A′ is a sparse set with s(A′) ≤ 2t− 1.

We end this section by the remark that given two infinite subsets A,B
of N, their sum C = {x+y : x ∈ A, y ∈ B} is not a sparse set. Suppose the
contrary and let C be a sparse set with sparsity v. Let A = (ai), B = (bi)
with ai < ai+1, bi < bi+1. Choose k > bv − b1. By definition there exists
m ∈ N such that given z1 < z2 < · · · < zv in C with m ≤ z1, we have
zv − z1 ≥ k. For some s, as ≥ m. This gives as + bi ≥ m. Consequently
bv− b1 = (as + bv)− (as + b1) ≥ k. This is a contradiction. Hence C is not
a sparse set. In particular the sum of two sparse sets is never a sparse set.

3. Pseudo periodic sequences

Let S = (sk) be any sequence. For any n ≥ m ≥ 0, [sm, sn] denotes
the ordered n −m + 1–tuple (sm, sm+1, . . . , sn) and is called a section of
S of length n−m. Further [sm, sn] = 0 means that st = 0 for m ≤ t ≤ n.
Any section of the form [s0, sn] is called an initial section. Let F be a
Galois field and f(D) ∈ F [D] with deg f(D) ≥ 0. Write f(D) = Dug(D)
for some u ≥ 0 and g(D) ∈ F [D] satisfying g(0) 6= 0. Then u is called
the index of f(D) and is denoted by i(f(D)). Further the order of f(D)
denoted by O(f(D)) is the smallest positive integer k such that g(D)
divides Dk − 1 [2]. The sum i(f(D)) + O(f(D)) is called the quasi-order
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of f(D) and is denoted by O′(f(D)). For any S ∈ Ω(f(D)) either DuS
is zero or else it is a non-zero periodic sequence of least period a factor of
O(f(D)). If DuS has a zero section of length ≥ O(f(D)), then DuS = O.
For any non-zero f(D), g(D) ∈ F [D], Ω(f(D))+Ω(g(D)) = Ω(h(D)) and
Ω(f(D))∩Ω(g(D)) = Ω(h′(D)) where h(D) and h′(D) are the lcm and gcd
respectively of f(D) and g(D) [2]. These observations give the following
essentially known result:

Lemma 3.1. Let f(D) be a non-zero member of F [D].

(i) If S ∈ Ω(f(D)) and an initial section of S of length ≥
O′(f(D)) is zero, then S = 0.

(ii) Let deg f(D) = k > 0, S ∈ Γ(F ) and w0, w1, . . . , wk−1 be
any k members of F . Then there exists a unique S′ = (s′n) ∈
Γ(F ), such that s′n = wn for 0 ≤ n ≤ k− 1 and f(D)S′ = S.

(iii) Given S1, S2 ∈ Ω(f(D)) such that some section of S1 of
length ≥ O′(f(D)) equals a section of S2, we have DrS1 =
DsS2 for some r, s ≥ 0.

(iv) Ω(Dkf(D) ⊆ Ω(D∞) + Ω(f(D)).

Lemma 3.2. Let S = (sk) ∈ Γ(F ) and f(D), g(D) be two non-zero
members of F (D) with deg f(D) = r. Let f(D)S = S′ = (s′k). Consider
any n,m ∈ N with n−m ≥ (r− 1). If [s′m, s′n] is a section of a member of
Ω(g(D)), then [sm, sn+r] is a section of a member of Ω(f(D)g(D)).

Proof. The hypothesis gives T = (tp) ∈ Ω(g(D)) such that [s′m, s′n]=
[t0, tn−m]. By (3.1), there exists a unique T ′ = (t′k) with t′i = sm+i

for 0 ≤ i ≤ r − 1 and f(D) · T ′ = T . Clearly T ′ ∈ Ω(f(D)g(D)). In
f(D)S = S′, [s′m, s′n] sorresponds to [sm, sn+r]. In f(D)T ′ = T, [t0, tn−m]
corresponds to [t′0, t

′
n−m+r]. By comparing T ′ with S, we get [t′0, t

′
n−m+r] =

[sm, sn+r]. Hence [sm, sn+r] is a section of a member of Ω(f(D)g(D)).

