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A class of Finsler metrics projectively related
to a Randers metric

By GUANGZU CHEN (Shanghai) and XINYUE CHENG (Chongqing)

Abstract. In this paper, we prove that the (α, β)-metrics in the form F = (α+β)p/

αp−1 (p 6= 1, 2) are projectively related to a Randers metric F̄ = ᾱ + β̄ on a manifold

of dimension n (n ≥ 3) if and only if F is Berwald metric and F̄ is Douglas metric and

the corresponding Riemannian metrics α and ᾱ are projectively related.

1. Introduction

In Finsler geometry, it is an important topic to study projectively related

Finsler metrics on a manifold. Two Finsler metrics are said to be projectively

related if they have the same geodesics as point sets. It is well-known that two

Finsler metrics F and F̄ are projectively related if and only if their geodesic

coefficients have the following relation

Gi = Ḡi + P (x, y)yi, (1)

where P (x, y) is a scalar function on TM \{0} with P (x, λy) = λP (x, y), ∀λ > 0.

In Finsler geometry, there is a special class of Finsler metrics which can be

expressed in the form F = αφ(s), s = β/α, where α is a Riemannian metric and

β is an 1-form with ‖β‖α < b0 and φ(s) is a C∞ positive function on (−b0, b0).

In particular, when φ = 1 + s, the Finsler metric F = α + β is Randers metric
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with ‖β‖α < 1. Randers metric was introduced by the physicist G. Randers in

1941 from the standpoint of general relativity. The name was given by R. S. In-

garden, who used it to study the theory of the electron microscopein ([6]).

Randers metrics form the simplest class of (α, β)-metrics, but they have some

special properties which other (α, β)-metrics don’t possess([1], [3]). In [14], the

projectively related Randers metrics are studied. It shows that two Randers

metrics are projectively related if and only if they have the same Douglas tensors

and the corresponding Riemannian metrics are projectively related ([14]). Later

on, N. Cui and Y. Shen prove that (α, β)-metrics in the form F = (α + β)2/α

are projectively related to a Randers metric F̄ = ᾱ+ β̄ if and only if both F and

F̄ are Douglas metrics and the corresponding Riemannian metrics α and ᾱ are

projectively related ([5]).

The (α, β)-metrics in the form F = (α+β)p/αp−1 form a rich class of Finsler

metrics. Obviously, when p = 0, F = α is just a Riemannian metric. Hence, we

always assume that p 6= 0 in this paper. When p = 1, F becomes Randers metric

F = α + β. When p = 2, F is just the metric studied in [5]. If we substitute

β with −β and take p = −1, the resulting metric is just Matsumoto metric

F = α2/(α − β). Matsumoto metric was introduced by M. Matsumoto as a

realization of P. Finsler’s idea “a slope measure of a mountain with respect to

a time measure” ([10]). The purpose of this paper is to study (α, β)-metrics in

the form F = (α + β)p/αp−1 which are projectively related to a Randers metric

F̄ = ᾱ+ β̄. Firstly, we can prove the following

Theorem 1.1. Let F = (α + β)p/αp−1(p 6= 1) be an (α, β)-metric and

F̄ = ᾱ+ β̄ be a Randers metric on a manifold M of dimension n (n ≥ 3), where

α and ᾱ are two Riemannian metrics, β and β̄ are two nonzero 1-forms. Then

they have the same Douglas tensors if and only if F and F̄ are Douglas metrics.

Further, we have the following

Theorem 1.2. Let F = (α + β)p/αp−1(p 6= 1, 2) be an (α, β)-metric and

F̄ = ᾱ + β̄ be a Randers metric on a manifold M of dimension n (n ≥ 3),

where α and ᾱ are two Riemannian metrics and β and β̄ are two nonzero 1-forms.

Then F is projectively related to F̄ if and only if F is a Berwald metric and

F̄ is a Douglas metric and the corresponding Riemannian metrics α and ᾱ are

projectively related.
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2. Preliminaries

For a given Finsler F = F (x, y), the geodesics of F are characterized locally

by a system of 2nd ODEs as follows ([4]),

d2xi

dt2
+ 2Gi

(
x,

dx

dt

)
= 0,

where

Gi =
1

4
gil

{
[F 2]xmylym − [F 2]xl

}
.

Gi are called the geodesic coefficients of F .

A Finsler metric F is called a Berwald metric if its geodesic coefficients

Gi =
1

2
Γi
jk(x)y

jyk

are quadratic in y ∈ TxM for any x ∈ M . It is easy to see that Riemannian

metrics are special Berwald metrics.

