Publ. Math. Debrecen 45 / 1-2 (1994), 41–51

A class of non-recurring sequences over a Galois field

By HASSAN AL-ZAID (Kuwait) and SURJEET SINGH (Kuwait)

Abstract. Let F be a Galois field and $\Gamma(F)$ be the set of all sequences $(s_k)_{k\geq 0}$ over F. For any non-zero polynomial f(D) over F, the set $\Omega(f(D))$ of those $S \in$ $\Gamma(F)$ of which f(D) is a characteristic polynomial has been extensively studied by many authors for the recurrence properties of its members and for its module theoretic properties. However $\Gamma(F)$ has uncountably many non-recurring sequences. For any $f(D) \neq 0$ in F[D] the concept of a pseudo-periodic sequence having f(D) as its pseudocharacteristic polynomial is introduced. The set $\overline{\Omega}(f(D))$ of all such sequences in $\Gamma(F)$ contains uncountably many non-recurring sequences. The set $\overline{\Omega}(F(D))$ is found to have interesting module theoretic properties. The lattice L(F) of these $\overline{\Omega}(f(D))$ is investigated. In this investigation $\overline{\Omega}(1)$ is found to play a crucial role.

Introduction

Let F be a Galois field and F[D] be the ring of polynomials over Fin the indeterminate D. The vector space $\Gamma(F)$ of all sequences over F is a divisible F[D]-module [3]. For any $f(D) \neq 0$ in F[D]

$$\Omega(f(D)) = \{ S \in \Gamma(F) : f(D)S = 0 \}$$

is a finite F[D]-module, whose members are recurring sequences. The sum W(F) of such $\Omega(f(D))$ is the torsion submodule of $\Gamma(F)$. There are uncountably many non-recurring sequences in $\Gamma(F)$. One of the simplest example of a non-recurring sequence is a sequence $S = (s_k)$ which is not eventually zero and in which between any two consecutive non-zero terms $s_k, s_\ell, k < \ell$, the number $\ell - k - 1$ of zero terms strictly increases. This example has motivated the definition of a pseudo-periodic sequence and its pseudo-characteristic polynomial, given in section 3. The definition depends upon that of a sparse set of natural numbers given in section 2. The concept of a sparse set is a generalization of that of lacunary sets used in investigating power series. Some results on sparse sets that may also be of independent interest are proved in section 2. For any $f(D) \neq 0$ in F[D], the set $\Omega(f(D))$ of pseudo-periodic sequences with pseudo-characteristic polynomial f(D) is investigated in section 3. The class L(F) of these $\overline{\Omega}(f(D))$ is shown to be closed under finite intersections and sums. Let $\overline{W}(F)$ be the sum of all $\overline{\Omega}(f(D))$'s. Let L be any injective hull of $\overline{\Omega}(1)$ in $\Gamma(F)$. Beside other results it is shown that $\overline{W}(F) = W(F) + L$ and $L \cap W(F) = \Omega(D^{\infty})$.

1. Preliminaries

Throughout F is a Galois field. For any $S = (s_n)_{n \ge 0}$ in $\Gamma(F)$ and $f(D) = \sum_{i=0}^{k} a_i D^i \in F[D]$, define $f(D) \cdot S = (w_n)$ such that $w_n = \sum_i a_i s_{n+i}$. This makes $\Gamma(F)$ a divisible left F[D]-module [3]. For $f(D) \in F[D]$ of degree $k \ge 0$, $\Omega(f(D)) = \{S \in \Gamma(F) : f(D) \mid S = 0\}$

$$\Omega(f(D)) = \{ S \in \Gamma(F) : f(D) \cdot S = 0 \}$$

is a submodule of $\Gamma(F)$, whose dimension over F is k. $DS = (w_n)$, with $w_n = s_{n+1}$. The set $\Omega(f(D)^{\infty})$ equals $\bigcup_{n \ge 1} \Omega(f(D)^n)$; it is the smallest divisible (hence injective) submodule of $\Gamma(F)$ containing $\Omega(f(D))$. For any module $M, N \subset M$ denotes that N is an essential submodule of M. For basic concepts on rings and modules one may refer to [1] and for

2. Sparse subsets

Throughout, \mathbb{N} denotes the set of natural numbers.

recurring sequences to [2].

Definition 2.1. An infinite subset A of N is called a sparse set if there exists an integer $t \geq 2$, depending on A, with the property that given k > 0, there exists $m \geq 0$ such that for any $m_i \in A$, $1 \leq i \leq t$, satisfying

$$m_1 > m_2 > \cdots > m_t \ge m$$

one has $m_1 - m_t \ge k$. The smallest t satisfying the above condition is called the sparsity of A and is denoted by s(A).