Definition 3.3. A sequence S = (sn) ∈ Γ(F ) is called a pseudo-
periodic sequence if there exists a sparse set A, a positive integer u and
f(D) 6= 0 in F [D] such that for any consecutive members n,m of A with
n − m ≥ u, [sm, sn] is a section of a member of Ω(f(D)); u is called a
pseudo-period of S, f(D) is called a pseudo-characteristic polynomial of S
and A is called a sparse set associated with S. Any such triple (A, u, f(D))
is called a companion of S.

Let W̄ (F ) denote the set of all pseudo-periodic sequences in Γ(F ). For
any A ∈ S(N), the sequence (sn) with sn = 1 if n ∈ A and sn = 0 other-
wise, is a member of W̄ (F ), with associated sparse set A′ such that x ∈ A′
if and only if x ≥ 0 and x = n±1 for some n ∈ A. As S(N) is uncountable,
W̄ (F ) is uncountable. For any f(D) 6= 0 in F [D], Ω̄(f(D)) denotes the set
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of those S ∈ W̄ (F ) for which f(D) is a pseudo-characteristic polynomial
of S.

Consider S ∈ Ω̄(1). By definition there exists a sparse set A associated
with S and a positive integer u such that for any two consecutive members
n,m of A with n − m ≥ u one has [sm, sn] = 0. Because of this, each
member of Ω̄(1) is called a pseudo-zero sequence. Ω̄(1) is also uncountable.

Lemma 3.4. Let (A, u, f(D)) be a companion of an S ∈ W̄ (F ) and
g(D) be any multiple of f(D). Then:

(i) For any v ≥ u, (A, v, g(D)) is a companion of S.

(ii) Given A′ ∈ S(N) such that A ⊆ A′, there exists w ≥ u such
that (A′, w, g(D)) is a companion of S.

Proof. That Ω(f(D)) ⊆ Ω(g(D)) gives (i). Let a be the smallest
member of A. Let w = a + u. Let n,m be any two consecutive members
of A′ such that n −m ≥ w. This gives n > a. As A ⊆ A′, the fact that
n,m are consecutive in A′, gives m ≥ a. We get two consecutive members,
p, q of A such that p ≤ m < n ≤ q. By (i) [sp, sq] is a section of a member
of Ω(g(D)). This yields that [sm, sn] is a section of a member of Ω(g(D)).
Hence (A′, w, g(D)) is a companion of S.

Lemma 3.5. Let S ∈ Γ(F ), 0 6= f(D) ∈ F [D] with f(D)S ∈ W̄ (F ).
Then S ∈ W̄ (F ). Further if (A, u, g(D)) is a companion of f(D)S with
u > deg f(D), then (A, u, f(D)g(D)) is a companion of S.

Proof. Let (A, u, g(D)) be companion of f(D)S with u > r =
deg f(D). Consider any two consecutive members n,m of A with n−m ≥
u. Let f(D)S = S′ = (s′k). Then [s′m, s′n] is a section of a member of
Ω(g(D)). By (3.2) [sm, sn] is a section of a member of Ω(f(D)g(D)). This
completes the proof.

Proposition 3.6. For any Galois field F, W̄ (F ) is a divisible sub-
module of Γ(F ). For any f(D) 6= 0 in F [D], Ω̄(f(D)) is a submodule of
W̄ (F ).

Proof. Let S1, S2 ∈ W̄ (F ). By using (2.2) (i) and (3.4) we get a
triple (A, u, f(D)) which is a companion of both S1 and S2. Then obviously
(A, u, f(D)) is also a companion of S1 + S2, aS1 for any a ∈ F . Further
A′ ∈ S(N) such that x ∈ A′ iff x = n− 1 for some n > 0 in A, is a sparse
set such that (A′, u, f(D)) is a companion of DS1. This proves that W̄ (F )
is a submodule of Γ(F ). Now Γ(F ) is an injective F [D]–module. So W̄ (F )
has an injective hull E in Γ(F ). Consider any S ∈ E. Then for some
0 6= f(D) ∈ F [D], f(D)S ∈ W̄ (F ). So by (3.5) S ∈ W̄ (F ). Consequently
W̄ (F ) itself is injective. The last part is obvious.
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Lemma 3.7. Let S = (sn) ∈ W̄ (F ) have a companion (A, u, f(D))
with u > deg f(D). Then for any factor h(D) of f(D), (A′, u, f(D)/h(D))
is a companion of h(D)S for some A′ containing A.