Let

D i
j kl :=

∂3

∂yj∂yk∂yl

(
Gi − 1

n+ 1

∂Gm

∂ym
yi
)
, (2)

where Gi are the geodesic coefficients of F . The tensor D := D i
j kl

∂
∂xi ⊗ dxj ⊗

dxk ⊗ dxl is called the Douglas tensor of F . Douglas tensor is non-Riemannian.

A Finsler metric is called Douglas metric if the Douglas tensor vanishes.

By (1), one can check easily that the Douglas tensor is a projectively invari-

ant. A fundamental fact is that all Berwald metrics must be Douglas metrics.

By the definition, an (α, β)-metric is a Finsler metric expressed in the follo-

wing form

F = αφ(s), s =
β

α
,

where α =
√
aijyiyj is a Riemann metric and β = bi(x)y

i is a 1-form with

‖βx‖α < b0. It is proved that F = αφ(β/α) is a positive definite Finsler metric if

and only if the function φ = φ(s) is a C∞ positive function on an open interval

(−b0, b0) satisfying ([4])

φ(s)− sφ′(s) + (b2 − s2)φ′′(s) > 0, |s| ≤ b < b0.

Let Gi and Gi
α denote the geodesic coefficients of F and α, respectively, given

by

Gi =
gil

4

{
[F 2]xmylym − [F 2]xl

}
, Gi

α =
ail

4

{
[α2]xmylym − [α2]xl

}
,
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where (gij) :=
(
1
2 [F

2]yiyj

)
and (aij) := (aij)

−1. Denote

rij :=
1

2
(bi|j + bj|i), sij :=

1

2
(bi|j − bj|i), sij := ailslj , si := bjsji,

where “|” denotes the horizontal covariant derivative with respect to α. Put

s0 := siy
i, r00 := rijy

iyj . We have the following

Lemma 2.1. ([13]) The geodesic coefficients of Gi are related to Gi
α by

Gi = Gi
α + αQsi0 + {−2Qαs0 + r00}{Ψbi +Θα−1yi}, (3)

where

Q :=
φ′

φ− sφ′ ,

Θ :=
φφ′ − s(φφ′′ + φ′φ′)

2φ
[
(φ− sφ′) + (b2 − s2)φ′′] ,

Ψ :=
φ′′

2
[
(φ− sφ′) + (b2 − s2)φ′′)

] .

In the following, we will compute the Douglas tensor of (α, β)-metrics. Let

Ĝi := Gi
α + αQsi0 +Ψ{−2Qαs0 + r00}bi.

Then (3) becomes

Gi = Ĝi +Θ{−2Qαs0 + r00}α−1yi.

Clearly, Gi and Ĝi are projective equivalent sprays according to (1). Then they

have the same Douglas tensor.

Denote

T i := αQsi0 +Ψ{−2Qαs0 + r00}bi. (4)

Then Ĝi = Gi
α + T i. We have

D i
j kl = D̂ i

j kl =
∂3

∂yj∂yk∂yl

(
Gi

α − 1

n+ 1

∂Gm
α

∂ym
yi + T i − 1

n+ 1

∂Tm

∂ym
yi
)

=
∂3

∂yj∂yk∂yl

(
T i − 1

n+ 1

∂Tm

∂ym
yi
)
. (5)

Note that

∂Tm

∂ym
= Q′s0 +Ψ′α−1(b2 − s2)[r00 − 2Qαs0]

+ 2Ψ[r0 −Q′(b2 − s2)s0 −Qss0]. (6)
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Thus, if two (α, β)-metrics F and F̄ have the same Douglas tensors, i.e.,

D i
j kl = D̄ i

j kl, then by (5), we have

∂3

∂yj∂yk∂yl

[
T i − T̄ i − 1

n+ 1

(∂Tm

∂ym
− ∂T̄m

∂ym

)
yi
]
= 0.

Then there are scalar functions Hi
jk := Hi

jk(x) on M such that

T i − T̄ i − 1

n+ 1

(∂Tm

∂ym
− ∂T̄m

∂ym

)
yi = Hi

00, (7)

where Hi
00 := Hi

jky
jyk.