Let $S(\mathbb{N})$ denote the set of all sparse subsets of \mathbb{N} . Each $A \in S(N)$ will be also written as an infinite sequence $(m_i)_{i\geq 0}$ such that $m_i < m_{i+1}$. We define $DA = (n_i)$ with $n_i = m_{i+1}$. Further m_{i+1} is called the successor of m_i in A and m_i is called the predecessor of m_{i+1} . For any $r \geq 0$, m_{i+r} is called the r-th successor of m_i in A. Finally $\{m_i, m_{i+1}\}$ is called a consecutive pair in A.

Lemma 2.2. (i) $S(\mathbb{N})$ is closed under finite union. For any $A_1, A_2 \in S(\mathbb{N}), s(A_1 \cup A_2) \leq s(A_1) + s(A_2)$.

A class of non-recurring sequences over a Galois field

- (ii) For any $A \in S(\mathbb{N})$ any subset B of A is either finite or $B \in S(\mathbb{N})$ with $s(B) \leq s(A)$.
- (iii) For any $A \in S(\mathbb{N})$, $DA \in S(\mathbb{N})$ with s(DA) = s(A).
- (iv) For any positive integer k the set $S_k(\mathbb{N})$ of those $A = (m_i) \in S(\mathbb{N})$ with $m_{i+1} m_i \geq k$ for every i, is uncountable.

PROOF. Let $s(A_1) = t$, $s(A_2) = u$. Given any $k \ge 1$, there exists $m \in \mathbb{N}$ such that for any t members of A_1 or u members of A_2 , all greater than m, the difference between the largest and the smallest among them is at least k. Consider any t + u members of $A_1 \cup A_2$, all greater than m. Then either at least t of them are in A_1 or at least u of them are in A_2 . Consequently the difference between the largest and the smallest among them is at least k. This proves that $A_1 \cup A_2 \in S(\mathbb{N})$ and $s(A_1 \cup A_2) \le s(A_1) + s(A_2)$. This proves (i). Further (ii) and (iii) are obvious. Finally (iv) follows from (ii).

Lemma 2.3. Let $A \in S(\mathbb{N})$ with s(A) = t and k be any positive integer. Then there exists $m \in A$ such that for any $p, q \in A$ satisfying $p > q \ge m$, $p - q \ge tk$, there exist consecutive members $r, s \in A$ such that $q \le s < r \le p$ and $r - s \ge k$.

PROOF. By definition there exists $m \in A$ such that given

$$m_1 > m_2 > \cdots > m_t \ge m$$

in A, $m_1 - m_t \ge tk$. Let the result be false for some $p, q \in A$ with $p - q \ge tk$ and $p > q \ge m$. We get a sequence

$$q = u_0 < u_1 < u_2 < \dots < u_t \le p$$

in A with each u_i a successor of u_{i-1} and $u_i - u_{i-1} < k$. This gives $u_t - u_0 < tk$. This is a contradiction. This proves the result.

Lemma 2.4. Let $A \in S(\mathbb{N})$ with s(A) = t and a be a positive integer. Define $A' \subseteq \mathbb{N}$ such that $x \in A'$ if and only if either $x \in A$ or x is the smallest or the largest multiple of a between two consecutive members n, m of A. Then $A' \in S(\mathbb{N})$ with $s(A') \leq 3t + 1$.

PROOF. Observe that given two consecutive members u < v of A, there cannot be more than four members of A' between u and v; two of these are u and v and the other two are of the type pa, where p is the smallest or the largest integer satisfying $u \leq pa \leq v$. Consider any $k \geq 1$. There exists $m \in A$ such that given any t members of A all $\geq m$, the difference between the largest and the smallest among them is at least k. Consider any 3t + 1 members

$$m \le m_1 < m_2 < \dots < m_{3t+1}$$

of A'. Let p_1 be the largest member of A such that $p_1 \leq m_1$. Then $m \leq p_1 \leq m_1$. Let p_2 be the successor of p_1 in A. The observation above

given shows that $m_1 \leq p_2 \leq m_4$. By continuing this process we get a successor sequence

$$p_1 < p_2 < \cdots < p_{t+1}$$

in A such that $p_i \leq m_{3(i-1)+1}$. Thus $p_{t+1} \leq m_{3t+1}$. As $m_1 \leq p_2 < p_{t+1} \leq m_{3t+1}$ it is immediate that $m_{3t+1} - m_1 \geq k$.

