
Publ. Math. Debrecen

45 / 1-2 (1994), 71–92

Weak convergence of vector measures

By MICHAEL MÄRZ (Essen) and R. M. SHORTT (Middletown)

Abstract. We consider a notion of weak convergence for measures taking values
in a Banach space. A version of Prokhoroff’s Theorem is proved for such measures, and
applications are given to the existence of products of measures with values in a Banach
algebra and to a Strassen’s Theorem for measures taking values in the positive cone of
a Banach lattice.

0. Introduction

We treat weak convergence of measures taking values in a Banach
space. This notion of weak convergence is due to M. Dekiert [2] and
generalises the notion of stochastic convergence used in probability theory.
The focal point of the latter is the theorem of Prokhoroff regarding the
weak sequential compactness of a uniformly tight family of probabilities
[10]. After the exposition of some elementary concepts, our first chapter
proves a type of Prokhoroff Theorem for families of measures that are
1) bounded in semivariation, 2) are uniformly tight, and 3) are uniformly
weakly compact as a family of operators (i.e. they jointly map the unit
hall of C(X) into a weakly compact subset of the Banach spaces.) Such
families are shown (Theorem 1.3) to be weakly sequentially compact.

In chapter 2, we present an application of this result to measures tak-
ing values in a Banach algebra. We show how, under suitable hypotheses
on measures V and W , to construct a product measure V ⊗ W (Theo-
rem 2.8). A corresponding analogue of Fubini’s Theorem (Theorem 2.10)
is also developed.

Chapter 3 considers measures with values in the positive cone of a Ba-
nach lattice. Convergence theorems more akin to the classical are possible
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in this setting (Theorem 3.4), and the same may be said of applications.
We prove a version of Strassen’s Theorem (Theorem 3.7) in this context.

Some of our results appear in the dissertation of the first-named au-
thor (in preparation).

1. Weak convergence of vector measures

Let F be a field of subsets of a set X and let (B, ‖ · ‖) be a Banach
space. (All vector spaces considered will be taken to have real scalars.)
Then ca(F , B) is the set of all countably additive functions V : F → B,
i.e. V (E1 ∪ E2 ∪ . . . ) = V (E1) + V (E2) + . . . for all disjoint sequences
(En) drawn from F . The elements of ca(F , B) we term vector measures;
ca(F , B) is a vector space. Generally, we follow the conventions of Dunford
and Schwartz [5] or Diestel and Uhl [3], to whose treatises we refer the
reader.

Let V : F → B be a vector measure. The variation of V is the set
function |V | : F → [0,∞] defined by

|V |(E) = sup
π

∑

A∈π

‖V (A)‖,

where the supremum is taken over all finite partitions π of E into sets
A ∈ F . The set function |V | is a (countably additive) real measure on F :
see the proof of Proposition 9 in [3; p. 3]. We also write, with abuse of
notation, |V | = |V |(X); if |V | < ∞, we say that V is of bounded variation.

Let B∗ be the (continuous) dual of the Banach space B. If V ∈
ca(F , B) and ϕ ∈ B∗, then ϕ(V ) = ϕ ◦ V is a finite signed measure on F .
The semivariation of V is the set function ‖V ‖ : F → [0,∞] defined by

‖V ‖(E) = sup
{|ϕ(V )|(E) : ϕ ∈ B∗, ‖ϕ‖ ≤ 1

}
.

The countable additivity of V implies that ‖V ‖ is actually real-valued: see
[3; pp. 6–7 and Corollary 19, p. 9]. We have ‖V (E)‖ ≤ ‖V ‖(E) ≤ |V |(E).
The set function ‖·‖ is finitely sub-additive. We also write ‖V ‖ = ‖V ‖(X).
The association V → ‖V ‖ is a norm on ca(F , B). A family V ⊆ ca(F , B)
is said to be uniformly bounded if sup{‖V ‖ : V ∈ V} < ∞.

Let f : X → R be an F-measurable simple function f =
∑

anIEn for
En ∈ F . For V ∈ ca(F , B), we define

∫
fdV =

∑
anV (En).

This integral is well-defined and linear on simple functions, and ‖ ∫ fdV ‖ ≤
‖f‖∞‖V ‖, where ‖f‖∞ = sup{|f(x)| : x ∈ X}. Now suppose that f : X →
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R is a function that is the uniform limit of a sequence of F-measurable
simple functions (fn). Then ‖ ∫ fn − fmdV ‖ ≤ ‖fn − fm‖∞‖V ‖, so that
(∫ fndV ) is a Cauchy sequence in B. Define

∫
fdV = lim

∫
fndV.

Again, this integral is well-defined and linear, and ‖ ∫ fdV ‖ ≤ ‖f‖∞‖V ‖.
Now suppose that X is a topological space with Borel σ-field B(X). A

family V ⊆ ca(B(X), B) is uniformly tight if, for each ε > 0, there is some
compact K ⊆ X with ‖V ‖(X −K) < ε for all V ∈ V. A single measure
V ∈ ca(B(X), B) is tight if the family {V } is uniformly tight. A measure
V ∈ ca(B(X), B) is regular if for each E ∈ B(X) and ε > 0, there is an
open set G ⊇ E and a closed set F ⊆ E such that ‖V ‖(G − F ) < ε. We
say that V is weakly regular if ϕ(V ) is regular for each ϕ ∈ B∗. Let C(X)
be the space of all continuous f : X → R. The following result is crucial:

1.1 Theorem (Bartle, Dunford, Schwartz). Let X be a com-
pact Hausdorff space and let B be a Banach space. If T : C(X) → B is
a weakly compact operator (i.e. one that sends bounded sets to weakly
compact sets), then there is a unique regular measure V ∈ ca(B(X), B)
such that T (f) = ∫ fdV for every f ∈ C(X) and ‖T‖ = ‖V ‖.

Conversely, if V ∈ ca(B(X), B) is a weakly regular measure, then the
operator T : C(X) → B defined by T (f) = int fdV is weakly compact.

Indication. For the first paragraph, see [3; p. 159, Corollary 14]; for
the second, see [5, VI. 7.3].

For metric spaces, the supposition of regularity is nugatory:

1.2 Lemma. If X is metrisable, then every V ∈ ca(B(X), B) is regu-
lar.

Indiaction. This is Satz 1.4 on p. 99 of [2].

Suppose that X is a topological space with Borel σ-field B(X). Let
V and (Vn) be measures in ca(B(X), B). We say that the sequence (Vn)
converges weakly to V if for each continuous bounded f : X → R and
ϕ ∈ B∗, we have

limϕ

(∫
fdVn

)
= ϕ

(∫
fdV

)
.

A family V ⊆ ca(B(X), B) is weakly sequentially compact if every sequence
(Vn) drawn from V has a subsequence converging weakly to some V ∈
ca(B(X), B).

