Publ. Math. Debrecen 81/3-4 (2012), 365–371 DOI: 10.5486/PMD.2012.5229

Super-paracompactness and continuous sections

By DAVID BUHAGIAR (Msida) and VALENTIN GUTEV (Durban)

Abstract. It is demonstrated that a space X is super-paracompact if and only if for every completely metrizable Y, every l.s.c. mapping from X into the nonempty closed subsets of Y has a compact-valued continuous section.

1. Introduction

For a space Y, we will use 2^Y to denote the *power set* of Y, i.e. the set of all subsets of Y. Also, we will use $\mathscr{F}(Y)$ to denote the set of all nonempty closed subsets of Y, and $\mathscr{C}(Y)$ – that of all compact members of $\mathscr{F}(Y)$. For a set-valued mapping $\varphi : X \to 2^Y$ and $B \subset Y$, let $\varphi^{-1}[B] = \{x \in X : \varphi(x) \cap B \neq \emptyset\}$. The mapping φ is *lower semi-continuous*, or l.s.c., if the set $\varphi^{-1}[U]$ is open in X for every open $U \subset Y$. The mapping φ is *upper semi-continuous*, or u.s.c., if the set

$$\varphi^{\#}[U] = X \setminus \varphi^{-1}[Y \setminus U] = \{x \in X : \varphi(x) \subset U\}$$

is open in X for every open $U \subset Y$. For convenience, we say that φ is *usco* if it is u.s.c. and nonempty-compact-valued, and that φ is *continuous* if it is both l.s.c. and u.s.c.

A mapping $\varphi : X \to 2^Y$ is a multi-selection (or, a set-valued selection) for $\Phi : X \to 2^Y$ if $\varphi(x) \subset \Phi(x)$ for every $x \in X$; and $\varphi : X \to 2^Y$ is a section for $\Phi : X \to 2^Y$ if $\varphi(x) \cap \Phi(x) \neq \emptyset$ for every $x \in X$. If φ is a section for Φ , then both φ and Φ must be nonempty-valued. Of course, every nonempty-valued multi-selection for Φ is also a section for Φ .

Mathematics Subject Classification: 54C60, 54C65, 54D15.

Key words and phrases: super-paracompactness, set-valued mapping, lower semi-continuous, upper semi-continuous, section, tree, branch.

David Buhagiar and Valentin Gutev

There is a natural relationship between covering properties and multi-selections. Namely, such familiar properties of topological spaces as paracompactness, metacompactness, collectionwise normality, etc., were transformed and thus essentially generalised in terms of multi-selections for l.s.c. mappings in completely metrizable spaces, see, for instance, [4], [5], [6], [8], [10], [12], [14], [17]. The present paper deals with a similar characterisation of another covering property, but now in terms of sections. Let \mathscr{W} be a collection of subsets of a set X. If $U, V \in \mathscr{W}$, then a finite sequence W_1, W_2, \ldots, W_k of elements of \mathscr{W} is called a *chain* from U to V if $U = W_1, V = W_k$ and $W_i \cap W_{i+1} \neq \emptyset$ for every $i = 1, \ldots, k-1$. A subset $\mathscr{P} \subset \mathscr{W}$ is called *connected* if every pair of elements of \mathscr{P} is connected by a chain. The components of \mathscr{W} are defined as the maximal connected subsets of \mathscr{W} . A space X is call *super-paracompact* (Pasynkov, see [13]) if every open cover of X has an open finite component (i.e., having finite components) refinement. The purpose of this paper is to prove the following theorem.

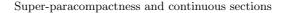
Theorem 1.1. A space X is super-paracompact if and only if for every completely metrizable space Y, every l.s.c. mapping $\Phi : X \to \mathscr{F}(Y)$ has a continuous section $\varphi : X \to \mathscr{C}(Y)$.

Theorem 1.1 can be compared with [7, Proposition 1.1] that a regular space X is paracompact if and only if for every completely metrizable Y, every l.s.c. mapping $\Phi: X \to \mathscr{F}(Y)$ has an usco section $\psi: X \to \mathscr{C}(Y)$.