3. The proof of Theorem 1.1

In this section, we consider the (α, β)-metrics in the following form:

F =
(α+ β)p

αp−1
:= αφ(s), s :=

β

α
,

where φ(s) = (1 + s)p. Let b0 = b0(p) > 0 be the largest number such that

(1 + s)p > 0, (1 + s)[1− (p− 1)s] + p(p− 1)(b2 − s2) > 0, |s| ≤ b < b0. (8)

Then F = (α+β)p/αp−1 is a Finsler metric if and only if β satisfies b := ‖βx‖α <

b0. It is easy to see that b0 = b0(p) ≤ 1 for p 6= 0. Particularly, we have known

that b0 = 1 as p = 1, 2 and b0 = 1
2 as p = −1. In general, for fixed p, we

always can determine b0 such that (8) holds. For example, when p > 1 and

b := ‖βx‖α < min{1, 1/(p− 1)}, (8) holds.
By Lemma 2.1, the geodesic coefficients of F are given by (3) with

Q =
p

s(1− p) + 1
,

Θ =
1

2

(1− 2s(p− 1)) p

s2(1− p2) + s(2− p) + 1 + b2p(p− 1)
,

Ψ =
1

2

p (p− 1)

s2(1− p2) + s(2− p) + 1 + b2p(p− 1)
. (9)

For a Randers metric F̄ = ᾱ+ β̄, the geodesic coefficients of F̄ are given by

(3) with

Q̄ = 1, Θ̄ =
1

2(1 + s)
, Ψ̄ = 0. (10)

To avoid clutter, we always assume

λ :=
1

n+ 1
.
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Proof of Theorem 1.1. The sufficiency is obvious. We just need to prove

the necessity. If F and F̄ have the same Douglas tensor, then (7) holds. By (4)

and (6) and by Maple program, plugging (9) and (10) into (7) yields

Aiα6 +Biα5 + Ciα4 +Diα3 + Eiα2 + F iα+Hi

Iα5 + Jα4 +Kα3 + Lα2 +Mα+N
= ᾱs̄i0 +Hi

00, (11)

where

F i = −λyiβ3r00(p+ 4)(p− 1)2p,

Hi = 2λyiβ4r00(p+ 1)(p− 1)3p,

M = 2β4(p+ 1)(p− 5)(p− 1)2,

N = 2β5(p+ 1)2(p− 1)3 (12)

and Ai, Ci, Ei, J , L denote the polynomials of odd degree in y and Bi, Di, I,

K denote the polynomials of even degree in y, which contain the terms si0, s0
and r00.

Further, (11) is equivalent to

Aiα6 +Biα5 + Ciα4 +Diα3 + Eiα2 + F iα+Hi

= (Iα5 + Jα4 +Kα3 + Lα2 +Mα+N)(Hi
00 + ᾱs̄i0). (13)

Replacing yi in (13) by −yi yields

−Aiα6 +Biα5 − Ciα4 +Diα3 − Eiα2 + F iα−Hi

= (Iα5 − Jα4 +Kα3 − Lα2 +Mα−N)(Hi
00 − ᾱs̄i0). (14)

(13)–(14) yields

α(Biα4 +Diα2 + F i) = αHi
00(Iα

4 +Kα2 +M) + ᾱs̄i0(Jα
4 + Lα2 +N). (15)

(13)–(14) yields

Aiα6 + Ciα4 + Eiα2 +Hi

= Hi
00(Jα

4 + Lα2 +N) + αᾱs̄i0(Iα
4 +Kα2 +M). (16)

Now we are ready to prove that s̄ij = 0.

Case 1: p = 2. This case is discussed in ([5]), so we omit it.
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Case 2: p = −1. In this case, plugging p = −1 into (13) yields

Āiα5 + B̄iα4 + C̄iα3 + D̄iα2 + Ēiα+ F̄ i

= (Īα4 + J̄α3 + K̄α2 + L̄α)(ᾱs̄i0 +Hi
00), (17)

where

F̄ i = −6λyiβ3r00 (18)

and Āi, B̄i, C̄i, D̄i, Ēi, Ī, J̄ , K̄, L̄ denote the polynomials in y. From (17) and

(18), there exists a scalar function k := k(x) such that r00 = kα2 because α2 is

a irriducible polynomial of (yi) and α2 and β2 are relatively prime polynomials

of (yi). Then r0 = kβ. Plugging them into (15) and (16) yields

Ãiα5 + C̃iα3 + Ẽiα = ᾱs̄i0(J̃α
2 + L̃) +Hi

00(Ĩα
3 + K̃α), (19)

B̃iα4 + D̃iα2 = ᾱs̄i0(Ĩα
3 + K̃α) +Hi

00(J̃α
2 + L̃), (20)

where
Ĩ = (1 + 2b2)2, J̃ = 4β(1 + 2b2)(2 + b2),

K̃ = 3β2(7 + 8b2), L̃ = 18β3 (21)

and Ãi, B̃i, C̃i, D̃i, Ẽi denote the polynomials in y.