The following theorem proceeds along the lines of a well-known result
of Prokhoroff [10]; also see [4; 11.5.4].



74 Michael März and R. M. Shortt

1.3 Theorem. Let X be a compact metrisable space with Borel σ-

field B(X) and suppose that B is a Banach space. Suppose that V is a

uniformly bounded subset of ca(B(X), B) such that

{∫
fdV : f ∈ C(X), ‖f‖∞ ≤ 1, V ∈ V} ⊆ A,

where A is a weakly compact subset of B. Then V is weakly sequentially

compact.

Proof. Let (Vn) be a sequence in V and let D = {g1, g2, . . . } be
a dense sequence in C(X). For each fixed m, we consider the sequence
(∫ gmdVn)n in B. This sequence lies in a weakly compact subset of B, so
there is a subsequence converging weakly to some bm ∈ B. The index m is
arbitrary, so a standard diagonal argument produces a subsequence (Vn(k))
of (Vn) such that ∫ gmdVn(k) → bm weakly for each m. If ‖gm‖∞ ≤ 1, then
bm ∈ A.

We now set about defining a map T : C(X) → B. For each m, define
T (gm) = bm. Note that

∥∥∥∥
∫

gmdVn

∥∥∥∥ ≤ ‖gm‖∞‖Vn‖ ≤ C‖gm‖,

where C is a uniform bound on the ‖Vn‖. Then it is relatively easy to check
that ‖T (gm)− T (gn)‖ = ‖bm − bn‖ ≤ C‖gm − gn‖∞. Thus T is uniformly
continuous on D and so extends uniquely to a continuous function on C(X)
with T (f) = lim T (fn), where (fn) is a sequence in D converging uniformly
to f . It is routine to check that T is linear and that ‖T (f)‖ ≤ C‖f‖∞.
If ‖f‖∞ ≤ 1, we choose fn → f uniformly with fn ∈ D and ‖fn‖∞ ≤ 1.
Each T (fn) ∈ A, so T (f) ∈ A. This shows that T is a weakly compact
operator.

By Theorem 1.1, there is a measure V ∈ ca(B(X), B) such that for
each f ∈ C(X), we have

T (f) =
∫

f(s)dV (s) and ‖V ‖ = ‖T‖ ≤ C.

It remains only to check that T (f) = w − lim ∫ fdVn(k). For f ∈ D, this
is automatic. Given f ∈ C(X) and ϕ ∈ B∗ with ‖ϕ‖ ≤ 1, we have for
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g ∈ C(X)
∣∣∣∣∣ϕ

(∫
fdVn(k)

)
− ϕ(T (f))

∣∣∣∣∣

≤
∣∣∣∣∣ϕ

(∫
fdVn(k)

)
− ϕ

(∫
g dVn(k)

) ∣∣∣∣∣ +

∣∣∣∣∣ϕ
(∫

g dVn(k)

)
− ϕ(T (g))

∣∣∣∣∣
+ |ϕ(T (g))− ϕ(T (f))|.

The last term is bounded by C ·‖f−q‖∞. We choose g ∈ D with ‖f−g‖∞
small; the first two terms then go to zero as k →∞.

1.4 Corollary. Let X be a compact metric space with Borel σ-field
F and suppose that B is a reflexive Banach space. Suppose that V is
a uniformly bounded subset of ca(F , B). Then V is weakly sequentially
compact.

Proof. Apply the theorem, noting that ‖ ∫ fdV ‖ ≤ ‖f‖∞‖V ‖ ≤
C · ‖f‖∞. Thus, the integrals ∫ fdV , f ∈ C(X), ‖f‖∞ ≤ 1, V ∈ V, belong
to the ball of radius C in B. In a reflexive Banach space, every ball is
weakly compact.

We now generalise these results to the case where the base space is
not compact, but the family of measures is uniformly tight. The thereom
now resembles more exactly the fabled Prokhoroff Theorem.

1.5 Theorem. Let X be a metric space with Borel σ-field B(X) and
let B be a Banach space. Suppose that V is a uniformly bounded, uni-
formly tight subset of ca(B(X), B) such that for each compact S ⊆ X,

{∫

S

fdV : f ∈ C(X), ‖f‖∞ ≤ 1, V ∈ V
}
⊆ A,

where A is a weakly compact subset of B. (The choice of A may depend
on S.) Then V is weakly sequentially compact.

Proof. Let (Vn) be a sequence in V. From uniform tightness, we can
choose an increasing sequence (Sr) of compact sets such that supn ‖Vn‖ ·
(X − Sr) < 1

r for r ≥ 1. Let (Vn|Sr) be the restriction of Vn to Sr. By
Theorem 1.3, we get a subsequence (Vnr

k
|Sr) and some W r ∈ ca(B(X), B)

with ‖W r‖(X − Sr) = 0 such that, for every f ∈ C(Sr) and ϕ ∈ B∗,

ϕ

(∫
fdW r

)
= lim

k
ϕ

(∫
fd(Vnr

k
|Sr)

)
.
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Since the index r was arbitrary, a standard diagonal argument shows that
for the sub-sequence (Vn(k)) = (Vnk

k
) we have

ϕ(intfdW r) = lim
k

ϕ

(∫
fd(Vn(k)|Sr)

)

for each r ≥ 1, f ∈ C(X), and ϕ ∈ B∗.

Claim. For s ≥ r, we have ‖W s −W r‖ ≤ 1
r .

Proof of claim. Given ϕ ∈ B? with ‖ϕ‖ ≤ 1, we observe that
|ϕ(W s − W r)| = sup{∫ fdϕ(W s − W r) : f ∈ C(X), ‖f‖∞ ≤ 1}. But
for such f , we have

∣∣∣∣∣
∫

fdϕ(W s −W r)

∣∣∣∣∣ =

∣∣∣∣∣ϕ
(∫

fd(W s −W r)
) ∣∣∣∣∣

=

∣∣∣∣∣ lim
k

ϕ

(∫
fd(Vn(k)|Ss)−

∫
fd(Vn(k)|Sr)

) ∣∣∣∣∣

=

∣∣∣∣∣ lim
k

ϕ

(∫
fd(Vn(k)|Ss − Sr)

) ∣∣∣∣∣ ≤ lim sup
k

‖Vn(k)‖(Ss − Sr)

≤ lim sup
k

‖Vn(k)‖(X − Sr) ≤ 1
r
.

The claim is established.

Since ‖W s(E)−W r(E)‖ ≤ ‖W s−W r‖ ≤ 1
r , we have that (W r(E)) is

a Cauchy sequence for each E ∈ B(X). Define V (E) = limr W r(E). Also,
we see that this convergence is uniform in E : for each E ∈ F , choose
N ≥ r so that ‖V (E)−WN (E)‖ < 1

r ; then

‖V (E)−W r(E)‖ ≤ ‖V (E)−WN (E)‖+ ‖WN (E)−W r(E)‖ <
2
r
.