A word should be said also about the paper itself. Theorem 1.1 is proved in Section 3; the preparation for this proof is done in the next section. The technique developed to prove Theorem 1.1 allows to generalise it for a non-metrizable range, see Theorem 3.2.

2. Completeness and special sieves

A partially ordered set (T, \preceq) is a *tree* if $\{s \in T : s \preceq t\}$ is well-ordered for every $t \in T$. For a tree (T, \preceq) , we use T(0) to denote the set of the minimal elements of T. Given an ordinal α , if $T(\beta)$ is defined for every $\beta < \alpha$, then $T(\alpha)$ denotes the minimal elements of $T \setminus (T \upharpoonright \alpha)$, where $T \upharpoonright \alpha = \bigcup \{T(\beta) : \beta < \alpha\}$. The set $T(\alpha)$ is called the α^{th} -level of T, while the *height* of T is the least ordinal α such that $T \upharpoonright \alpha = T$. We say that (T, \preceq) is an α -tree if its height is α . A maximal linearly ordered subset of a tree (T, \preceq) is called a *branch*, and $\mathscr{B}(T)$ is used to denote the set of all branches of T. A tree (T, \preceq) is *pruned* if every element of Thas a successor in T, i.e. if for every $s \in T$ there exists $t \in T$, with $s \prec t$. In these



terms, an ω -tree (T, \preceq) is pruned if each branch $\beta \in \mathscr{B}(T)$ is infinite. Following NYIKOS [15], for every $t \in T$, set

$$\mathscr{O}(t) = \{ \beta \in \mathscr{B}(T) : t \in \beta \}.$$
(2.1)

For a pruned ω -tree (T, \leq) , the family $\{\mathscr{O}(t) : t \in T\}$ is a base for a completely metrizable non-Archimedean topology on $\mathscr{B}(T)$. We will refer to this topology on $\mathscr{B}(T)$ as the *branch topology*, and to the resulting topological space as the *branch space*. It is well known that $\mathscr{B}(T)$ is compact if and only if all levels of T are finite.

For a tree (T, \preceq) and $t \in T$, the *node* of t in T is the subset $\mathsf{node}(t) \subset T$ of all immediate successors of t. For convenience, let $\mathsf{node}(\emptyset) = T(0)$. Finally, for a mapping $\Psi: Z \to 2^Y$ and $A \subset Z$, let

$$\Psi[A] = \bigcup \{ \Psi(z) : z \in A \}.$$

Given a set Y and a pruned ω -tree (T, \preceq) , a set-valued mapping $\mathscr{S}: T \to 2^Y$ is a *sieve* on Y if

- (i) $Y = \mathscr{S}[\mathsf{node}(\emptyset)]$, and
- (ii) $\mathscr{S}(t) = \mathscr{S}[\mathsf{node}(t)]$ for every $t \in T$.

A sieve $\mathscr{S}: T \to 2^Y$ on a space Y is *complete* [3], [11] if for every branch $\beta \in \mathscr{B}(T)$ and every nonempty centred (i.e., with the finite intersection property) family $\mathscr{F} \subset 2^Y$ which refines $\{\mathscr{S}(t): t \in \beta\}$ it follows that $\bigcap \{\overline{F}: F \in \mathscr{F}\} \neq \emptyset$. In other words, a sieve $\mathscr{S}: T \to 2^Y$ on Y is complete if each family $\{\mathscr{S}(t): t \in \beta\}$, $\beta \in \mathscr{B}(T)$, is a *compact* filter base (i.e., each ultrafilter containing it is convergent) [16].