Proof. Let h(D) =
k∑

i=0

aiD
i, k = deg h(D). Then S′ = h(D)S =

(wt) with wt =
k∑

i=0

aist+i. Consider any two consecutive members n,m

of A with n − m ≥ u + k. The formula for S′ shows that [wm, wn−k] is
a section of a member of Ω(f(D)/h(D)). Define A′ such that x ∈ A′ if
and only if either x ∈ A or for some consecutive members p, q of A with
p− q > k, x = p− k. Then by (2.5) A′ is a sparse set. By what has been
proved above it follows that (A′, u, f(D)/h(D)) is a companion of S′.

The following is an immediate consequence of (3.5) and (3.7).

Lemma 3.8. For any f(D) 6= 0 in F [D] any factor h(D) of f(D) in
F [D],

(i) h(D) Ω̄(f(D)) = Ω̄(f(D)/h(D))

(ii) f(D) Ω̄(f(D)) = Ω̄(1)

(iii) Ω̄(f(D))/Ω̄(1) is the annihilator of f(D) in Γ(F )/Ω̄(1).

For any torsion module M over F [D], given any non-zero members
f(D), g(D) of F [D],

annM (f(D)) + annM (g(D)) = annM (`(D))

annM (f(D)) ∩ anmM (g(D)) = annM (d(D))

where `(D) and d(D) are the lcm and gcd respectively of f(D) and g(D).
This observation and (3.8) (iii) give the following result analogous to that
for the Ω(f(D))’s.

Theorem 3.9. For any two non-zero polynomials f(D), g(D) in F [D]

Ω̄(f(D)) + Ω̄(g(D)) = Ω̄(`(D))

Ω̄(f(D)) ∩ Ω̄(g(D)) = Ω̄(d(D))

where `(D) and g(D) are the lcm and gcd respectively of f(D) and g(D).

Observe that as every member of Ω(D∞) is eventually zero we have
Ω(D∞) ⊆ Ω̄(1). The following result describes the torsion submodule of
any Ω̄(f(D)).
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Theorem 3.10. For any non-zero f(D) ∈ F [D],

Ω̄(f(D)) = (Ω(D∞) + Ω(f(D))⊕ L

for some torsion-free F [D]–module L of Ω̄(f(D)). Further Ω̄(f(D)) is
divisible by D.

Proof. First of all we prove that W (F ) ∩ Ω̄(f(D)) = Ω̄(D∞) +
Ω(f(D)). It is obvious that Ω(D∞) + Ω(f(D)) is contained in W (F ) ∩
Ω̄(f(D)). Conversely, let S = (sn) ∈ Ω̄(f(D)) ∩ W (F ). Then, for some
g(D) 6= 0 in F [D], g(D)S = 0. Consider any companion (A, u, f(D)) of
S. By using (2.3) we can find two consecutive members n,m of A such
that n − m is greater than u as well as O′(f(D)g(D)). Then [sm, sn] is
a section of a member S′ of Ω(f(D)) and clearly both S and S′ are in
Ω(f(D)g(D)). By (3.1) (iii)

DrS = DsS′ ∈ Ω(h(D))

for some positive integers r, s, where h(D) is the gcd of f(D) and g(D).
Consequently f(D)DrS = 0. So by (3.1) (iv), S ∈ Ω(D∞) + Ω(f(D)).
This proves W (F )∩ Ω̄(f(D)) = Ω(D∞)+Ω(f(D)), the torsion submodule
of Ω̄(f(D)). As Ω(D∞) is injective,

Ω̄(f(D)) = Ω(D∞)⊕ L′

for some submodule L′ of Ω̄(f(D)). Then the torsion submodule L′′ if L′
is a homomorphic image of Ω(f(D)), is finitely generated; consequently
L′′ is a summand of L′. This gives

Ω̄(f(D)) = Ω(D∞)⊕ (L′′ ⊕ L)

= (Ω(D∞) + Ω(f(D))⊕ L

where L is torsion free.
Proposition 3.11. For any f(D) ∈ F [D] with f(0) 6=0 and deg f(D)>0,

Ω̄(f(D)) 6= Ω̄(1) + Ω(f(D)). Further Ω̄(1) + Ω(f(D)) ⊂ Ω̄(f(D)).

