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Circle-preserving transformations in Finsler spaces

By BEHROZ BIDABAD (Tehran) and ZHONGMIN SHEN (Indianapolis)

Abstract. Here, by extending the definition of circle to Finsler geometry, we show

that, every circle-preserving local diffeomorphism is conformal. This result implies that

in Finsler geometry, the definition of concircular change of metrics, a priori, does not

require the conformal assumption.

1. Introduction

In Riemannian geometry Vogel proved that every circle-preserving diffeo-

morphism is conformal, c.f. [14] and [11]. This theorem has been extended to

pseudo-Riemannian manifolds in [7]. Here, we shall extend this theorem to Fins-

ler manifolds. Using the Cartan covariant derivative along a curve, the definition

of circles in a Finsler manifold is given. This definition is a natural extension

of Riemannian one, see for instance, [12]. Some typical examples of circles are

helices on a cylinder or a torus. It should be remarked that these circles need not

to be closed in general, although it may be closed in some cases as on a torus.

A geodesic circle in a Riemannian geometry, as well as in Finsler geometry, is

a curve for which the first Frenet curvature k1 is constant and the second curvature

k2 vanishes. In other words a geodesic circle is a torsion free constant curvature

curve. A concircular transformation is defined by [15] and [8] in Riemannian

geometry to be a conformal transformation which preserves geodesic circles.
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This notion has been similarly developed in Finsler geometry by Agrawal

and Izumi, cf. [1], [9], [10] and studied in [3], [5], [6] by one of the present authors.

The results obtained in this paper shows that in the definition of concircular

transformations, a priori, the conformal assumption is not necessary. That is to

say, if a transformation preserves geodesic circles then it is conformal.

2. Preliminaries

LetM be a real n-dimensional manifold of class C∞. We denote by TM →M

the bundle of tangent vectors and by π : TM0 →M the fiber bundle of non-zero

tangent vectors. A Finsler structure on M is a function F : TM → [0,∞), with

the following properties: (I) F is differentiable (C∞) on TM0; (II) F is positively

homogeneous of degree one in y, i.e. F (x, λy) = λF (x, y), ∀λ > 0, where we

denote an element of TM by (x, y). (III) The Hessian matrix of F 2/2 is positive

definite on TM0; (gij) :=
(

1
2

[
∂2

∂yi∂yj F
2
])

. A Finsler manifold (M, g) is a pair of

a differentiable manifold M and a tensor field g = (gij) on TM which defined by

a Finsler structure F . The spray of a Finsler structure F is a vector field on TM

G = yi
∂

∂xi
− 2Gi

∂

∂yi
,

where

Gi =
gil

4

{ ∂2F 2

∂xm∂yl
ym − ∂F 2

∂xl

}
,

and (gij) := (gij)
−1.

Let (M, g) be a C∞ Finsler manifold and let c be an oriented C∞ parametric

curve on M with equation xi(t). We choose the pair (x, ẋ), to be the line element

along the curve c.

Let (xi, yi) be the local coordinates on the slit tangent bundle TM/0. Using

a Finsler connection we can choose the natural basis (δ/δxi, ∂/∂yi), where δ
δxj :=

∂
∂xj − N i

j
∂
∂yi , and N i

j := 1
2
∂Gi

∂yj . The dual basis is given by (dxi, δyi), where

δyk := dyk +Nk
l dx

l.

Let X be a C∞ vector field X = Xi(t) ∂
∂xi |c(t) along c(t). We denote the

Cartan covariant derivative of X in direction of ċ = dxj

dt
∂
∂xj by∇

ċ
X = δXi

dt
∂
∂xi |c(t).

The components δXi

dt can be determined explicitly as follows.

∇ċX = ∇ċX
i ∂

∂xi
=
dXi

dt

∂

∂xi
+Xi∇ċ

∂

∂xi
. (1)
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The last term in (1) is given by ∇ċ ∂
∂xi := ωji (ċ)

∂
∂xj , where ωji (ċ) := (Γjikdx

k +

Cjikδy
k)(ċ), is the connection 1-form of Cartan connection, cf. [4], p. 39. Here,

the coefficients Γijk are Christoffel symbols with respect to the horizontal partial

derivative δ
δxj , that is,

Γijk :=
1

2
gih
(
δghk
δxj

+
δghj
δxk

− δgjk
δxh

)
,

and Cihk := 1
2g
im ∂gmk

∂yh
, is the Cartan torsion tensor. Plugging δyk in ωji (ċ)

ωji (ċ) = (Γjikdx
k + Cjik(dyk +Nk

l dx
l)(ċ),

= (Γjikdx
k + CjisN

s
kdx

k)

(
dxl

dt

∂

∂xl

)
,

= (Γjil + CjisN
s
l )

(
dxl

dt

)
,

and replacing the resulting term in equation (1), we obtain the components of

Cartan covariant derivative of X in direction of ċ.

δ

dt
Xi =

dXi

dt
+ (Γikh + CiksN

s
h)Xk dx

h

dt
. (2)

The Cartan covariant derivative ∇ċ is metric-compatible along c, that is, for any

vector fields X and Y along c,

d

dt
g(X,Y ) = g(∇ċX,Y ) + g(X,∇ċY ).

More details about this preliminaries may be found in [2], [4], [13].

3. Circles in a Finsler manifold

As a natural extension of circles in Riemannian geometry, cf. [12], we recall

the definition of a generalized circle in a Finsler manifold, called here simply,

circle.