For a tree (T, \preceq) and $\mathscr{S} : T \to 2^Y$, the polar mapping $\Omega_{\mathscr{S}} : \mathscr{B}(T) \to 2^Y$, associated to \mathscr{S} , is defined by $\Omega_{\mathscr{S}}(\beta) = \bigcap \{\mathscr{S}(t) : t \in \beta\}, \beta \in \mathscr{B}(T)$. Also, to the mapping $\mathscr{S} : T \to 2^Y$ we associate the pointwise-closure $\overline{\mathscr{S}} : T \to 2^Y$ of \mathscr{S} by $\overline{\mathscr{S}}(t) = \overline{\mathscr{S}(t)}, t \in T$. If $\mathscr{S} : T \to 2^Y$ is a nonempty-valued complete sieve on a space Y, then for every branch $\beta \in \mathscr{B}(T)$, the polar $\Omega_{\overline{\mathscr{S}}}(\beta)$ is a nonempty compact subset of Y, and every open $V \supset \Omega_{\overline{\mathscr{S}}}(\beta)$ contains some $\overline{\mathscr{S}}(t)$ for $t \in \beta$, see, e.g., [3, Proposition 2.10]. In terms of set-valued mappings, this means that the polar mapping $\Omega_{\overline{\mathscr{S}}} : \mathscr{B}(T) \to \mathscr{C}(Y)$ is usco. In this section, we show that every completely metrizable space Y has a special complete sieve $\mathscr{S} : T \to 2^Y$ such that the polar mapping $\Omega_{\overline{\mathscr{S}}}$ is continuous. To this end, recall that a sieve $\mathscr{S} : T \to 2^Y$ is finitely-additive if each collection $\{\mathscr{S}(t) : t \in T(n)\}, n < \omega$, as well as each collection of the form $\{\mathscr{S}(s) : s \in \mathsf{node}(t)\}, t \in T$, is closed under finite unions.

David Buhagiar and Valentin Gutev

Lemma 2.1. Every completely metrizable space Y has a nonempty-openvalued, finitely-additive and complete sieve $\mathscr{S} : T \to 2^Y$ such that the polar mapping $\Omega_{\overline{\mathscr{S}}} : \mathscr{B}(T) \to \mathscr{C}(Y)$ is continuous.

PROOF. Let d be a complete metric on Y compatible with the topology of Y, and let $\mathscr{R}: D \to 2^Y$ be a nonempty-open-valued sieve on Y with $\operatorname{diam}_d(\mathscr{R}(s)) < 2^{-n}$ for every $s \in D(n)$ and $n < \omega$. According to Cantor's intersection theorem, \mathscr{R} is a complete sieve on Y. In fact, each $\Omega_{\overline{\mathscr{R}}}(\delta), \ \delta \in \mathscr{B}(D)$, is a singleton, and hence the polar mapping $\Omega_{\overline{\mathscr{R}}}: \mathscr{B}(D) \to \mathscr{C}(Y)$ is singleton-valued and usco (thus, continuous as well). Keeping this in mind, let Σ_D be the set of all nonempty finite subsets of D. By [11, Lemma 2.3], there is a finitely-additive sieve $\mathscr{S}: T \to 2^Y$ on Y generated by the sieve \mathscr{R} , where $T \subset \Sigma_D$ and for each $\sigma \in T$, the value of \mathscr{S} in σ is $\mathscr{S}(\sigma) = \mathscr{R}[\sigma] = \bigcup \{\mathscr{R}(s) : s \in \sigma\}$. The order on T is defined in a natural way so that each branch $\beta = \{\sigma_n : n < \omega\} \in \mathscr{B}(T)$ corresponds to a pruned subtree $\bigcup \beta = \bigcup \{\sigma_n : n < \omega\}$ of D such that $\sigma_n \subset D(n)$, for every $n < \omega$, see the proof of [11, Lemma 2.3]. In particular, if $\beta \in \mathscr{B}(T)$, then $\mathscr{B}(\bigcup \beta) \subset \mathscr{B}(D)$ and, in fact,

$$\Omega_{\overline{\mathscr{S}}}(\beta) = \Omega_{\overline{\mathscr{R}}}\left[\mathscr{B}\left(\bigcup\beta\right)\right]. \tag{2.2}$$