Proof. Clearly Ω̄(1) + Ω(f(D)) ⊆ Ω̄(f(D)). Suppose the contrary
and let Ω̄(f(D)) = Ω̄(1) + Ω(f(D)). Consider any sparse set A = (ni)i≥0

such that n2i + 1 = n2i+1, n2i+2 − n2i+1 > O(f(D)) and n2j+2 − n2j+1 >
n2i+2−n2i+1 for j > i ≥ 0. We can construct a T = (tk) in Ω̄(f(D)) such
that [tn2i+1 , tn2i+2 ] is a section of non-zero member of Ω(f(D)) for i odd,
and is zero for i even. Then for some S = (sk) ∈ Ω(f(D)), T − S ∈ Ω̄(1).
We can find a sparse set A′ containing A and a u > O(f(D)) such that
(A, u, 1) is a companion of T − S. Let t = s(A′). We can find an m
such that for i ≥ m, n2i+2 − n2i+1 > ut. By (2.3) we choose m such
that given i ≥ m, we have consecutive members, ai < bi of A′ such that
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n2i+1 ≤ ai < bi < n2i+2 and bi − ai ≥ u. Then [tai
− sai

, tbi
− sbi

] = 0.
If S 6= 0, then [sai , sbi ] 6= 0 and hence [tn2i+1 , tn2i+2 ] 6= 0. If S = 0, then
[tai

, tbi
] = 0; in this cae [tn2i+1 , tn2i+2 ] = 0, as it has a zero subsection of

length greater than O(f(D)). Thus either all the [tn2i+1 , tn2i+2 ] are non-
zero or all of them are zero for i ≥ m. This contradicts the construction
of T . This proves that Ω̄(1) + Ω(f(D)) 6= Ω̄(f(D)). Finally consider
any T ′ in Ω̄(f(D)) such that T ′ 6∈ Ω(f(D)). Then f(D)T ′ 6= 0. But
f(D)T ′ ∈ Ω̄(1) + Ω(f(D)) by (3.8). Hence

Ω̄(1) + Ω(f(D)) ⊂′ Ω(f(D)) .

This completes the proof.

Theorem 3.12.
(i) For any injective hull L of Ω̄(1) + Ω(f(D)) in Γ(F ), Ω̄(f(D)) ⊆ L.
(ii) For any injective hull K of Ω̄(1) in Γ(F ), K+Ω(f(D)∞) is an injective

hull of Ω̄(f(D)).

Proof. Let Ω̄(f(D)) 6⊂ L. Then deg f(D) > 0 and L is a proper
summand of L + Ω̄(f(D)). This gives S = S1 + S2 with S1 ∈ L and
S2 ∈ Ω̄(f(D)) such that S2 6= 0 and L ∩ F [D]S = 0. Now f(D)S =
f(D)S1 + f(D)S2 with f(D)S2 ∈ Ω̄(1). This yields f(D)S ∈ L. Hence
f(D)S ∈ L ∩ F [D]S = 0. Consequently S ∈ Ω(f(D)). But Ω(f(D)) ⊆ L,
so that S ∈ L. This is a contradiction. This proves (i). Consider any
injective hull K of Ω̄(1) in Γ(F ). Then L = K + Ω(f(D)∞), being a
sum of two injective submodules, is injective. So by (i) Ω̄(f(D)) ⊆ L.
Consider 0 6= S ∈ L. If S ∈ K or S ∈ Ω(f(D)∞), then by using the
fact that Ω̄(1) ⊆ Ω̄(f(D)) and (3.8) (iii), we get a g(D) ∈ F [D] such
that 0 6= g(D)S ∈ Ω̄(f(D)). So let S 6∈ K and S 6∈ Ω(f(D)∞). Now
S = S1 + S2 for some S1 ∈ K and S2 ∈ Ω(f(D)∞). Also, for some
k ≥ 1, f(D)kS2 = 0. This gives 0 6= f(D)kS = f(D)kS1 ∈ K. Thus
for some g(D) ∈ F [D], 0 6= g(D)f(D)kS ∈ Ω̄(1) ⊆ Ω̄(f(D)). Hence
Ω̄(f(D)) ⊂′ K + Ω(f(D)∞). This proves (ii).

Theorem 3.13. Let L be any injective hull of Ω̄(1) in Γ(F ), then
W̄ (F ) = W (F ) + L and L ∩W (F ) = Ω(D∞).

Proof. For any f(D) ∈ F [D] of positive degree with f(0) 6= 0, Ω̄(1)∩
Ω(f(D)) = 0 and Ω(D∞) ⊆ Ω̄(1) gives L ∩ W (F ) = Ω(D∞). By (3.12)
Ω̄(f(D)) ⊆ L + Ω(f(D)∞) ⊆ L + W (F ). Hence W̄ (F ) = L + W (F ).