The set function V is countably additive: given En ↓ ∅ in B(X) and ε > 0,
choose r > 2

ε and N ≥ r so that ‖W r(En)‖ < ε
2 for all n ≥ N . Then

‖V (En)‖ ≤ ‖V (En)−W r(En)‖+ ‖W r(En)‖ < 2
m + ε

2 < ε for all n ≥ N .
If g : X → R is a simple function, then it follows that ∫ g dW r →

∫ g dV as r → ∞. If f ∈ C(X), we may choose a simple function g with
‖f − g‖∞ as small as desired. Then

∥∥∥∥∥
∫

fdW r −
∫

fdV

∥∥∥∥∥ ≤
∥∥∥∥∥

∫
fdW r − g dW r

∥∥∥∥∥ +

∥∥∥∥∥
∫

g dW r −
∫

g dV

∥∥∥∥∥
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+

∥∥∥∥∥
∫

g dV −
∫

fdV

∥∥∥∥∥

≤ ‖f − g‖∞‖W r‖+

∥∥∥∥∥
∫

g dW r −
∫

g dV

∥∥∥∥∥ + ‖f − g‖ ‖V ‖ .

Since ‖V ‖ < ∞, we see that (W r) is a Cauchy sequence for the norm ‖ · ‖;
it is uniformly bounded. Given ε > 0, choose g simple with ‖f−g‖∞ < ε

3 ·
supr{‖W r‖, ‖V ‖} and N large so that for r ≥ N , ‖ ∫ g dW r−∫ g dV ‖ < ε

3 .
Then for all r ≥ N , ‖ ∫ fdW r − ∫ fdV ‖ < ε, so that ∫ fdW r → ∫ fdV for
all f ∈ C(X). In particular, (W r) converges weakly to V .

We now verify that the subsequence (Vn(k)) converges weakly to V .
Given ϕ ∈ B∗ and f ∈ C(X), we have
∣∣∣∣∣ϕ

(∫
fdVn(k)

)
− ϕ

(∫
fdV

) ∣∣∣∣∣ ≤
∣∣∣∣∣ϕ

(∫

Sr

fdVn(k)

)
− ϕ

(∫
fdW r

) ∣∣∣∣∣

+

∣∣∣∣∣ϕ
(∫

fdW r

)
− ϕ

(∫
fdV

) ∣∣∣∣∣ +

∣∣∣∣∣ϕ
(∫

X−Sr

fdVn(k)

) ∣∣∣∣∣

≤
∣∣∣∣∣ϕ

(∫

Sr

fdVn(k)

)
− ϕ

(∫
fdW r

) ∣∣∣∣∣ +

∣∣∣∣∣ϕ
(∫

fdW r

)
− ϕ

(∫
fdV

) ∣∣∣∣∣

+‖ϕ‖ ‖f‖∞ ‖Vn(k)‖(X − Sr) .

Given ε > 0, choose r large so that the last two terms are less than ε
3 .

Then, for all k large, the first term is majorised by ε
3 . This shows that

ϕ

(∫
fdV

)
= lim

k
ϕ

(∫
fdVn(k)

)
. ¤

1.6 Corollary. Let X be a metric space with Borel σ-field B(X) and
let B be a reflexive Banach space. Suppose that V is a uniformly bounded,
uniformly tight subset of ca(F , B). Then V is weakly sequentially compact.

Proof. As in Corollary 1.4, this follows from the inequality
∥∥∥∥∥

∫
fdV

∥∥∥∥∥ ≤ ‖f‖ ‖V ‖

and the weak sequential compactness of balls in B.
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2. Banach algebras; product measure

We now consider measures taking values in a Banch algebra. Let
(X,F) be a measurable space and let B be a (real) Banach algebra. Define
the spectrum of B as

spec(B) = {ϕ ∈ B∗ : ϕ(ab) = ϕ(a)ϕ(b) for all a, b ∈ B}.
Given V ∈ ca(F , B), we define the spectral semivariation of V to be the
set function ‖V ‖S on F specified by

‖V ‖S(E) = sup{|ϕ(V )| : ϕ ∈ spec(B)}.
Much as with the variation and semivariation, we write ‖V ‖S = ‖V ‖S(X)
and have ‖V ‖S ≤ ‖V ‖ ≤ |V |.

We say that a Banach algebra B has full spectrum if for each a ∈ B,
there is some ϕ ∈ spec(B) such that ϕ(a) = ‖a‖. This condition implies
that B is isomorphic to a subalgebra of C(spec(B)), in particular, that B
is commutative.

2.1 Corollary (to Theorem 1.3). If B is a Banach algebra with full
spectrum, then Theorem 1.3 still holds when the collection V is assumed
only to be uniformly bounded with respect to the spectral semivariation
‖ · ‖S .

Indication. In the proof of Theorem 1.3, uniform bounded is used only
to obtain a corresponding uniform bound on

∥∥∥∥∥
∫

gmdVn

∥∥∥∥∥ ≤ ‖gm‖∞ ‖Vn‖.

But, since B has full spectrum, we have
∥∥∥∥∥

∫
gmdVn

∥∥∥∥∥ ≤ ‖gm‖ ‖Vn‖S ≤ ‖gm‖ · C,

where C is a uniform bound on ‖Vn‖S . The rest of the proof may be
retained intact.

We are now ready to begin a construction of product measure for
measures taking values in Banach algebras. For the rest of this section, we
assume that B is a Banach algebra with full spectrum. Let K = {0, 1}ω

be the Cantor space and let B(K) be its Borel σ-field. For any string
(k1, . . . , kn) of 0’s and 1’s let A(k1, . . . , kn) be the set of all x ∈ K such
that x(i) = ki for i = 1, . . . , n. Let πn be the partition of K into all sets of
the form A(k1, . . . , kn). For each A ∈ πn, we distinguish a point x(A) ∈ A.
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Now let V and W be measures in ca(B(K), B). For each n, we define a
measures ρn on B(K × K), the Borel σ-field of K × K, taking values in
B :

ρn =
∑

E,F∈πn

V (E)W (F )δ(x(E), x(F )),

where δ(x(E), x(F )) is the Dirac point mass at the point (x(E), x(F )) ∈
K ×K. Clearly, these ρn are countably additive.