Indeed, the inclusion $\Omega_{\overline{\mathscr{R}}}[\mathscr{B}(\bigcup \beta)] \subset \Omega_{\overline{\mathscr{S}}}(\beta)$ is obvious. For the converse, take a point $y \in Omega_{\overline{\mathscr{S}}}(\beta)$ and let $K(y) = \{s \in \bigcup \beta : y \in \overline{\mathscr{R}}(s)\}$. Because every sieve is order-preserving with respect to the inverse inclusion, K(y) is a subtree of $\bigcup \beta$ such that each $K(y) \cap D(n)$, $n < \omega$, is nonempty and finite. Hence, by Köning's lemma (see Lemma 5.7 in Chapter II of [9]), K(y) contains an infinite branch

$$\delta \in \mathscr{B}(K(y)) \subset \mathscr{B}\left(\bigcup \beta\right) \subset \mathscr{B}(D).$$

Therefore, $y \in \Omega_{\overline{\mathscr{R}}}(\delta) \subset \Omega_{\overline{\mathscr{R}}}[\mathscr{B}(\bigcup \beta)].$

We are now ready to show that the sieve \mathscr{S} is as required. By [11, Lemma 2.3], \mathscr{S} remains nonempty-open-valued and complete, hence the polar mapping $\Omega_{\overline{\mathscr{F}}}: \mathscr{B}(T) \to \mathscr{C}(Y)$ is usco. To show that $\Omega_{\overline{\mathscr{F}}}$ is also l.s.c., take an open set $U \subset Y$ and a branch $\beta \in \mathscr{B}(T)$ such that $\Omega_{\overline{\mathscr{F}}}(\beta) \cap U \neq \emptyset$. According to (2.2), there is a branch $\delta \in \mathscr{B}(\bigcup \beta) \subset \mathscr{B}(D)$ with $\Omega_{\overline{\mathscr{R}}}(\delta) \cap U \neq \emptyset$. Since $\Omega_{\overline{\mathscr{R}}}(\delta)$ is a singleton, we have that $\Omega_{\overline{\mathscr{R}}}(\delta) \subset U$, and, by the completeness of \mathscr{R} , we also have that $\overline{\mathscr{R}}(s) \subset U$ for some $s \in \delta$. Then, $s \in \sigma_s$ for some $\sigma_s \in \beta$, and the neighbourhood $\mathscr{O}(\sigma_s)$ of β in $\mathscr{B}(T)$ is such that

$$\varnothing \neq \Omega_{\overline{\mathscr{R}}}(\eta) \subset \Omega_{\overline{\mathscr{C}}}(\gamma) \cap \overline{\mathscr{R}}(s) \subset U$$

for every $\gamma \in \mathscr{O}(\sigma_s)$ and every $\eta \in \mathscr{B}(\bigcup \gamma)$ with $s \in \eta$, see (2.1). The proof is completed.