Lemma 2.5. Let $A \in S(\mathbb{N})$ with s(A) = t. Let k be a fixed positive integer. The set A' consisting of those $x \in \mathbb{N}$ for which either $x \in A$ or x = n - k for some consecutive members n, m of A with n - m > k, is a sparse set with $s(A') \leq 2t - 1$.

PROOF. Observe that for any $x \in A' - A$, the successor of x in A' is $x + k \in A$. Consider any x > 0. There exists $m \in \mathbb{N}$ such that for any

$$m \le m_1 < m_2 < \dots < m_t$$

with $m_i \in A$ we have $m_t - m_1 \ge x + k$. Consider

$$m \le n_1 < n_2 < \dots < n_{2t-1}$$

with $n_i \in A'$. This gives

$$m_1 < m_2 < \cdots < m_t$$

in A such that $m_i = n_{2i-1}$ if $n_{2i-1} \in A$ or $m_i = n_{2i-1} + k$ if $n_{2i-1} \notin A$. Then $m \leq m_1$ and $m_t - m_1 \geq x + k$. By using this, it follows that $n_{2t-1} - n_1 \geq x$. Hence A' is a sparse set with $s(A') \leq 2t - 1$.

We end this section by the remark that given two infinite subsets A, Bof \mathbb{N} , their sum $C = \{x+y : x \in A, y \in B\}$ is not a sparse set. Suppose the contrary and let C be a sparse set with sparsity v. Let $A = (a_i), B = (b_i)$ with $a_i < a_{i+1}, b_i < b_{i+1}$. Choose $k > b_v - b_1$. By definition there exists $m \in \mathbb{N}$ such that given $z_1 < z_2 < \cdots < z_v$ in C with $m \le z_1$, we have $z_v - z_1 \ge k$. For some $s, a_s \ge m$. This gives $a_s + b_i \ge m$. Consequently $b_v - b_1 = (a_s + b_v) - (a_s + b_1) \ge k$. This is a contradiction. Hence C is not a sparse set. In particular the sum of two sparse sets is never a sparse set.

3. Pseudo periodic sequences

Let $S = (s_k)$ be any sequence. For any $n \ge m \ge 0$, $[s_m, s_n]$ denotes the ordered n - m + 1-tuple $(s_m, s_{m+1}, \ldots, s_n)$ and is called a section of S of length n - m. Further $[s_m, s_n] = 0$ means that $s_t = 0$ for $m \le t \le n$. Any section of the form $[s_0, s_n]$ is called an initial section. Let F be a Galois field and $f(D) \in F[D]$ with deg $f(D) \ge 0$. Write $f(D) = D^u g(D)$ for some $u \ge 0$ and $g(D) \in F[D]$ satisfying $g(0) \ne 0$. Then u is called the index of f(D) and is denoted by i(f(D)). Further the order of f(D)denoted by O(f(D)) is the smallest positive integer k such that g(D)divides $D^k - 1$ [2]. The sum i(f(D)) + O(f(D)) is called the quasi-order of f(D) and is denoted by O'(f(D)). For any $S \in \Omega(f(D))$ either $D^u S$ is zero or else it is a non-zero periodic sequence of least period a factor of O(f(D)). If $D^u S$ has a zero section of length $\geq O(f(D))$, then $D^u S = O$. For any non-zero f(D), $g(D) \in F[D]$, $\Omega(f(D)) + \Omega(g(D)) = \Omega(h(D))$ and $\Omega(f(D)) \cap \Omega(g(D)) = \Omega(h'(D))$ where h(D) and h'(D) are the lcm and gcd respectively of f(D) and g(D) [2]. These observations give the following essentially known result:

Lemma 3.1. Let f(D) be a non-zero member of F[D].

- (i) If $S \in \Omega(f(D))$ and an initial section of S of length $\geq O'(f(D))$ is zero, then S = 0.
- (ii) Let deg f(D) = k > 0, $S \in \Gamma(F)$ and w_0, w_1, \dots, w_{k-1} be any k members of F. Then there exists a unique $S' = (s'_n) \in$ $\Gamma(F)$, such that $s'_n = w_n$ for $0 \le n \le k-1$ and f(D)S' = S.
- (iii) Given $S_1, S_2 \in \Omega(f(D))$ such that some section of S_1 of length $\geq O'(f(D))$ equals a section of S_2 , we have $D^r S_1 = D^s S_2$ for some $r, s \geq 0$.
- (iv) $\Omega(D^k f(D) \subseteq \Omega(D^{\infty}) + \Omega(f(D)).$

Lemma 3.2. Let $S = (s_k) \in \Gamma(F)$ and f(D), g(D) be two non-zero members of F(D) with deg f(D) = r. Let $f(D)S = S' = (s'_k)$. Consider any $n, m \in \mathbb{N}$ with $n - m \ge (r - 1)$. If $[s'_m, s'_n]$ is a section of a member of $\Omega(g(D))$, then $[s_m, s_{n+r}]$ is a section of a member of $\Omega(f(D)g(D))$.