2.2 Lemma. The sequence (ρn) is uniformly bounded for the spectral
semivariation.

Proof. Fix n ≥ 1 and ϕ ∈ spec(B). Then we have

|ϕ(ρn)| =
∑

E,F∈πn

|ϕ(V (E))ϕ(W (F ))|

=
∑

E∈πn

|ϕ(V (E))|
∑

F∈πn

|ϕ(W (F ))|

≤ ‖V ‖S ‖W‖S ≤ ‖V ‖ ‖W‖,
so that ‖ρn‖S ≤ ‖V ‖ ‖W‖.

2.3 Lemma. Let V,W and B be as above. Suppose that the set of
all sums

∑
c(E×F )V (E)W (F ) taken over finite partitions of K×K into

measurable rectangles E×F with |c(E×F )| ≤ 1 is contained in a weakly
compact subset of B. Then the set {∫ fdρn : f ∈ C(K ×K), ‖f‖∞ ≤ 1,
n ≥ 1} is contained in this same weakly compact subset.

Proof. Trivial, noting that
∫

fdρn =
∑

E,F∈πn

f(x(E), x(F ))V (E)W (F ). ¤

The combination of Lemmas 2.2 and 2.3 with Corollary 2.1 shows the
existence of some ρ ∈ ca(B(K ×K), B) and a subsequence (ρn(k)) of (ρn)
converging weakly to ρ. Since the elements of each partition πn are clopen,
we have

ρ(E × F ) = lim ρn(k)(E × F ) = V (E)W (F )

for E,F ∈ πn. It is not hard to see that the same equation holds for sets E
and F in the field generated by

⋃
n πn. A relatively simple monotone class

argument establishes that ρ(E × F ) = V (E)W (F ) for all E, F ∈ B(K).
Only one measure can have this property (the field generated by mea-
surable rectangles generates the Borel σ-field: the Carathéodory–Hahn–
Kluvanek Theorem [3; p. 27] applies). We write ρ = V ⊗W .
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A topological space X is Polish if its topology is generated by some
complete separable metric. A space X is absolute Borel (or standard)
if it is homeomorphic to a Borel subset of some Polish space. The Ku-
ratowski Isomorphism Theorem [4; 13.1.1] asserts that any two absolute
Borel spaces are Borel isomorphic. Thus, in the above construction, we
may substitute for the Cantor space K an absolute Borel space. We have
proved

2.4 Theorem. Let X and Y be absolute Borel spaces whose Borel σ-
fields are B(X) and B(Y ) and let B be a Banach algebra with full spectrum.
Suppose that V ∈ ca(B(X), B) and W ∈ ca(B(X), B) are such that the
set of all sums of the form

∑

E×F∈Π

c(E × F )V (E)W (F ),

where |c(E × F )| ≤ 1 and Π is a finite partition of X × Y into Borel
rectangles, is contained in a weakly compact subset of B. Then there is a
unique measure V ⊗W ∈ ca(B(X)⊗B(Y ), B) such that (V ⊗W )(E×F ) =
V (E)W (F ) for all E ∈ B(X) and F ∈ B(Y ).

We now developed an integration theory for functions and measures
taking values in a Banach algebra B. Let (X,F) be a measurable space
and let f : X → B be an F-measurable simple function f =

∑
aiIEi . If

V ∈ ca(X, B), we define the integral
∫

fdV =
∑

aiV (Ei).

This integral is well-defined on simple functions, and ‖ ∫
fdV ‖ ≤ ∫ ‖f‖d|V |.

If B has full spectrum, then
∥∥∥∥∥

∫
fdV

∥∥∥∥∥ ≤ ‖f‖∞‖V ‖S

where ‖f‖∞ = sup{‖f(x)‖ : x ∈ X}.
Given an F-measurable function f : X → B, we say that f is V -

integrable if there is some sequence (fn) of simple functions fn : X → B
such that ∫

‖f − fn‖ d|V | → 0 as n →∞.

We see then that (
∫

fndV ) is Cauchy sequence in B :
∥∥∥∥∥

∫
fn − fmdV

∥∥∥∥∥ ≤
∫
‖fn − f‖ d|V |+

∫
‖f − fm‖ d|V |.
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Define
∫

fdV = lim
∫

fndV . Clearly, the integral is well-defined, and
‖ ∫

fdV ‖ ≤ ∫ ‖f‖d|V |. If ϕ ∈ spec(B), then

ϕ

(∫
fdV

)
=

∫
ϕ ◦ fdϕ(V ).

So, if B has full spectrum,
∥∥∥∥∥

∫
fdV

∥∥∥∥∥ ≤ ‖f‖∞‖V ‖S .

Our definition of V -integrability coincides, of course, with Bochner inte-
grability with respect to |V |. We do not insist that |V | < ∞. Nonetheless,
the arguments of [3; p. 45] still apply to show

2.5 Lemma. Let f : X → B be a measurable function. If
∫ ‖f‖d|V | <

∞, then f is V -integrable.

The converse of the lemma does not hold unless |V | < ∞, e.g. in the
case of simple functions. If

∫ ‖f‖d|V | < ∞, we say that f is absolutely
V -integrable.

2.6 Lemma. Let (X,F) be a measurable space and let B be a Banach
algebra. If f : X → B and fn : X → B (n = 1, 2, . . . ) are measurable
functions such that fn → f |V |-a.e. (or in measure), and ‖fn(x)‖ ≤ g for
some |V |-integrable real function g, then f is absolutely V -integrable, and
for each E ∈ F ,

∫
E

fdV = lim
∫

E
fndV .

Proof. We apply the usual Lebesgue Dominated Convergence The-
orem to the function: ‖fn − f‖.IE ≤ 2g and obtain

∥∥∥∥∥
∫

E

fdV −
∫

E

fndV

∥∥∥∥∥ ≤
∫

E

‖f − fn‖d|V | → 0

as n →∞.

We now continue the development of product measures for general
measurable spaces. Let X,Y, V, W and B be as in Theorem 2.4 and let
V ⊗ W be the resultant product measure. For E ⊆ X × Y , x ∈ X and
y ∈ Y , we defined the vertical and horizontal sections

Ex = {y : (x, y) ∈ E} and Ey = {x : (x, y) ∈ E}.
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2.7 Lemma. Suppose that |V | < ∞ and that E ⊆ X × Y is a Borel
set. Then the function g : X → B defined by the rule g(x) = W (Ex) is a
Borel function and is absolutely integrable. Also,

∫
gdV = (V ⊗W )(E).