Super-paracompactness and continuous sections

3. Proof of Theorem 1.1

Let X be a super-paracompact space, Y be a completely metrizable space, and let $\Phi: X \to \mathscr{F}(Y)$ be an l.s.c. mapping. According to Lemma 2.1, Y has a nonempty-open-valued, finitely-additive and complete sieve $\mathscr{S}: T \to 2^Y$ such that the polar mapping $\Omega_{\overline{\mathscr{G}}}:\mathscr{B}(T)\to\mathscr{C}(Y)$ is continuous. Consider the composite mapping $\Phi^{-1}[\mathscr{S}(t)], t \in T$, which defines an open-valued finitelyadditive sieve $\Phi^{-1} \circ \mathscr{S} : T \to 2^X$ on X because Φ is l.s.c. Since $\{\Phi^{-1} | \mathscr{S}(t)\}$: $t \in T(0)$ is a finitely-additive open cover of X and X is super-paracompact, by [1, Proposition 2.3] (see, also, [2, Theorem 2.2]), X has a pairwise disjoint open cover $\{\mathscr{L}(t): t \in T(0)\}$ such that $\mathscr{L}(t) \subset \Phi^{-1}[\mathscr{S}(t)], t \in T(0)$. Take an element $s \in T(0)$. Then, $\mathscr{L}(s)$ is itself super-paracompact (being a clopen subset of X), while $\{\Phi^{-1}[\mathscr{S}(t)] : t \in \mathsf{node}(s)\}$ is a finitely-additive open cover of $\mathscr{L}(s)$. Hence, just like before, $\mathscr{L}(s)$ has a pairwise disjoint open cover $\{\mathscr{L}(t) : t \in \mathsf{node}(s)\}$ such that $\mathscr{L}(t) \subset \Phi^{-1}[\mathscr{S}(t)], t \in \mathsf{node}(s)$. Proceeding by induction on the levels of the tree T, there exists a clopen-valued sieve $\mathscr{L}: T \to 2^X$ on X such that each family $\{\mathscr{L}(t): t \in T(n)\}, n < \omega$, is discrete and $\mathscr{L}(t) \subset \Phi^{-1}[\mathscr{S}(t)], t \in T$. Consider now the mapping $\mathfrak{V}_{\mathscr{L}}: X \to 2^{\mathscr{B}(T)}$ defined by $\mathfrak{V}_{\mathscr{L}}(x) = \Omega_{\mathscr{L}}^{-1}[\{x\}], x \in X$. By [5, Proposition 5.2 and Lemma 5.3], $\mathcal{O}_{\mathscr{L}}: X \to \mathscr{C}(\mathscr{B}(T))$ and is continuous. Finally, define $\varphi: X \to \mathscr{C}(Y)$ by $\varphi = \Omega_{\overline{\mathscr{C}}} \circ \mathcal{O}_{\mathscr{L}}$. By Lemma 2.1, φ is continuous as a composition of continuous set-valued mappings, while, by [5, Lemma 7.1], φ is also a section for Φ .

To show the converse, suppose that X has the section property in Theorem 1.1. Take an open cover \mathscr{V} of X, and let \mathscr{W} be the cover of X consisting of all finite unions of elements of \mathscr{V} . Endow \mathscr{V} with the discrete topology, and define a mapping $\Phi : X \to \mathscr{F}(\mathscr{V})$ by $\Phi(x) = \{V \in \mathscr{V} : x \in V\}, x \in X$. Since Φ is l.s.c., by assumption, it has a continuous section $\varphi : X \to \mathscr{C}(\mathscr{V})$. Then, $\mathscr{F} = \{\varphi(x) : x \in X\}$ is a family of nonempty finite subsets of \mathscr{V} . Set

$$U_F = \{x \in X : \varphi(x) = F\}, \quad F \in \mathscr{F}.$$

Since φ is continuous, U_F is a clopen subset of X, and clearly $\{U_F : F \in \mathscr{F}\}$ is a pairwise disjoint cover of X. Finally, observe that $W_F = \Phi^{-1}[F] \in \mathscr{W}$ for every $F \in \mathscr{F}$ because \mathscr{W} consists of finite union of elements of \mathscr{V} . If $x \in U_F$ for some $F \in \mathscr{F}$, then $\varphi(x) = F$ and $\varphi(x) \cap \Phi(x) \neq \emptyset$. Hence, it follows that $\Phi(x) \cap F \neq \emptyset$ and, therefore, $x \in W_F$. Thus, $\{U_F : F \in \mathscr{F}\}$ is a refinement of $\{W_F : F \in \mathscr{F}\}$ and, by [1, Proposition 2.3] (see, also, [2, Theorem 2.2]), X is super-paracompact.

Remark 3.1. The metrizability of Y in Theorem 1.1 was used only in terms

David Buhagiar and Valentin Gutev

of Lemma 2.1, while Lemma 2.1 remains valid as far as Y has a nonempty-openvalued sieve $\mathscr{S} : D \to 2^Y$ for which the polar mapping $\Omega_{\overline{\mathscr{S}}} : \mathscr{B}(D) \to 2^Y$ is singleton-valued and continuous. Spaces with this property were said to have a λ -base [3], they are also known as monotonically developable sieve complete spaces. Monotonically developable spaces are a natural generalisation of Moore spaces, hence not necessarily metrizable. This gives the following generalisation of Theorem 1.1 to the case of a non-metrizable range.

