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Super-paracompactness and continuous sections

By DAVID BUHAGIAR (Msida) and VALENTIN GUTEV (Durban)

Abstract. It is demonstrated that a space X is super-paracompact if and only

if for every completely metrizable Y , every l.s.c. mapping from X into the nonempty

closed subsets of Y has a compact-valued continuous section.

1. Introduction

For a space Y , we will use 2Y to denote the power set of Y , i.e. the set of

all subsets of Y . Also, we will use F (Y ) to denote the set of all nonempty closed

subsets of Y , and C (Y ) – that of all compact members of F (Y ). For a set-valued

mapping ϕ : X → 2Y and B ⊂ Y , let ϕ−1[B] = {x ∈ X : ϕ(x) ∩ B 6= ∅}. The

mapping ϕ is lower semi-continuous, or l.s.c., if the set ϕ−1[U ] is open in X for

every open U ⊂ Y . The mapping ϕ is upper semi-continuous, or u.s.c., if the set

ϕ#[U ] = X \ ϕ−1[Y \ U ] = {x ∈ X : ϕ(x) ⊂ U}

is open in X for every open U ⊂ Y . For convenience, we say that ϕ is usco if it is

u.s.c. and nonempty-compact-valued, and that ϕ is continuous if it is both l.s.c.

and u.s.c.

A mapping ϕ : X → 2Y is a multi-selection (or, a set-valued selection) for

Φ : X → 2Y if ϕ(x) ⊂ Φ(x) for every x ∈ X; and ϕ : X → 2Y is a section

for Φ : X → 2Y if ϕ(x) ∩ Φ(x) 6= ∅ for every x ∈ X. If ϕ is a section for Φ,

then both ϕ and Φ must be nonempty-valued. Of course, every nonempty-valued

multi-selection for Φ is also a section for Φ.
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There is a natural relationship between covering properties and multi-selec-

tions. Namely, such familiar properties of topological spaces as paracompactness,

metacompactness, collectionwise normality, etc., were transformed and thus es-

sentially generalised in terms of multi-selections for l.s.c. mappings in completely

metrizable spaces, see, for instance, [4], [5], [6], [8], [10], [12], [14], [17]. The pre-

sent paper deals with a similar characterisation of another covering property, but

now in terms of sections. Let W be a collection of subsets of a set X. If U, V ∈ W ,

then a finite sequence W1,W2, . . . ,Wk of elements of W is called a chain from U

to V if U = W1, V = Wk and Wi ∩Wi+1 6= ∅ for every i = 1, . . . , k−1. A subset

P ⊂ W is called connected if every pair of elements of P is connected by a chain.

The components of W are defined as the maximal connected subsets of W . A

space X is call super-paracompact (Pasynkov, see [13]) if every open cover of X

has an open finite component (i.e., having finite components) refinement. The

purpose of this paper is to prove the following theorem.

Theorem 1.1. A space X is super-paracompact if and only if for every

completely metrizable space Y , every l.s.c. mapping Φ : X → F (Y ) has a conti-

nuous section ϕ : X → C (Y ).

Theorem 1.1 can be compared with [7, Proposition 1.1] that a regular space

X is paracompact if and only if for every completely metrizable Y , every l.s.c.

mapping Φ : X → F (Y ) has an usco section ψ : X → C (Y ).

A word should be said also about the paper itself. Theorem 1.1 is proved in

Section 3; the preparation for this proof is done in the next section. The technique

developed to prove Theorem 1.1 allows to generalise it for a non-metrizable range,

see Theorem 3.2.

2. Completeness and special sieves

A partially ordered set (T,¹) is a tree if {s ∈ T : s ¹ t} is well-ordered for

every t ∈ T . For a tree (T,¹), we use T (0) to denote the set of the minimal

elements of T . Given an ordinal α, if T (β) is defined for every β < α, then T (α)

denotes the minimal elements of T \ (T ¹α), where T ¹α =
⋃{T (β) : β < α}. The

set T (α) is called the αth-level of T , while the height of T is the least ordinal α

such that T ¹α = T . We say that (T,¹) is an α-tree if its height is α. A maximal

linearly ordered subset of a tree (T,¹) is called a branch, and B(T ) is used to

denote the set of all branches of T . A tree (T,¹) is pruned if every element of T

has a successor in T , i.e. if for every s ∈ T there exists t ∈ T , with s ≺ t. In these
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terms, an ω-tree (T,¹) is pruned if each branch β ∈ B(T ) is infinite. Following

Nyikos [15], for every t ∈ T , set

O(t) = {β ∈ B(T ) : t ∈ β}. (2.1)

For a pruned ω-tree (T,¹), the family {O(t) : t ∈ T} is a base for a completely

metrizable non-Archimedean topology on B(T ). We will refer to this topology on

B(T ) as the branch topology, and to the resulting topological space as the branch

space. It is well known that B(T ) is compact if and only if all levels of T are

finite.