Proof. We consider the class C of Borel sets for which the lemma
holds. If E = F × G, then g(x) = W ((F × G)x) = W (G)IF (x), so∫ ‖g‖d|V | = ‖W (G)‖|V |(F ) < ∞ and

∫
gdV = W (G)V (F ) = (V ⊗

W )(E). So this class includes all Borel rectangles.
The class C is closed under countable increasing unions: if (En) ∈ C

with En ↑ E, define gn(x) = W ((En)x). By σ-additivity for W , we have
gn(x) → g(x) for x ∈ X. Also, ‖gn(x)‖ ≤ ‖W‖, so that by Lemma 2.6,

∫
g dV = lim

n

∫
gn(x)dV (x) = lim

n
(V ⊗W )(En) = (V ⊗W )(E),

as desired.
The class C is also closed under proper differences: if F ⊆ G are

sets in C, and E = G − F , then g(x) = W ((G − F )x) = W (Gx − Fx) =
W (Gx)−W (Fx), and

∫
gdV = (V ⊗W )(G)− (V ⊗W )(F ) = (V ⊗W )(E),

as required. An application of the Dynkin π − λ Theorem [1; 1.6.1] shows
that C contains all Borel subsets of X × Y .

2.8 Theorem. Let (X,B(X)) and (Y,B(Y )) be measurable spaces
and let B be a Banach algebra with full spectrum. Suppose that V ∈
ca(B(X), B) and W ∈ ca(B(Y ), B) are measures such that |V | < ∞ and
such that the set of all sums

∑

E×F∈Π

c(E × F )V (E)W (F )

taken over finite partitions Π of X × Y into measurable rectangles E × F
and functions c : Π → [−1, 1] is contained in a weakly compact subset of
B. Then there is a unique measure V ⊗ W ∈ ca(B(X) ⊗ B(Y ), B) such
that (V ⊗W )(E × F ) = V (E)W (F ) for all E ∈ B(X) and F ∈ B(Y ).

Proof. We have already established the theorem for the case where
X and Y are absolute Borel sets.

Case 1: The sets X and Y are separable metric spaces with Borel
structures B(X) and B(Y ). Let X̄ and Ȳ be metric compactifications of
X and Y with Borel structures B(X̄) and B(Ȳ ). Define V̄ : B(X̄) → B
and W̄ : B(Ȳ ) → B by V̄ (E) = V (E ∩X) and W̄ (E) = W (E ∩ Y ). Then
V̄ ∈ ca(B(X̄), B) and W̄ ∈ ca(B(Ȳ ), B), so that Theorem 2.4 applies to
produce product measure V̄ ⊗ W̄ on X̄ × Ȳ . (We note the partitions Π of
X̄ × Ȳ into Borel rectangles induce corresponding partitions on X × Y ).
Also, we have |V̄ | < ∞.
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Now let E be a Borel subset of X̄ × Ȳ such that E ∩ (X × Y ) = ∅.
We apply Lemma 2.7 to see that

(V̄ ⊗ W̄ )(E) =
∫

W̄ (Ex)dV̄ (x).

But Ex ∩ Y = ∅ for x ∈ X, so that W̄ (Ex) = 0 on some Borel set C ⊇ X.
But V̄ (X̄ −C) = 0, so (V̄ ⊗ W̄ )(E) = 0. We define a measure ρ on X ×Y
by putting ρ(E ∩ (X × Y )) = (V̄ ⊗ W̄ )(E) for E ⊆ X̄ × Ȳ Borel. Then ρ
is a well-defined measure, and for Borel sets E ⊆ X̄ and F ⊆ Ȳ , we have

ρ((E ∩X)× (F ∩ Y )) = (V̄ ⊗ W̄ )(E × F ) = V̄ (E)W̄ (F )

= V (E ∩X)W (F ∩ Y ).

So ρ = V ⊗W as required. For uniqueness, see [3; p. 27].

Case 2: The measurable spaces (X,B(X)) and (Y,B(Y )) have count-
ably generated σ-fields. By a technique of Marczewski [8], we find func-
tions f : X → R and g : Y → R such that B(X) = {f−1(E) : E ⊆ R
Borel} and B(Y ) = {g−1(E) : E ⊆ R Borel}. The level sets f−1(p) and
g−1(p) account for the atoms of B(X) and B(Y ). We now define measures
f(V ) and g(W ) on f(X) and g(Y ) by putting f(V )(E) = V (f−1(E)) and
g(W )(E) = W (g−1(E)). Then f(V ) and g(W ) are measures on the separa-
ble metric spaces f(X) and g(Y ) satisfying the hypotheses of the theorem.
Case 1 may then be applied for construct f(V )⊗ f(W ) on f(X)× f(Y ).
Define F : X × Y → f(X)× f(Y ) by F (x, y) = (f(x), g(y)). Then V ⊗W
may be defined by (V ⊗W )(E) = (f(V ) ⊗ f(W ))(F (E)). Verification is
routine. Uniqueness follows from [3; p. 27].

Case 3: (For general measurable spaces) Let {Aλ : λ ∈ Λ} and {Bµ :
µ ∈ M} be listings of all countably generated sub-σ-fields of B(X) and
B(Y ). For each λ and µ, let Vλ and Wµ be the restrictions of V and W
to Aλ and Bµ, respectively. Case 2 applies to produce a unique product
measure ρλµ = Vλ ⊗ Wµ on Aλ ⊗ Bµ. By uniqueness, we have that if
Aλ ⊆ Aλ′ and Bµ ⊆ Bµ′ , then ρλµ is the restriction of ρλ′µ′ to Aλ ⊗ Bµ.
Thus, we may define V ⊗ W to be the coherent union of the functions
ρλµ. Countable additivity follows from the fact that if Aλ1 Aλ2 . . . and
Bµ1 Bµ2 . . . are countably generated, so are the σ-fields they generate.
Uniqueness again comes from [3; p. 27].

Now that existence of product measure has been established in full
generality, it remains only to develop a Fubini-type theorem to complete
the integration theory.
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2.9 Lemma. With measures V and W as in Theorem 2.8 with |V | <
∞. Then |V ⊗W | ≤ |V | ⊗ |W |.

Proof. Let E ⊆ X × Y be a Borel set and let E = E1 ∪ . . . ∪ En

be a finite partition of E into Borel sets. If |V | ⊗ |W |(E) = ∞, there is
nothing to prove; if |V | ⊗ |W |(E) < ∞,

|V | ⊗ |W |(E) =
∑

|V | ⊗ |W |(Ei) =
∑ ∫

|W |((Ei)x) d|V |(x) (Fubini)

≥
∑ ∥∥∥∥∥

∫
W ((Ei)x) dV (x)

∥∥∥∥∥ =
∑

‖(V ⊗W )(Ei)‖ . (Lemma 2.7)

Taking the supremum over all partitions of E yields |V | ⊗ |W |(E) ≥ |V ⊗
W |(E).

We say that f : X×Y → B is product integrable if
∫ ‖f‖d|V |⊗ |W | <

∞. If |V | < ∞, then the previous lemma implies that f is absolutely
V ⊗W -integrable and that

∫
fdV ⊗W exists.