(1) If ᾱ 6= µ(x)α, note that s̄i0L̃ = 18β3s̄i0, by (19), β6(s̄i0)
2 can be divided

by α2. Then there exists a scalar function τ i = τ i(x) for each i such that (s̄i0)
2 =

τ iα2 which is equivalent to

s̄ij s̄
i
k = τ iajk.

When n ≥ 2, if τ i 6= 0, then

1 ≥ rank(s̄ij s̄
i
k) = rank(τ iajk) ≥ 2,

which is impossible. Hence τ i = 0. Thus we get s̄ij = 0.

(2) If ᾱ = µ(x)α, we have

yis̄
i
0 = aijy

j s̄i0 =
1

µ(x)2
āijy

j s̄i0 =
1

µ(x)2
ȳis̄

i
0 = 0.

On the other hand, (20) implies that
(
Hi

00L̃
)2

can be divided by α2. Thus

for each i, there exists a scalar function θi := θi(x) such that Hi
00 = θiα2.

Contracting (19) and (20) with yi yields

Aα4 + Cα2 = θ(J̃α2 + L̃), Bα2 +D = θ(Ĩα2 + K̃), (22)
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where

A = 3λkb2,

B = (k + 2kb2 + 2λkb2 − 2λk)β + (2λb2 − 2λ)s0,

C = −β[(−4kb2 − 5k + 13λk + 8λkb2)β − (2− 4b2 + 10λ+ 8λb2)s0],

D = −6β2 (3λ− 1) (kβ + s0)

and

θ := aijθ
jyi.

From (22) we know that θL̃ and (D−θK̃) can be divided by α2, which imply

that θ = 0 and kβ + s0 = 0(n ≥ 3). Then we can get that k = 0 and s0 = 0.

Hence, rij = 0 and si = 0. Plugging them into (17) yields

−α2si0 = (α+ 2β)(µαs̄i0 +Hi
00). (23)

From (23), we obtain the following

−α2si0 = µα2s̄i0 + 2βHi
00, 0 = Hi

00 + 2µβs̄i0. (24)

From (24) one gets α2si0 + µα2s̄i0 = 4µβ2s̄i0, which implies that s̄i0 = 0.

Case 3: p 6= 2,−1. From (15) and by (12), it is obvious that
(
ᾱβs̄i0

)2
can be

divided by α2. If ᾱ 6= µ(x)α, then β2(s̄i0)
2 can be divided by α2, which implies

that s̄i0 = 0.

If ᾱ = µ(x)α, then (15) and (16) are reduced to

Biα4 +Diα2 + F i = Hi
00(Iα

4 +Kα2 +M)

+ µ(x)s̄i0(Jα
4 + Lα2 +N), (25)

Aiα6 + Ciα4 + Eiα2 +Hi = Hi
00(Jα

4 + Lα2 +N)

+ µ(x)α2s̄i0(Iα
4 +Kα2 +M). (26)

The above two equations imply that Xi := F i −Hi
00M − µ(x)s̄i0N and Y i :=

Hi−Hi
00N can be divided by α2. Hence 2(p+1)(p− 1)βXi+(p+4)Y i can also

be divided by α2. By (12) we have

2(p+ 1)(p− 1)βXi + (p+ 4)Y i

= −6Hi
00β

5(p− 2)(p+ 1)2(p− 1)3 − 4µ(x)s̄i0β
6(p+ 1)3(p− 1)4. (27)

Contracting (27) with yi := aijy
j , we conclude that H0

00 := Hi
00yi can be di-

vided by α2, that is, there exists a 1-form η := η(x)iy
i such that H0

00 = ηα2.
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Contracting (13) with yi yields

Āα5 + B̄α4 + C̄α3 + D̄α2 + Ēα+ F̄

= η(Iα5 + Jα4 +Kα3 + Lα2 +Mα+N), (28)

where

Ē= − β3p(p− 1)2[λ(p+ 4)− 3]r00, F̄ =β4p(p+ 1)(p− 1)3(2λ− 1)r00 (29)

and Ā, C̄ denote the polynomials of odd degree in y and B̄, D̄ denote polynomials

of even degree in y. Replacing yi in (28) by −yi yields

− Āα5 + B̄α4 − C̄α3 + D̄α2 − Ēα+ F̄

= −η(Iα5 − Jα4 +Kα3 − Lα2 +Mα−N). (30)