PROOF. The hypothesis gives $T = (t_p) \in \Omega(g(D))$ such that $[s'_m, s'_n] = [t_0, t_{n-m}]$. By (3.1), there exists a unique $T' = (t'_k)$ with $t'_i = s_{m+i}$ for $0 \leq i \leq r-1$ and $f(D) \cdot T' = T$. Clearly $T' \in \Omega(f(D)g(D))$. In f(D)S = S', $[s'_m, s'_n]$ sorresponds to $[s_m, s_{n+r}]$. In f(D)T' = T, $[t_0, t_{n-m}]$ corresponds to $[t'_0, t'_{n-m+r}]$. By comparing T' with S, we get $[t'_0, t'_{n-m+r}] = [s_m, s_{n+r}]$. Hence $[s_m, s_{n+r}]$ is a section of a member of $\Omega(f(D)g(D))$.

Definition 3.3. A sequence $S = (s_n) \in \Gamma(F)$ is called a pseudoperiodic sequence if there exists a sparse set A, a positive integer u and $f(D) \neq 0$ in F[D] such that for any consecutive members n, m of A with $n - m \geq u$, $[s_m, s_n]$ is a section of a member of $\Omega(f(D)); u$ is called a pseudo-period of S, f(D) is called a pseudo-characteristic polynomial of S and A is called a sparse set associated with S. Any such triple (A, u, f(D)) is called a companion of S.

Let W(F) denote the set of all pseudo-periodic sequences in $\Gamma(F)$. For any $A \in S(\mathbb{N})$, the sequence (s_n) with $s_n = 1$ if $n \in A$ and $s_n = 0$ otherwise, is a member of $\overline{W}(F)$, with associated sparse set A' such that $x \in A'$ if and only if $x \ge 0$ and $x = n \pm 1$ for some $n \in A$. As $S(\mathbb{N})$ is uncountable, $\overline{W}(F)$ is uncountable. For any $f(D) \ne 0$ in F[D], $\overline{\Omega}(f(D))$ denotes the set of those $S \in W(F)$ for which f(D) is a pseudo-characteristic polynomial of S.

Consider $S \in \overline{\Omega}(1)$. By definition there exists a sparse set A associated with S and a positive integer u such that for any two consecutive members n, m of A with $n - m \ge u$ one has $[s_m, s_n] = 0$. Because of this, each member of $\overline{\Omega}(1)$ is called a pseudo-zero sequence. $\overline{\Omega}(1)$ is also uncountable.

Lemma 3.4. Let (A, u, f(D)) be a companion of an $S \in \overline{W}(F)$ and g(D) be any multiple of f(D). Then:

- (i) For any $v \ge u$, (A, v, g(D)) is a companion of S.
- (ii) Given $A' \in S(N)$ such that $A \subseteq A'$, there exists $w \ge u$ such that (A', w, g(D)) is a companion of S.

PROOF. That $\Omega(f(D)) \subseteq \Omega(g(D))$ gives (i). Let *a* be the smallest member of *A*. Let w = a + u. Let *n*, *m* be any two consecutive members of *A'* such that $n - m \ge w$. This gives n > a. As $A \subseteq A'$, the fact that *n*, *m* are consecutive in *A'*, gives $m \ge a$. We get two consecutive members, *p*, *q* of *A* such that $p \le m < n \le q$. By (i) $[s_p, s_q]$ is a section of a member of $\Omega(g(D))$. This yields that $[s_m, s_n]$ is a section of a member of $\Omega(g(D))$. Hence (A', w, g(D)) is a companion of *S*.

Lemma 3.5. Let $S \in \Gamma(F)$, $0 \neq f(D) \in F[D]$ with $f(D)S \in \overline{W}(F)$. Then $S \in \overline{W}(F)$. Further if (A, u, g(D)) is a companion of f(D)S with $u > \deg f(D)$, then (A, u, f(D)g(D)) is a companion of S.

PROOF. Let (A, u, g(D)) be companion of f(D)S with $u > r = \deg f(D)$. Consider any two consecutive members n, m of A with $n - m \ge u$. Let $f(D)S = S' = (s'_k)$. Then $[s'_m, s'_n]$ is a section of a member of $\Omega(g(D))$. By (3.2) $[s_m, s_n]$ is a section of a member of $\Omega(f(D)g(D))$. This completes the proof.