2.10 Theorem. Let (X, B(X)) and (Y,B(Y )) be measurable spaces

and let B be a Banach algebra with full spectrum. Suppose that V ∈
ca(B(X), B) and W ∈ ca(B(Y ), B) are measures satisfying the hypotheses

of Theorem 2.8. Let f : X × Y → B be product integrable. Then

i) for |V | - a.e. x ∈ X, fx(y) = f(x, y) is absolutely W -

integrable on Y ;

i’) for |W | - a.e. y ∈ Y , fy(x) = f(x, y) is absolutely V -

integrable on X;
ii) the function x → ∫

fxdW is absolutely V -integrable on X;
ii’) the function y → ∫

fydV is absolutely W -integrable on Y ;
iii)

∫
fdV ⊗W =

∫∫
fdWdV .

Proof. The ordinary Fubini Theorem applies to ‖f(x, y)‖ and the
real measures |V | and |W | to establish statements i), i’), ii), and ii’).
Lemma 2.7 may be applied to show that iii.) holds when f is a simple
function. In general, if f is |V |⊗|W |-integrable, there are simple functions,
fn : X ∈ Y → B such that

∫ ‖f − fn‖d|V | ⊗ |W | → 0. The functions fn
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can be chosen with ‖fn‖ ≤ ‖f‖+ 1 and fn → f pointwise. Then
∥∥∥∥∥

∫
fd(V ⊗W )−

∫∫
fdWdV

∥∥∥∥∥ ≤
∥∥∥∥∥

∫
fd(V ⊗W )−

∫
fnd(V ⊗W )

∥∥∥∥∥

+

∥∥∥∥∥
∫

fnd(V ⊗W )−
∫∫

fndWdV

∥∥∥∥∥ +

∥∥∥∥∥
∫∫

fndWdV −
∫∫

fdWdV

∥∥∥∥∥

≤
∫
‖f − fn‖ d|V | ⊗ |W |+

∫∫
‖fn − f‖ d|W |d|V |.

The first term tends to zero as n →∞. To the second we apply the usual
Lebesgue Dominated Convergence Theorem: it, too, tends to zero.

Note: If we also have |W | < ∞, then iii) can read
∫

fd(V ⊗ W ) =∫ ∫
fdWdV =

∫ ∫
fdV dW .

3. Banach lattices; Strassen’s Theorem

In this section, we developed the theory of weak convergence for mea-
sures with values in the positive cone of a Banach lattice. Analogies with
the classical theory are quite close and facilitate applications. We gener-
alise a well-known result of Strassen to the context of vector measures.

We recall that a vector space V with a partial ordering ≤ is a vector
lattice if

1) x ≤ y implies x + z ≤ y + z for all x, y, z ∈ V ;
2) x ≤ y implies αx ≤ αy for all x, y ∈ V and α ∈ R+;
3) every pair of elements x, y of V has a supremum x ∨ y and an

infimum x ∧ y.
If (V, S) is a vector lattice and x ∈ V , we define x+ = x ∨ 0 and

x− = (−x)∨ 0 and |x| = x∨ (−x). Then x = x+ − x− and |x| = x+ + x−.
A vector lattice (B,≤) is a Banach lattice if the norm ‖ · ‖ on B satisfies
the implication

(∗) |x| ≤ |y| implies ‖x‖ ≤ ‖y‖.
For further information on Banach lattices, we refer the reader to

the monograph of Schaefer [11] or the shorter exposition by Kelly,
Namioka et al. [7]. The theory of vector measures with values in the
positive cone B+ = {x ∈ B : x ≥ 0} of a Banach lattice more nearly
mirrors the classical theory of measures that does general vector measure
theory. The following observation greatly facilitates this analysis.
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3.1 Lemma. Let (X,F) be a measurable space and let V : F → B+

be a countably additive measure taking values in the positive cone of a
Banach lattice B. Then, for each E ∈ F , we have ‖V ‖(E) = ‖V (E)‖.

Proof. Let ϕ ∈ B∗ be a functional with ‖ϕ‖ ≤ 1. An argument in [7;
p. 239] shows that if ϕ = ϕ+−ϕ− and |ϕ| = ϕ++ϕ−, then ‖|ϕ|‖ = ‖ϕ‖ ≤ 1.
So then |ϕ(V )|(E) = |ϕ+(V ) − ϕ−(V )|(E) ≤ |ϕ+(V )|(E) + |ϕ−(V )|(E).
Since ϕ+ and ϕ− are positive functionals, the latter is
ϕ+(V (E))+ϕ−(V (E)) = |ϕ|(V (E)) ≤ ‖|ϕ|‖ ‖V (E)‖ ≤ ‖V (E)‖, so that
|ϕ(V )|(E) ≤ ‖V (E)‖. The reverse inequality always holds.

The following generalises a result of Ulam. See e.g. [4; 7.1.4].

3.2 Theorem. Let (X, d) be a complete, separable metric space with
Borel σ-field B(X) and let (B,≤) be a Banach lattice. Every countably
additive vector measures V : B(X) → B+ is tight.

Proof. Let x1, x2, . . . be a sequence dense in X. For each δ > 0 and
x ∈ X, define B̄(x; δ) = {y ∈ X : d(x, y) ≤ δ}. Given ε > 0 and a positive
integer m, we take n(m) < ∞ such that

∥∥∥∥∥V


X −

n(m)⋃
n=1

B̄

(
xn;

1
m

)


∥∥∥∥∥ <
ε

2m
.

(Countable additivity makes this choice possible.) Define

K =
∞⋂

m=1

n(m)⋃
n=1

B̄

(
xn;

1
m

)
.

This set K is closed and totally bounded in X and so is compact. Then,
using Lemma 3.1, we have

‖V ‖(X −K) = ‖V (X −K)‖ ≤
∑ ε

2m
= ε,

as desired.

Weak convergence for general vector or signed measures exhibits cer-
tain pathologies. We note the following

3.3 Example. Define Vn = δ 1
n
− δ− 1

n
, the difference of point masses

at 1
n and − 1

n . The Vn are real-valued measures converging weakly to zero.
Yet for F = [0,∞), we have Vn(F ) = 1 for all n.

As we shall see, restriction to non-negative measures avoids such un-
usual behaviour.
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Let (B,≤) be a Banach lattice with positive cone B+={x ∈ B : x ≥
0}. For measures taking values in the positive cone B+, the theory of weak
convergence assumes a more familiar form. The following theorem bears
comparison with recent work of Dekiert [2] and generalises the classical
Portmanteau Theorem [4; 11.1.1].