(28)–(30) yields

Āα4 + C̄α2 + Ē = η(Iα4 +Kα2 +M). (31)

(28) + (30) yields

B̄α4 + D̄α2 + F̄ = η(Jα4 + Lα2 +N). (32)

The above two equations imply that X := Ē− ηM and Y := F̄ − ηN can be

divided by α2, so (p+ 1)(p− 1)(2λ− 1)βX + [λ(p+ 4)− 3]Y can also be divided

by α2. By (12) and (29) one gets

(p+ 1)(p− 1)(2λ− 1)βX + [λ(p+ 4)− 3]Y

= −2ηβ5(p+ 1)2(p− 1)3(p− 2)(3λ− 1). (33)

Then η = 0 because of n ≥ 3. From (32) and by (29), we have r00 = τα2, where

τ := τ(x) is a scalar function on M . Then r0 = τβ. Plugging them into (28)

yields

c4α
4 + c3α

3 + c2α
2 + c1α+ c0 = 0, (34)

where

c0 = −β3(p− 1)(p+ 1)
{
τ(p− 1)(4λ− 1)β + 2[(3λ− 1)p− λ]s0

}
,

c1 = β2
[
τ(λp2 + 9λp− 10λ− 3p+ 3)β + (10λp− 4p− 2p2

− 6λ− 2λp2)s0
]

(35)
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and c2, c3, c4 denote polynomials in y. From (34), we obtain

c4α
4 + c2α

2 + c0 = 0, (36)

c3α
2 + c1 = 0. (37)

Combining (35), (36) and (37) yields

τ(p− 1)(4λ− 1)β + 2
[
(3λ− 1)p− λ

]
s0 = 0,

τ(p− 1)
[
λ(p+ 10)− 3

]
β + 2

[
λ(5p− p2 − 3)− p(2− p)

]
s0 = 0. (38)

Differentiating (38) with respect to yi and contracting it by bi yields

τ(4λ− 1) = 0, (39)

τ [λ(p+ 10)− 3] = 0. (40)

We claim τ = 0. If τ 6= 0, then (39) implies λ = 1
4 . Plugging it into (40)

yields τ
4 (p−2) = 0, which is impossible. Hence τ = 0. From (38), we have s0 = 0.

Then (13) becomes

α2psi0 = [α+ (1− p)β](µαs̄i0 +Hi
00).

From above equation, we have

α2psi0 = µα2s̄i0 + (1− p)βHi
00, (41)

0 = (1− p)µβs̄i0 +Hi
00. (42)

Then (41)−(1 − p)β×(42) yields (psi0 − µs̄i0)α
2 = (p − 1)µβs̄i0 which implies

that βs̄i0 can be divided by α2. Then s̄i0 = 0.

It is well known that Randers metric F̄ = ᾱ + β̄ is a Douglas metric if and

only if β̄ is closed, i.e. s̄ij = 0. Then we have proved that F̄ is a Douglas metric.

By the assumption, F is also a Douglas metric. ¤

4. The Proof of Theorem 1.2

To prove Theorem 1.2, we need the following lemma

Lemma 4.1 ([9]). Suppose that Q/s 6= constant for an (α, β)-metric F =

αφ(β/α) on a manifold M of dimension n (n > 2). If F is a Douglas metric and

b := ‖βx‖α 6= 0, then β is closed.
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Proof of Theorem 1.2. Firstly we prove the sufficiency. It is known that

any regular (α, β)-metric F is Berwald metric if and only if β is parallel with

respect to α, i.e., bi|j = 0 ([1], [7], [11]). Hence, if F is Berwald metric, its

geodesic coefficients Gi = Gi
α by (3). Because F̄ is Douglas metric, its geodesic

coefficients Ḡi = Ḡi
ᾱ + r̄00

2F̄
yi. Note that the corresponding Riemannian metrics

α and ᾱ are projectively related, we have Gi
α = Ḡi

ᾱ + P̄ (x, y)yi, where P̄ (x, y)

is a scalar function on TM \ {0}. Hence we have Gi = Ḡi + P (x, y)yi, where

P (x, y) := P̄ (x, y)− r̄00
2F̄

. Thus F is projectively related to F̄ .

Next, we are going to prove the necessity. When p = −1, F = α2/(α + β).