Proposition 3.6. For any Galois field F, $\overline{W}(F)$ is a divisible submodule of $\Gamma(F)$. For any $f(D) \neq 0$ in F[D], $\overline{\Omega}(f(D))$ is a submodule of $\overline{W}(F)$.

PROOF. Let $S_1, S_2 \in W(F)$. By using (2.2) (i) and (3.4) we get a triple (A, u, f(D)) which is a companion of both S_1 and S_2 . Then obviously (A, u, f(D)) is also a companion of $S_1 + S_2$, aS_1 for any $a \in F$. Further $A' \in S(\mathbb{N})$ such that $x \in A'$ iff x = n - 1 for some n > 0 in A, is a sparse set such that (A', u, f(D)) is a companion of DS_1 . This proves that $\overline{W}(F)$ is a submodule of $\Gamma(F)$. Now $\Gamma(F)$ is an injective F[D]-module. So $\overline{W}(F)$ has an injective hull E in $\Gamma(F)$. Consider any $S \in E$. Then for some $0 \neq f(D) \in F[D], f(D)S \in \overline{W}(F)$. So by (3.5) $S \in \overline{W}(F)$. Consequently $\overline{W}(F)$ itself is injective. The last part is obvious. **Lemma 3.7.** Let $S = (s_n) \in \overline{W}(F)$ have a companion (A, u, f(D))with $u > \deg f(D)$. Then for any factor h(D) of f(D), (A', u, f(D)/h(D))is a companion of h(D)S for some A' containing A.

PROOF. Let $h(D) = \sum_{i=0}^{k} a_i D^i$, $k = \deg h(D)$. Then $S' = h(D)S = (w_t)$ with $w_t = \sum_{i=0}^{k} a_i s_{t+i}$. Consider any two consecutive members n, m of A with $n - m \ge u + k$. The formula for S' shows that $[w_m, w_{n-k}]$ is a section of a member of $\Omega(f(D)/h(D))$. Define A' such that $x \in A'$ if and only if either $x \in A$ or for some consecutive members p, q of A with $p - q > k, \ x = p - k$. Then by (2.5) A' is a sparse set. By what has been proved above it follows that (A', u, f(D)/h(D)) is a companion of S'.

The following is an immediate consequence of (3.5) and (3.7).

Lemma 3.8. For any $f(D) \neq 0$ in F[D] any factor h(D) of f(D) in F[D],

- (i) $h(D)\overline{\Omega}(f(D)) = \overline{\Omega}(f(D)/h(D))$
- (ii) $f(D) \overline{\Omega}(f(D)) = \overline{\Omega}(1)$
- (iii) $\overline{\Omega}(f(D))/\overline{\Omega}(1)$ is the annihilator of f(D) in $\Gamma(F)/\overline{\Omega}(1)$.

For any torsion module M over F[D], given any non-zero members f(D), g(D) of F[D],

$$\operatorname{ann}_{M}(f(D)) + \operatorname{ann}_{M}(g(D)) = \operatorname{ann}_{M}(\ell(D))$$
$$\operatorname{ann}_{M}(f(D)) \cap \operatorname{ann}_{M}(g(D)) = \operatorname{ann}_{M}(d(D))$$

where $\ell(D)$ and d(D) are the lcm and gcd respectively of f(D) and g(D). This observation and (3.8) (iii) give the following result analogous to that for the $\Omega(f(D))$'s.

Theorem 3.9. For any two non-zero polynomials f(D), g(D) in F[D]

$$\bar{\Omega}(f(D)) + \bar{\Omega}(g(D)) = \bar{\Omega}(\ell(D))$$
$$\bar{\Omega}(f(D)) \cap \bar{\Omega}(g(D)) = \bar{\Omega}(d(D))$$

where $\ell(D)$ and q(D) are the lcm and gcd respectively of f(D) and q(D).

Observe that as every member of $\Omega(D^{\infty})$ is eventually zero we have $\Omega(D^{\infty}) \subseteq \overline{\Omega}(1)$. The following result describes the torsion submodule of any $\overline{\Omega}(f(D))$.

Theorem 3.10. For any non-zero $f(D) \in F[D]$,

$$\overline{\Omega}(f(D)) = (\Omega(D^{\infty}) + \Omega(f(D)) \oplus L)$$

for some torsion-free F[D]-module L of $\overline{\Omega}(f(D))$. Further $\overline{\Omega}(f(D))$ is divisible by D.