Theorem 3.2. If X is super-paracompact and Y is monotonically developable and sieve complete, then every l.s.c. mapping $\Phi : X \to \mathscr{F}(Y)$ has a continuous section $\varphi : X \to \mathscr{C}(Y)$.

References

- D. BUHAGIAR and T. MIWA, On superparacompact and Lindelöf GO-spaces, *Houston J. Math.* 24, no. 3 (1998), 443–457, MR 1686616 (2001a:54032).
- [2] D. BUHAGIAR, T. MIWA and B. PASYNKOV, Superparacompact type properties, Yokohama Math. J. 46 (1998), 71–86.
- [3] J. CHABER, M. CHOBAN and K. NAGAMI, On monotone generalizations of Moore spaces, Čech-complete spaces and p-spaces, Fund. Math. 84 (1974), 107–119.
- [4] M. CHOBAN, Many-valued mappings and Borel sets, II, Trans. Moscow Math. Soc. 23 (1970), 286–310.
- [5] V. GUTEV, Completeness, sections and selections, Set-Valued Anal. 15 (2007), 275–295.
- [6] V. GUTEV, Closed graph multi-selections, Fund. Math. 211 (2011), 85–99.
- [7] V. GUTEV, Compactness-like properties and compact sections, *Topology Appl.* 159, no. 6 (2012), 1634–1639.
- [8] V. GUTEV and T. YAMAUCHI, Strong paracompactness and multi-selections, *Topology Appl.* 157 (2010), 1430–1438.
- [9] K. KUNEN, Set theory. An introduction to independence proofs, Vol. 102, Studies in Logic and the Foundations of Mathematics, North-Holland, Amsterdam, 1983.
- [10] E. MICHAEL, A theorem on semi-continuous set-valued functions, Duke Math. J. 26 (1959), 647–656.
- [11] E. MICHAEL, Complete spaces and tri-quotient maps, Illinois J. Math. 21 (1977), 716–733.
- [12] K. MIYAZAKI, Characterizations of paracompact-like properties by means of set-valued semi-continuous selections, Proc. Amer. Math. Soc. 129 (2001), 2777–2782.
- [13] D. K. MUSAEV, Superparacompact spaces, Dokl. Akad. Nauk UzSSR, no. 2, 5–6, MR 724520 (85d:54020) (1983).
- [14] S. NEDEV, Selection and factorization theorems for set-valued mappings, Serdica 6 (1980), 291–317.
- [15] P. J. NYIKOS, On some non-Archimedean spaces of Alexandroff and Urysohn, *Topology Appl.* 91 (1999), 1–23.

Super-paracompactness and continuous sections

- [16] J. E. VAUGHAN, Total nets and filters, Topology, Proc. Ninth Annual Spring Topology Conf., Memphis State Univ., Memphis, Tenn., 1975, *Dekker, New York*, 1976, 259–265, Lecture Notes in Pure and Appl. Math., Vol. 24.
- [17] T. YAMAUCHI, A characterization of metrizable finitistic spaces and its applications to upper semicontinuous set-valued selections, *Houston J. Math.* 33 (2007), 735–751.

DAVID BUHAGIAR DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE UNIVERSITY OF MALTA MSIDA MSD.06 MALTA

E-mail: david.buhagiar@um.edu.mt

VALENTIN GUTEV SCHOOL OF MATHEMATICAL SCIENCES UNIVERSITY OF KWAZULU-NATAL WESTVILLE CAMPUS PRIVATE BAG X54001 DURBAN 4000 SOUTH AFRICA

E-mail: gutev@ukzn.ac.za

(Received April 27, 2011; revised August 20, 2011)