3.4 Theorem. Let (X, d) be a metric space with Borel σ-field B(X).
Let V and (Vn) be measures in ca(B(X), B) taking values in B+. The
following are equivalent:

i) the sequence (Vn) converges weakly to V ;
ii) ϕ(

∫
fdVn) → ϕ(

∫
fdV ) as n → ∞ for all bounded, uni-

formly continuous f : X → R and all positive ϕ ∈ B∗;
iii) lim sup ϕ(Vn(F )) ≤ ϕ(V (F )) for all closed F ⊆ X and posi-

tive ϕ ∈ B∗;
iv) lim inf ϕ(Vn(G)) ≥ ϕ(V (G)) for all open G ⊆ X and positive

ϕ ∈ B∗.

Proof. i ⇒ ii : Trivial.

ii ⇒ iii : Given a positive ϕ ∈ B∗, F closed, and δ > 0, we use the
regularity of the measure ϕ ◦ V to select an ε > 0 such that G = {x :
d(x, F ) < ε} satisfies ϕ(V )(G− F ) < δ. Define f : X → R by

f(x) = 1− (d(x, F )/ε) ∧ 1.

Then f(x) = 1 on F and f(x) = 0 on X −G. Also 0 ≤ f ≤ 1, so that

ϕ(Vn(F )) =
∫

F

fdϕ(Vn) ≤
∫

fdϕ(Vn)

and ∫
fdϕ(V ) =

∫

G

fdϕ(V ) ≤ ϕ(V (G)) < ϕ(V (F )) + δ,

whence follows (using uniform continuity of f),

lim sup ϕ(Vn(F )) ≤ lim
∫

fdϕ(Vn) =
∫

fdϕ(V ) < ϕ(V (F )) + δ.

Letting δ evaporate gives the desired inequality.

iii ⇒ i : We may assume that 0 < f(x) < 1. For each k, let Fi =
{x : i/k ≤ f(x)}, i = 0, 1, . . . , k. Each Fi is closed. We have, for ϕ ∈ B∗
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positive,

k∑

i=1

i− 1
k

ϕ(V )
{

x :
i− 1

k
≤ f(x) <

i

k

}
≤

∫
fdϕ(V )

<

k∑

i=1

i

k
ϕ(V )

{
x :

i− 1
k

≤ f(x) <
i

k

}
.

The rightmost sum is

k∑

i=1

i

k

[
ϕ(V )(Fi−1)− ϕ(V )(Fi)

]
=

1
k

+
1
k

k∑

i=1

ϕ(V )(Fi).

A similar formula holds for the leftmost sum, and we obtain

1
k

k∑

i=1

ϕ(V (Fi)) ≤
∫

fdϕ(V ) <
1
k

+
1
k

k∑

i=1

ϕ(V (Fi)).

If now lim sup ϕ(Vn(Fi)) ≤ ϕ(V (Fi)) for each i, then

lim sup
∫

fdϕ(Vn) ≤ 1
k

+
∫

fdϕ(V ).

Letting k →∞ yields lim sup
∫

fdϕ(Vn) ≤ ∫
fdϕ(V ). The same argument

applied to −f gives lim inf
∫

fdϕ(Vn) ≥ ∫
fdϕ(V ), so that

∫
fdϕ(Vn) →∫

fdϕ(V ) as n →∞.

To conclude de demonstration, it remains only to note that every
ϕ ∈ B∗ may be written as a difference of positive functionals in B∗.

iii ⇔ iv : This follows by complementation.

The following result is patterned after theorems of Le Cam [4; 11.5.3]
and Shortt [12: Lemma 6].

3.5 Lemma. Let (X, d) be a separable metric space with Borel σ-
field B(X). There are, for each positive integer k, partitions πk of X into
finitely many Borel sets such that if V and Vk are countably additive tight
vector measures on B(X) taking values in the positive cone B+ of a Banach
lattice (B,≤) and satisfying Vk(A) = V (A) for all A ∈ πk, then

i) Vn → V weakly;
ii) lim sup ‖Vn(F )‖ ≤ ‖V (F )‖ for each closed set F ⊆ X;
iii) the sequence (Vn) is uniformly tight.
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Proof. Since X is separable, there is a totally bounded metric d̄
on X topologically equivalent to d. For each k, choose points x1, . . . , xn

such that the open balls B(xi,
1
k ), (i = 1, . . . , n), cover all of X. Put

A1 = B(x1; 1
k ) and in general

Aj = B

(
xj ;

1
k

)
− (A1 ∪ . . . ∪Aj−1) for j ≤ n.

Put πk = {A1, . . . , An}. Now suppose that g : X → R is d̄-uniformly
continuous. Define αA = inf{g(x) : x ∈ A} and βA = sup{g(x) : x ∈ A}
for A ∈ πk. Then

∫
g dVk −

∫
g dV =

∑

A∈πk

(∫

A

g dVk −
∫

A

g dV

)
.

We have also

αAV (A) ≤
∫

A

g dV ≤ βAV (A) and

αAV (A) = αAVk(A) ≤
∫

g dVn ≤ βAVk(A) = βAV (A),

so that

αAV (A)− βAV (A) ≤
∫

A

g dVk −
∫

A

g dV ≤ βAV (A)− αAV (A).

Putting S = supA(βA − αA), we obtain

−S · V (X) ≤ −
∑

A

(βA − αA)V (A) ≤
∫

g dVk −
∫

g dV

≤
∑

A

(βA − αA)V (A) ≤ S · V (X),

so that ‖ ∫
gdVk −

∫
gdV ‖ ≤ S‖V (X)‖.

Since g is d̄-uniformly continuous and since the diameter of each A
is less that 2/k, we have that S → 0 as k → ∞. We have proved that∫

gdVk →
∫

gdV as k →∞ for each such g : X → R. (This establishes i.)
Now suppose that F ⊆ X is closed. As in the proof of Theorem 3.4,

we define, for each δ > 0, on ε > 0 such that G = {x̄ : d̄(x, F ) < ε}
satisfies ‖V ‖(G − F ) < δ. (We use regularity — see Lemma 1.2.) Define
f : X → R by

f(x) = 1− (d̄(x, F )/ε) ∧ 1.



90 Michael März and R. M. Shortt

Then for f = 1 on F and f = 0 on X − G. Also, f is d̄-uniformly
continuous, and 0 ≤ f ≤ 1. We have

0 ≤ Vn(F ) =
∫

F

fdVn ≤
∫

fdVn

and

0 ≤
∫

fdV =
∫

G

fdV ≤ V (G) = V (F ) + V (G− F ),

whence follows (we have the first part of the proof)

lim sup ‖Vn(F )‖ ≤ lim

∥∥∥∥∥
∫

fdVn

∥∥∥∥∥ =

∥∥∥∥∥
∫

fdV

∥∥∥∥∥
≤ ‖V (F )‖+ ‖V (G− F )‖ ≤ ‖V (F )‖+ δ .