PROOF. First of all we prove that $W(F) \cap \overline{\Omega}(f(D)) = \overline{\Omega}(D^{\infty}) + \Omega(f(D))$. It is obvious that $\Omega(D^{\infty}) + \Omega(f(D))$ is contained in $W(F) \cap \overline{\Omega}(f(D))$. Conversely, let $S = (s_n) \in \overline{\Omega}(f(D)) \cap W(F)$. Then, for some $g(D) \neq 0$ in F[D], g(D)S = 0. Consider any companion (A, u, f(D)) of S. By using (2.3) we can find two consecutive members n, m of A such that n - m is greater than u as well as O'(f(D)g(D)). Then $[s_m, s_n]$ is a section of a member S' of $\Omega(f(D))$ and clearly both S and S' are in $\Omega(f(D)g(D))$. By (3.1) (iii)

$$D^r S = D^s S' \in \Omega(h(D))$$

for some positive integers r, s, where h(D) is the gcd of f(D) and g(D). Consequently $f(D)D^rS = 0$. So by (3.1) (iv), $S \in \Omega(D^{\infty}) + \Omega(f(D))$. This proves $W(F) \cap \overline{\Omega}(f(D)) = \Omega(D^{\infty}) + \Omega(f(D))$, the torsion submodule of $\overline{\Omega}(f(D))$. As $\Omega(D^{\infty})$ is injective,

$$\bar{\Omega}(f(D)) = \Omega(D^{\infty}) \oplus L'$$

for some submodule L' of $\overline{\Omega}(f(D))$. Then the torsion submodule L'' if L' is a homomorphic image of $\Omega(f(D))$, is finitely generated; consequently L'' is a summand of L'. This gives

$$\overline{\Omega}(f(D)) = \Omega(D^{\infty}) \oplus (L'' \oplus L)$$
$$= (\Omega(D^{\infty}) + \Omega(f(D)) \oplus L$$

where L is torsion free.

Proposition 3.11. For any $f(D) \in F[D]$ with $f(0) \neq 0$ and deg f(D) > 0, $\overline{\Omega}(f(D)) \neq \overline{\Omega}(1) + \Omega(f(D))$. Further $\overline{\Omega}(1) + \Omega(f(D)) \subset \overline{\Omega}(f(D))$.

PROOF. Clearly $\overline{\Omega}(1) + \Omega(f(D)) \subseteq \overline{\Omega}(f(D))$. Suppose the contrary and let $\overline{\Omega}(f(D)) = \overline{\Omega}(1) + \Omega(f(D))$. Consider any sparse set $A = (n_i)_{i\geq 0}$ such that $n_{2i} + 1 = n_{2i+1}$, $n_{2i+2} - n_{2i+1} > O(f(D))$ and $n_{2j+2} - n_{2j+1} >$ $n_{2i+2} - n_{2i+1}$ for $j > i \geq 0$. We can construct a $T = (t_k)$ in $\overline{\Omega}(f(D))$ such that $[t_{n_{2i+1}}, t_{n_{2i+2}}]$ is a section of non-zero member of $\Omega(f(D))$ for i odd, and is zero for i even. Then for some $S = (s_k) \in \Omega(f(D))$, $T - S \in \overline{\Omega}(1)$. We can find a sparse set A' containing A and a u > O(f(D)) such that (A, u, 1) is a companion of T - S. Let t = s(A'). We can find an msuch that for $i \geq m$, $n_{2i+2} - n_{2i+1} > ut$. By (2.3) we choose m such that given $i \geq m$, we have consecutive members, $a_i < b_i$ of A' such that $n_{2i+1} \leq a_i < b_i < n_{2i+2}$ and $b_i - a_i \geq u$. Then $[t_{a_i} - s_{a_i}, t_{b_i} - s_{b_i}] = 0$. If $S \neq 0$, then $[s_{a_i}, s_{b_i}] \neq 0$ and hence $[t_{n_{2i+1}}, t_{n_{2i+2}}] \neq 0$. If S = 0, then $[t_{a_i}, t_{b_i}] = 0$; in this cae $[t_{n_{2i+1}}, t_{n_{2i+2}}] = 0$, as it has a zero subsection of length greater than O(f(D)). Thus either all the $[t_{n_{2i+1}}, t_{n_{2i+2}}]$ are non-zero or all of them are zero for $i \geq m$. This contradicts the construction of T. This proves that $\overline{\Omega}(1) + \Omega(f(D)) \neq \overline{\Omega}(f(D))$. Finally consider any T' in $\overline{\Omega}(f(D))$ such that $T' \notin \Omega(f(D))$. Then $f(D)T' \neq 0$. But $f(D)T' \in \overline{\Omega}(1) + \Omega(f(D))$ by (3.8). Hence

$$\overline{\Omega}(1) + \Omega(f(D)) \subset' \Omega(f(D)).$$

This completes the proof.

Theorem 3.12.