For a tree (T,¹) and t ∈ T , the node of t in T is the subset node(t) ⊂ T of

all immediate successors of t. For convenience, let node(∅) = T (0). Finally, for a

mapping Ψ : Z → 2Y and A ⊂ Z, let

Ψ[A] =
⋃

{Ψ(z) : z ∈ A}.

Given a set Y and a pruned ω-tree (T,¹), a set-valued mapping S : T → 2Y is

a sieve on Y if

(i) Y = S [node(∅)], and

(ii) S (t) = S [node(t)] for every t ∈ T .

A sieve S : T → 2Y on a space Y is complete [3], [11] if for every branch

β ∈ B(T ) and every nonempty centred (i.e., with the finite intersection property)

family F ⊂ 2Y which refines {S (t) : t ∈ β} it follows that
⋂{

F : F ∈ F
} 6= ∅.

In other words, a sieve S : T → 2Y on Y is complete if each family {S (t) : t ∈ β},
β ∈ B(T ), is a compact filter base (i.e., each ultrafilter containing it is conver-

gent) [16].

For a tree (T,¹) and S : T → 2Y , the polar mapping ΩS : B(T ) → 2Y ,

associated to S , is defined by ΩS (β) =
⋂{S (t) : t ∈ β}, β ∈ B(T ). Also, to

the mapping S : T → 2Y we associate the pointwise-closure S : T → 2Y of S

by S (t) = S (t), t ∈ T . If S : T → 2Y is a nonempty-valued complete sieve

on a space Y , then for every branch β ∈ B(T ), the polar ΩS (β) is a nonempty

compact subset of Y , and every open V ⊃ ΩS (β) contains some S (t) for t ∈ β,

see, e.g., [3, Proposition 2.10]. In terms of set-valued mappings, this means that

the polar mapping ΩS : B(T ) → C (Y ) is usco. In this section, we show that

every completely metrizable space Y has a special complete sieve S : T → 2Y

such that the polar mapping ΩS is continuous. To this end, recall that a sieve

S : T → 2Y is finitely-additive if each collection {S (t) : t ∈ T (n)}, n < ω, as

well as each collection of the form {S (s) : s ∈ node(t)}, t ∈ T , is closed under

finite unions.
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Lemma 2.1. Every completely metrizable space Y has a nonempty-open-

valued, finitely-additive and complete sieve S : T → 2Y such that the polar

mapping ΩS : B(T ) → C (Y ) is continuous.

Proof. Let d be a complete metric on Y compatible with the topology of Y ,

and let R : D → 2Y be a nonempty-open-valued sieve on Y with diamd(R(s)) <

2−n for every s ∈ D(n) and n < ω. According to Cantor’s intersection theorem,

R is a complete sieve on Y . In fact, each ΩR(δ), δ ∈ B(D), is a singleton, and

hence the polar mapping ΩR : B(D) → C (Y ) is singleton-valued and usco (thus,

continuous as well). Keeping this in mind, let ΣD be the set of all nonempty finite

subsets of D. By [11, Lemma 2.3], there is a finitely-additive sieve S : T → 2Y

on Y generated by the sieve R, where T ⊂ ΣD and for each σ ∈ T , the value of S

in σ is S (σ) = R[σ] =
⋃{R(s) : s ∈ σ}. The order on T is defined in a natural

way so that each branch β = {σn : n < ω} ∈ B(T ) corresponds to a pruned

subtree
⋃
β =

⋃{σn : n < ω} of D such that σn ⊂ D(n), for every n < ω, see the

proof of [11, Lemma 2.3]. In particular, if β ∈ B(T ), then B (
⋃
β) ⊂ B(D) and,

in fact,

ΩS (β) = ΩR

[
B

(⋃
β
)]

. (2.2)

Indeed, the inclusion ΩR [B (
⋃
β)] ⊂ ΩS (β) is obvious. For the converse, take a

point y ∈ OmegaS (β) and let K(y) =
{
s ∈ ⋃

β : y ∈ R(s)
}
. Because every sieve

is order-preserving with respect to the inverse inclusion, K(y) is a subtree of
⋃
β

such that each K(y) ∩D(n), n < ω, is nonempty and finite. Hence, by Köning’s

lemma (see Lemma 5.7 in Chapter II of [9]), K(y) contains an infinite branch

δ ∈ B(K(y)) ⊂ B
(⋃

β
)
⊂ B(D).

Therefore, y ∈ ΩR(δ) ⊂ ΩR [B (
⋃
β)].