Letting δ → 0 yields the assertion ii) of the theorem.
Given ε > 0, we use tightness of V to choose a compact K with

‖V (X − K)‖ < ε. For each δ > 0 and n ≥ 1, we define Kδ = {x :
d(x,K) < δ} and

a(n) = inf{δ > 0 : ‖Vn(X −Kδ)‖ < ε}.
From part ii) of the theorem, we have that a(n) → 0 as n → ∞ (in
fact a(n) = 0 for all large n). Using regularity together with tightness
of Vn, we choose a compact Kn ⊆ K2a(n) with ‖Vn(K2a(n) − Kn)‖ < ε.
Define L = K ∪ K1 ∪ K2 ∪ . . . . Then L is compact, since every open
cover of K covers all but finitely many of the Kn. Then ‖Vn(X − L)‖ ≤
‖Vn(X −Kn)‖ ≤ ‖Vn(X −K2a(n))‖+ ‖Vn(K2a(n) −Kn)‖ < 2ε.

We are now ready for our major application, a generalisation of the
celebrated theorem of Strassen (see [4], [6], [9], [12], [14]). First we solve
a finitary version of the problem and use weak convergence to pass to the
continuous case.

3.6 Theorem. Let A and B be finite fields on a base set X and let
(B,≤) be a vector lattice. Suppose that V0 : A ∪ B → B+ be a set
function such that the restriction of V0 to A or to B is a vector measure.
The following conditions are equivalent:

i) V0 extends to a vector measure V : C → B+ on the field C
generated by A ∪ B;

ii) if E ⊆ F with E ∈ A and F ∈ B, then V0(E) ≤ V0(F ).
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Indication. ii ⇒ i : This follows easily from a theorem of Shortt
and Wehrung [13; Corollary 3.7]. It holds for semigroups much more
generally than for positive cones B+ of vector lattices.

i ⇒ ii; Obvious.

3.7 Theorem. Let X and Y be absolute Borel spaces with Borel σ-
fields B(X) and B(Y ) and suppose that S ⊆ X×Y is the complement of a
countable union of Borel rectangles (e.g. S may be closed). Let (B,≤) be
a reflexive Banach lattice and let V : B(X) → B+ and W : B(Y ) → B+

be countably additive vector measures with values in the cone B+. The
following conditions are equivalent:

i) there is a countably additive vector measure ρ : B(X) ⊗
B(Y ) → B+ such that ρ(E × Y ) = V (E) and ρ(X × F ) =
W (F ) for all E ∈ B(X) and F ∈ B(Y ) and such that ‖ρ‖(X×
Y − S) = 0;

ii) if (E × Y ) ∩ S ⊆ (X × F ) ∩ S for E ∈ B(S) and F ∈ B(Y ),
then V (E) ≤ W (F ).

Proof. i ⇒ ii : Applying ρ to the given inclusion yields V (E) =
ρ(E × Y ) = ρ((E × Y ) ∩ S) ≤ ρ((X × F ) ∩ S) = ρ(X × F ) = W (F ).

ii ⇒ i: We know that X − S =
⋃

(En × Fn) for various En ∈ B(X)
and Fn ∈ B(Y ). We let B0(X) and B0(Y ) be countable collections of sets
that generate the σ-fields B(X) and B(Y ) and are such that En ∈ B0(X)
and Fn ∈ B0(Y ) for each n. We use a technique of Marczewski ([8], [12];
Lemma 1]) to choose separable metrics d1 and d2 for X and Y , respectively,
so that the Borel σ-fields for d1 and d2 are exactly B(X) and B(Y ) and
for which all to the sets in B0(X) and B0(Y ) are clopen. Then (X, d1) and
(Y, d2) are again absolute Borel spaces [1; 8.3.7], and S is a closed subset
of the product of (X, d1) and (Y, d2).

We now apply Lemma 3.5 to find partitions πk(X) and πk(Y ) of
(X, d1) and (Y, d2) satisfying the assertions of that Lemma. We consider
finite fields Ak and Bk on S(k ≥ 1) as follows: Ak [resp. Bk] is generated
by sets of the form (E × Y ) ∩ S [resp. (X × F ) ∩ S] for E ∈ πk(X)
[resp. F ∈ πk(Y )]. Then Theorem 3.6 can be applied to the fields Ak

and Bk to produce a measure ρk : Ck → B+ on Ck, the field generated
by Ak ∪ Bk, such that ρk((E × Y ) ∩ S) = V (E) for E ∈ πk(X) and
ρk((X × F ) ∩ S) = W (F ) for F ∈ πk(Y ). We may choose ρk so as to
be concentrated on a finite subset of S: thus ρk can be extended to all
of B(X) ⊗ B(Y ). Define Vk ∈ ca(B(X), B) and Wk ∈ ca(B(Y ), B) by
putting Vk(E) = ρk(E × Y ) and Wk(F ) = ρk(X × F ). Then Lemma 3.5
implies that the sequences (Vk) and (Wk) are uniformly tight. (We know
that V and W are tight, since X and Y are absolutely Borel: see Lemmas
3.2 and 1.2.) Given ε > 0, choose compact sets K1 ⊆ X and K2 ⊆ Y
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such that for each k, ‖Vk(X −K1)‖ < ε
2 and ‖Wk(Y −Kk)‖ < ε

2 . Then
‖ρk‖((X×Y )−(K1×K2)) ≤ ‖ρk‖(X×(Y −K2))+‖ρk‖((X−K1)×Y ) =
‖ρk(X×(Y−K2))‖+‖ρk((X−K1)×Y )‖ = ‖Wk(Y−K2)‖+‖Vk(X−K1)‖ <
ε, so that the sequence (ρk) is uniformly tight.

We now wish to apply Corollary 1.6 to the sequence (ρk). This is a
bounded sequence, since ‖ρk‖ = ‖ρk(X × Y )‖ = ‖V (X)‖ = ‖W (Y )‖. So
there is a subsequence ρn(k) converging weakly to some measure ρ. We
assert first that ‖ρ‖((X × Y ) − S) = 0: we see that since (X × Y ) − S is
open, for each positive ϕ ∈ B∗,

0 = lim inf ϕ(ρn(k)((X × Y )− S)) ≥ ϕ(ρ((X × Y )− S)),

so that ρ((X × Y ) − S) = 0. Next, we check that ρ has the desired
“marginals”: the marginals of ρn(k) are Vn(k) and Wn(k), which converge
weakly to V and W . These are the marginals of ρ: for each ϕ ∈ B∗
continuous, bounded f : X → R, we have

ϕ

(∫
f(x)dV (x)

)
= lim ϕ

(∫
f(x)dVn(k)(x)

)

= lim ϕ

(∫
f(x)dρn(k)(x, y)

)
= ϕ

(∫
f(x)dρ(x, y)

)
,

and likewise with W .
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