- (i) For any injective hull L of $\overline{\Omega}(1) + \Omega(f(D))$ in $\Gamma(F)$, $\overline{\Omega}(f(D)) \subseteq L$.
- (ii) For any injective hull K of $\Omega(1)$ in $\Gamma(F)$, $K + \Omega(f(D)^{\infty})$ is an injective hull of $\overline{\Omega}(f(D))$.

PROOF. Let $\Omega(f(D)) \not\subset L$. Then deg f(D) > 0 and L is a proper summand of $L + \overline{\Omega}(f(D))$. This gives $S = S_1 + S_2$ with $S_1 \in L$ and $S_2 \in \overline{\Omega}(f(D))$ such that $S_2 \neq 0$ and $L \cap F[D]S = 0$. Now f(D)S = $f(D)S_1 + f(D)S_2$ with $f(D)S_2 \in \overline{\Omega}(1)$. This yields $f(D)S \in L$. Hence $f(D)S \in L \cap F[D]S = 0$. Consequently $S \in \Omega(f(D))$. But $\Omega(f(D)) \subseteq L$, so that $S \in L$. This is a contradiction. This proves (i). Consider any injective hull K of $\overline{\Omega}(1)$ in $\Gamma(F)$. Then $L = K + \Omega(f(D)^{\infty})$, being a sum of two injective submodules, is injective. So by (i) $\overline{\Omega}(f(D)) \subseteq L$. Consider $0 \neq S \in L$. If $S \in K$ or $S \in \Omega(f(D)^{\infty})$, then by using the fact that $\overline{\Omega}(1) \subseteq \overline{\Omega}(f(D))$ and (3.8) (iii), we get a $g(D) \in F[D]$ such that $0 \neq g(D)S \in \overline{\Omega}(f(D))$. So let $S \notin K$ and $S \notin \Omega(f(D)^{\infty})$. Now $S = S_1 + S_2$ for some $S_1 \in K$ and $S_2 \in \Omega(f(D)^{\infty})$. Also, for some $k \geq 1$, $f(D)^k S_2 = 0$. This gives $0 \neq f(D)^k S = f(D)^k S_1 \in K$. Thus for some $g(D) \in F[D]$, $0 \neq g(D)f(D)^k S \in \overline{\Omega}(1) \subseteq \overline{\Omega}(f(D))$. Hence $\overline{\Omega}(f(D)) \subset K + \Omega(f(D)^{\infty})$. This proves (ii).

Theorem 3.13. Let L be any injective hull of $\overline{\Omega}(1)$ in $\Gamma(F)$, then $\overline{W}(F) = W(F) + L$ and $L \cap W(F) = \Omega(D^{\infty})$.

PROOF. For any $f(D) \in F[D]$ of positive degree with $f(0) \neq 0$, $\overline{\Omega}(1) \cap \Omega(f(D)) = 0$ and $\Omega(D^{\infty}) \subseteq \overline{\Omega}(1)$ gives $L \cap W(F) = \Omega(D^{\infty})$. By (3.12) $\overline{\Omega}(f(D)) \subseteq L + \Omega(f(D)^{\infty}) \subseteq L + W(F)$. Hence $\overline{W}(F) = L + W(F)$.

We now discuss some divisibility properties of an $\overline{\Omega}(g(D))$. Given two relatively prime polynomials f(D), g(D) in F[D], it is well known that $f(D) \cdot \Omega(g(D)) = \Omega(g(D))$. This need not be true for $\overline{\Omega}(g(D))$. We start with the following Lemma 3.14. Let $f(D) \in F[D]$ with deg f(D) = k > 0 and $f(0) \neq 0$. Let $\beta > O(f(D))$. Consider any sparse set A constituted by $n_i, m_i \in \mathbb{N}$ such that $n_0 = 0$, $n_{i+1} - m_i > \beta$, $0 \le m_i - n_i < \deg f(D)$. Let $S = (s_n) \in \Gamma(F)$ be such that for some i, $[s_{n_{i+1}}, s_{m_{i+1}}] \neq 0$, but $[s_{m_i} + 1, s_{n_{i+1}} - 1] = 0 = [s_{m_{i+1}} + 1, s_{n_{i+2}} - 1]$. Let $S' = (w_n) \in \Gamma(F)$ be such that f(D)S' = S. If $[w_{m_i+1}, w_{n_{i+1}+k-1}] = 0$, then $[w_{m_{i+1}+1}, w_{n_{i+2}+k-1}]$ is a non-zero section of a member of $\Omega(f(D))$.