We are now ready to show that the sieve S is as required. By [11, Lem-

ma 2.3], S remains nonempty-open-valued and complete, hence the polar map-

ping ΩS : B(T ) → C (Y ) is usco. To show that ΩS is also l.s.c., take an open

set U ⊂ Y and a branch β ∈ B(T ) such that ΩS (β) ∩ U 6= ∅. According to

(2.2), there is a branch δ ∈ B(
⋃
β) ⊂ B(D) with ΩR(δ) ∩ U 6= ∅. Since ΩR(δ)

is a singleton, we have that ΩR(δ) ⊂ U , and, by the completeness of R, we also

have that R(s) ⊂ U for some s ∈ δ. Then, s ∈ σs for some σs ∈ β, and the

neighbourhood O(σs) of β in B(T ) is such that

∅ 6= ΩR(η) ⊂ ΩS (γ) ∩ R(s) ⊂ U

for every γ ∈ O(σs) and every η ∈ B (
⋃
γ) with s ∈ η, see (2.1). The proof is

completed. ¤
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3. Proof of Theorem 1.1

Let X be a super-paracompact space, Y be a completely metrizable space,

and let Φ : X → F (Y ) be an l.s.c. mapping. According to Lemma 2.1, Y

has a nonempty-open-valued, finitely-additive and complete sieve S : T → 2Y

such that the polar mapping ΩS : B(T ) → C (Y ) is continuous. Consider the

composite mapping Φ−1[S (t)], t ∈ T , which defines an open-valued finitely-

additive sieve Φ−1 ◦ S : T → 2X on X because Φ is l.s.c. Since {Φ−1[S (t)] :

t ∈ T (0)} is a finitely-additive open cover of X and X is super-paracompact, by

[1, Proposition 2.3] (see, also, [2, Theorem 2.2]), X has a pairwise disjoint open

cover {L (t) : t ∈ T (0)} such that L (t) ⊂ Φ−1[S (t)], t ∈ T (0). Take an element

s ∈ T (0). Then, L (s) is itself super-paracompact (being a clopen subset of X),

while {Φ−1[S (t)] : t ∈ node(s)} is a finitely-additive open cover of L (s). Hence,

just like before, L (s) has a pairwise disjoint open cover {L (t) : t ∈ node(s)} such

that L (t) ⊂ Φ−1[S (t)], t ∈ node(s). Proceeding by induction on the levels of the

tree T , there exists a clopen-valued sieve L : T → 2X on X such that each family

{L (t) : t ∈ T (n)}, n < ω, is discrete and L (t) ⊂ Φ−1[S (t)], t ∈ T . Consider

now the mapping fL : X → 2B(T ) defined by fL (x) = Ω−1
L [{x}], x ∈ X. By [5,

Proposition 5.2 and Lemma 5.3], fL : X → C (B(T )) and is continuous. Finally,

define ϕ : X → C (Y ) by ϕ = ΩS ◦ fL . By Lemma 2.1, ϕ is continuous as a

composition of continuous set-valued mappings, while, by [5, Lemma 7.1], ϕ is

also a section for Φ.

To show the converse, suppose that X has the section property in The-

orem 1.1. Take an open cover V of X, and let W be the cover of X consisting

of all finite unions of elements of V . Endow V with the discrete topology, and

define a mapping Φ : X → F (V ) by Φ(x) = {V ∈ V : x ∈ V }, x ∈ X. Since

Φ is l.s.c., by assumption, it has a continuous section ϕ : X → C (V ). Then,

F = {ϕ(x) : x ∈ X} is a family of nonempty finite subsets of V . Set

UF = {x ∈ X : ϕ(x) = F}, F ∈ F .

Since ϕ is continuous, UF is a clopen subset of X, and clearly {UF : F ∈ F} is a

pairwise disjoint cover of X. Finally, observe that WF = Φ−1[F ] ∈ W for every

F ∈ F because W consists of finite union of elements of V . If x ∈ UF for some

F ∈ F , then ϕ(x) = F and ϕ(x)∩Φ(x) 6= ∅. Hence, it follows that Φ(x)∩F 6= ∅
and, therefore, x ∈ WF . Thus, {UF : F ∈ F} is a refinement of {WF : F ∈ F}
and, by [1, Proposition 2.3] (see, also, [2, Theorem 2.2]), X is super-paracompact.

Remark 3.1. The metrizability of Y in Theorem 1.1 was used only in terms
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of Lemma 2.1, while Lemma 2.1 remains valid as far as Y has a nonempty-open-

valued sieve S : D → 2Y for which the polar mapping ΩS : B(D) → 2Y is

singleton-valued and continuous. Spaces with this property were said to have

a λ-base [3], they are also known as monotonically developable sieve complete

spaces. Monotonically developable spaces are a natural generalisation of Moore

spaces, hence not necessarily metrizable. This gives the following generalisation

of Theorem 1.1 to the case of a non-metrizable range.

Theorem 3.2. If X is super-paracompact and Y is monotonically develop-

able and sieve complete, then every l.s.c. mapping Φ : X → F (Y ) has a continu-

ous section ϕ : X → C (Y ).

References

[1] D. Buhagiar and T. Miwa, On superparacompact and Lindelöf GO-spaces, Houston J.
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