We now discuss some divisibility properties of an Ω̄(g(D)). Given two
relatively prime polynomials f(D), g(D) in F [D], it is well known that
f(D) · Ω(g(D)) = Ω(g(D)). This need not be true for Ω̄(g(D)). We start
with the following
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Lemma 3.14. Let f(D) ∈ F [D] with deg f(D) = k > 0 and f(0) 6= 0.
Let β > O(f(D)). Consider any sparse set A constituted by ni,mi ∈ N
such that n0 = 0, ni+1−mi > β, 0 ≤ mi−ni < deg f(D). Let S = (sn) ∈
Γ(F ) be such that for some i, [sni+1 , smi+1 ] 6= 0, but [smi

+ 1, sni+1 − 1] =
0 = [smi+1 +1, sni+2 −1]. Let S′ = (wn) ∈ Γ(F ) be such that f(D)S′ = S.
If [wmi+1, wni+1+k−1] = 0, then [wmi+1+1, wni+2+k−1] is a non-zero section
of a member of Ω(f(D)).

Proof. It is enough to take i = 0. Let f(D) =
k∑

i=0

aiD
i with ak 6= 0.

Then

(1) sn1+j =
k∑

i=0

a1wn1+j+i

By the hypothesis [sn1 , sm1 ] 6= 0 and [wm0+1, wn1+k−1] = 0. Consequently
by (1) [wn1+k, wm1+k] 6= 0. As n1+k > m1 and m1+k ≤ n2−1 < n2+k−1,
we get [wm1+1, wn2+k−1] 6= 0. In the equation f(D)S′=S, [sm1+1, sn2−1]
corresponds to [wm1+1, wn2+k−1]. As [sm1+1, sn2−1] = 0, it follows that
[wm1+1, wn2+k−1] is an initial section of a member of Ω̄(f(D)).

Theorem 3.15. Ω̄(1) is not divisible by any f(D) ∈ F [D] of posi-
tive degree such that f(0) 6= 0. Indeed, given any g(D) 6= 0 in F [D]
with deg g(D) < deg f(D), there exists S ∈ Ω̄(1) such that g(D)S is not
divisible by f(D) in Ω̄(1).

Proof. Let deg g(D) = u, deg f(D) = k. Consider any
β > O(f(D)) + u + 1. Let A = (ni) be a sparse set such that

β < (ni+1 − ni) < (ni+2 − ni+1)

for every i. Consider a sequence S = (sn) ∈ Γ(F ) such that sn = 1 for
n ∈ A and sn = 0 otherwise. Let g(D)S = S′ = (s′n). Then for any
i ≥ 1, [s′ni−u, s′ni

] 6= 0 and for 0 < n 6∈ [ni − u, ni], s′n = 0. Suppose the
contrary and for some S1 = (wn) ∈ Ω̄(1) let f(D)S1 = S′. By using (2.5)
and (3.4) we get a companion (A′, v, 1) of S1 such that A ⊆ A′, ni−u ∈ A′
for i > 0, and v > β. Let t = s(A′). We can find j > 0 such that
nj+1 − u − nj > tv. By (2.3) we choose j, such that for i ≥ j we have
consecutive members ai, bi ∈ A satisfying

ni < ai < bi ≤ ni+1 − u ,

bi− ai > v. As [s′nj+1, s
′
nj+1−u−1] = 0 we get that [wnj+1, wnj−u+k−1] is a

section of a member T of Ω(f(D)). As [waj , wbj ] = 0 and bj−aj > O(f(D))
we get T = 0 and hence [wnj+1, wnj−u+k−1] = 0. Then for every i ≥ j we
have [wni+1, wni−u+k−1] = 0. This contradicts (3.14) and hence the result
follows.
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Corollary 3.16. For any non-zero f(d), g(D) ∈ F [D] with
deg(g(D))>0 and g(0) 6= 0, Ω̄(f(D)) is not divisible by g(D).

Proof. Suppose the contrary and let g(D)Ω̄(f(D)) = Ω̄(f(D)). Then
g(D)f(D)Ω̄(f(D)) = f(D)Ω̄(f(D)) i. e. g(D)Ω̄(1) = Ω̄(1). This contra-
dicts (3.15). This proves the result.
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