We can prove that F is a Douglas metric if and only if β is parallel with respect

to α (see [9], [12]). Because F is projectively related to F̄ , F and F̄ have the same

Douglas tensors. By Theorem 1.1, we know that both of F and F̄ are Douglas

metrics. Then bi|j = 0 and β̄ is closed. Further, we know that Gi = Gi
α and

Ḡi = Ḡi
ᾱ +

[
r̄00/(2F̄ )

]
yi. By the assumption again, there is a scalar function

P := P (x, y) on TM \ {0} such that Gi = Ḡi + Pyi. Then we obtain Gi
α =

Ḡi
ᾱ + (P + r̄00

2F̄
)yi. Thus α is projectively related to ᾱ.

When p 6= −1, it is easy to prove that φ(s) = (1 + s)p satisfies Q/s 6=
constant. By Theorem 1.1 and Lemma 4.1, we obtain sij = s̄ij = 0. Then (11)

becomes
Ai

4α
4 +Ai

3α
3 +Ai

2α
2 +Ai

1α+Ai
0

I4α4 + I3α3 + I2α2 + I1α+ I0
= Hi

00, (43)

where

Ai
0 = 2λyiβ3p(p+ 1)(p− 1)2r00,

Ai
1 = λyiβ2p(p− 2)(p− 1)r00,

I0 = 2β4(p+ 1)2(p− 1)2,

I1 = 4β3(p+ 1)(p− 1)(p− 2) (44)

and Ai
4, A

i
3, A

i
2, I4, I3, I2 denote polynomials in y. Then (15) and (16) become

Ai
4α

4 +Ai
2α

2 +Ai
0 = Hi

00(I4α
4 + I2α

2 + I0), (45)

Ai
3α

2 +Ai
1 = Hi

00(I3α
2 + I1). (46)

Thus there exist a scalar function τ̄ := τ̄(x) and a 1-form η̄ := η̄iy
i such that

r00 = τ̄α2 and H0
00 = η̄α2. Contracting (43) with yi yields

B5α
5 +B4α

4 +B3α
3 +B2α

2 = η̄(I4α
4 + I3α

3 + I2α
2 + I1α+ I0), (47)
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where

B2 = τ̄β3 (4λ− 1) p (p− 1)
2
(p+ 1) , B3 = τ̄β2 (3λ− 1) p (p− 2) (p− 1) (48)

and B4, B5 denote polynomials in y. Then we have

B5α
4 +B3α

2 = η̄(I3α
2 + I1), (49)

B4α
4 +B2α

2 = η̄(I4α
4 + I2α

2 + I0). (50)

From (49), we can see that η̄I1 can be divided by α2, which implies that η̄ = 0.

Thus, by (49) again, B3 can be divided by α2. By (48), we have τ̄ = 0. Then

rij=0. Thus F is Berwald metric. In this case, we still haveGi
α = Ḡi

ᾱ+(P+ r̄00
2F̄

)yi,

that is, α is projectively related to ᾱ. ¤

From Theorem 1.2, we immediately obtain the following corollary

Corollary 4.2. Let F = (α + β)p/αp−1 (p 6= 1, 2) be an (α, β)-metric on a

manifold M of dimension n (n ≥ 3), where α is a Riemannian metric and β is a

nonzero 1-form. Then F is projectively flat if and only if

(1) β is parallel with respect to α;

(2) α is locally projectively flat, i.e., α is of constant sectional curvature.

Proof. If F is projectively flat, we can write Gi = P (x, y)yi, where P (x, y)

is a scalar function on TM \ {0} with P (x, λy) = λP (x, y), ∀λ > 0. On the

other hand, we can always chose a Riemann metric ᾱ and an 1-form β̄ such that

ᾱ is projectively flat and β̄ is closed. Further we can construct a projectively

flat Randers metric F̄ = ᾱ + β̄ and its geodesic coefficients can be expressed as

Ḡi = P̄ (x, y)yi, where P̄ (x, y) is a scalar function on TM \ {0}. Thus Gi =

Ḡi + (P − P̄ )yi, i.e., F is projectively related to F̄ . Thus, by Theorem 1.2, we

know that F is a Berwald metric and α is projectively related to ᾱ. It is obvious

that α is projectively flat.

Conversely, because β is parallel with respect to α, we have Gi = Gi
α by

Lemma 2.1. Since α is locally projectively flat, F is projectively flat. ¤

Corollary 4.2 is just the Theorem 1 in [2].
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