PROOF. It is enough to take i = 0. Let $f(D) = \sum_{i=0}^{k} a_i D^i$ with $a_k \neq 0$. Then

(1)
$$s_{n_{1+j}} = \sum_{i=0}^{k} a_1 w_{n_{1+j+i}}$$

By the hypothesis $[s_{n_1}, s_{m_1}] \neq 0$ and $[w_{m_0+1}, w_{n_1+k-1}] = 0$. Consequently by (1) $[w_{n_1+k}, w_{m_1+k}] \neq 0$. As $n_1+k > m_1$ and $m_1+k \le n_2-1 < n_2+k-1$, we get $[w_{m_1+1}, w_{n_2+k-1}] \neq 0$. In the equation f(D)S'=S, $[s_{m_1+1}, s_{n_2-1}]$ corresponds to $[w_{m_1+1}, w_{n_2+k-1}]$. As $[s_{m_1+1}, s_{n_2-1}] = 0$, it follows that $[w_{m_1+1}, w_{n_2+k-1}]$ is an initial section of a member of $\overline{\Omega}(f(D))$.

Theorem 3.15. $\Omega(1)$ is not divisible by any $f(D) \in F[D]$ of positive degree such that $f(0) \neq 0$. Indeed, given any $g(D) \neq 0$ in F[D]with deg g(D) < deg f(D), there exists $S \in \overline{\Omega}(1)$ such that g(D)S is not divisible by f(D) in $\overline{\Omega}(1)$.

PROOF. Let deg g(D) = u, deg f(D) = k. Consider any $\beta > O(f(D)) + u + 1$. Let $A = (n_i)$ be a sparse set such that

$$\beta < (n_{i+1} - n_i) < (n_{i+2} - n_{i+1})$$

for every *i*. Consider a sequence $S = (s_n) \in \Gamma(F)$ such that $s_n = 1$ for $n \in A$ and $s_n = 0$ otherwise. Let $g(D)S = S' = (s'_n)$. Then for any $i \geq 1$, $[s'_{n_i-u}, s'_{n_i}] \neq 0$ and for $0 < n \notin [n_i - u, n_i]$, $s'_n = 0$. Suppose the contrary and for some $S_1 = (w_n) \in \overline{\Omega}(1)$ let $f(D)S_1 = S'$. By using (2.5) and (3.4) we get a companion (A', v, 1) of S_1 such that $A \subseteq A'$, $n_i - u \in A'$ for i > 0, and $v > \beta$. Let t = s(A'). We can find j > 0 such that $n_{j+1} - u - n_j > tv$. By (2.3) we choose j, such that for $i \geq j$ we have consecutive members $a_i, b_i \in A$ satisfying

$$n_i < a_i < b_i \le n_{i+1} - u \,,$$

 $b_i - a_i > v$. As $[s'_{n_j+1}, s'_{n_{j+1}-u-1}] = 0$ we get that $[w_{n_j+1}, w_{n_j-u+k-1}]$ is a section of a member T of $\Omega(f(D))$. As $[w_{a_j}, w_{b_j}] = 0$ and $b_j - a_j > O(f(D))$ we get T = 0 and hence $[w_{n_j+1}, w_{n_j-u+k-1}] = 0$. Then for every $i \ge j$ we have $[w_{n_i+1}, w_{n_i-u+k-1}] = 0$. This contradicts (3.14) and hence the result follows.

A class of non-recurring sequences over a Galois field

Corollary 3.16. For any non-zero $f(d), g(D) \in F[D]$ with $\deg(g(D)) > 0$ and $g(0) \neq 0$, $\overline{\Omega}(f(D))$ is not divisible by g(D).

PROOF. Suppose the contrary and let $g(D)\overline{\Omega}(f(D)) = \overline{\Omega}(f(D))$. Then $g(D)f(D)\overline{\Omega}(f(D)) = f(D)\overline{\Omega}(f(D))$ i. e. $g(D)\overline{\Omega}(1) = \overline{\Omega}(1)$. This contradicts (3.15). This proves the result.

References

- [1] C. FAITH, Algebra II, Ring Theory, vol. 191, Springer Verlag, 1976.
- [2] R. LIDL and H. NIEDERREITER, Finite Fields, Encyclopedia Math. Appl., vol. 20, Addison Wesley, 1983.
- [3] S. SINGH, A note on linear recurring sequences, *Linear Algebra Appl.* 104 (1988), 97-101.

HASSAN AL-ZAID DEPARTMENT OF MATHEMATICS KUWAIT UNIVERSITY P. O. BOX 5969-13060 SAFAT KUWAIT

SURJEET SINGH DEPARTMENT OF MATHEMATICS KUWAIT UNIVERSITY P. O. BOX 5969-13060 SAFAT KUWAIT

(Received February 2, 1993)