Definition 3.1. Let (M, g) be a Finsler manifold of class C∞. A smooth curve

c : I ⊂ R → M parameterized by arc length s is called a circle if there exist a

unitary vector field Y = Y (s) along c and a positive constant k such that

∇c′X = kY, (3)

∇c′Y = −kX, (4)

where, X := c′ = dc/ds is the unitary tangent vector field at each point c(s). The

number 1/k is called the radius of the circle.
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Comparing this definition of circle with definition of a geodesic circle in

Finsler geometry, recalled in the introduction, we find out that if in the definition

of a geodesic circle we exclude the trivial case, k1 = 0, that is, if we remove

geodesics, then we obtain the definition of a circle in a Finsler manifold.

Lemma 3.1. Let c = c(s) be a unit speed curve on an n-dimensional Finsler

manifold (M, g). If c is a circle, then it satisfies the following ODE

∇c′∇c′X + g(∇c′X,∇c′X)X = 0, (5)

where, g( , ) denotes scalar product determined by the tangent vector c′. Conver-

sely, c satisfies (5), then it is either a geodesic or a circle.

Proof. Assume that c is a circle parameterized by arc-length. By means of

metric compatibility we have

g(∇c′X,X) =
1

2

d

ds
[g(X,X)] = 0.

equations (3) and (4) yield

∇c′∇c′X = k∇c′Y = −k2X. (6)

This implies

k2 = −g(∇c′∇c′X,X) =
d

ds
[g(∇c′X,X)] + g(∇c′X,∇c′X).

Plugging it into (6), we obtain (5).

Conversely, assume that c = c(s) is a unit speed curve on M which satisfies

equation (5). Then by metric compatibility property of ∇c′ , we have

d

ds
g(∇c′X,∇c′X) = 2g(∇c′∇c′X,∇c′X). (7)

Plugging equation (5) into this equation we have

g(∇c′∇c′X,∇c′X) = −g(∇c′X,∇c′X)g(X,∇c′X). (8)

Taking into account equations (7) and (8) and the fact that g(X,∇c′X) = 0 for

unitary tangent vector field X, we have

d

ds
g(∇c′X,∇c′X) = 0.
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Therefore k2 := g(∇c′X,∇c′X) is constant along c. If k = 0, then c is a geodesic.

If k 6= 0, set

Y =
1

k
∇c′X, (9)

then Y is a unit vector field which satisfies equation (3). The covariant derivative

of equation (9) and using equation (5) yields to

∇c′Y =
1

k
∇c′∇c′X = −kX.

Thus we have equations (3) and (4), hence c is a circle. This completes the

proof. �

For a curve c = c(s) parameterized by arc-length s, c′(s) := dc
ds (s) is the unit

tangent vector along c. Let

c′′(s) := ∇c′c′, c′′(s) := ∇c′∇c′c′, c′′′(s) := ∇c′∇c′∇c′c′.

We can express (5) as follows

c′′′ + g(c′′, c′′)c′ = 0. (10)

Equivalently, differential equation of a circle is given by

c′′′ = −k2c′, (11)

where k =
√
g(c′′, c′′) is the constant first Frenet curvature. Hence, c(s) is a circle

if and only if c′′′ is a tangent vector field along c, or equivalently c′′′ is a scalar

multiple of c′ or ċ.

If c = c(t) is parameterized by an arbitrary parameter t, we denote its succ-

essive covariant derivatives by ċ := dc
dt , c̈ =: ∇ċċ and

...
c := ∇ċ∇ċċ. We have the

following successive relations between successive covariant derivatives.

ċ = |ċ| c′, (12)

c̈ = |ċ|2 c′′ + g(ċ, c̈)

|ċ|
c′, (13)

...
c = |ċ|3 c′′′ + 3g(ċ, c̈)c′′ +

d

dt

(
g(ċ, c̈)

|ċ|

)
c′. (14)

For an arbitrary parameter t we have the following lemma.
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Lemma 3.2. Let (M, g) be a Finsler manifold and c(t) a curve on M . Then

c(t) is a circle with respect to g, if and only if the vector field

V :=
...
c − 3

g(ċ, c̈)

g(ċ, ċ)
c̈,

is a tangent vector field along c or equivalently a multiple of ċ or c′.

Proof. It follows from (13) and (14) that

...
c − 3

g(ċ, c̈)

g(ċ, ċ)
c̈ = |ċ|3c′′′ +

{ d
dt

(
g(ċ, c̈)

|ċ|

)
− 3

g(ċ, c̈)2

g(ċ, ċ)3/2

}
c′.

Thus c′′′ is parallel to c′ if and only if
...
c − 3 g(ċ,c̈)g(ċ,ċ) c̈ is proportional to c′ �

Contrary to the Euclidean circle, the general notion of circle in Riemannian

geometry as well as in Finsler geometry, called here, simply circle, is not required

that a circle be a closed curve. Although it may happen in some cases as small

circles or helicoid curves on the sphere. In general, similar to the Riemannian

circles, they are spiral curves on the subordinate spaces, for instance, spiral curves

on cylindrical surfaces, conical surfaces and so on. Moreover, their lengths are

not required to be bounded as in closed circle in Euclidean spaces.

4. Circle-preserving diffeomorphisms

A local diffeomorphism of Finsler manifolds is said to be circle-preserving if

it maps circles into circles. More precisely, let M be a differentiable manifold, g a

Finsler metric on M , c(s) a C∞ arc length parameterized curve in a neighborhood

U ⊂M and δ/ds the Cartan covariant derivative along c, compatible with g.

Let φ : M −→M be a local diffeomorphism on M , then it induces a second

Finsler metric ḡ and a Cartan covariant derivative δ/ds̄ along c̄ on (M, ḡ) on

some neighborhood Ū of M . Here, we denote the induced Finsler manifold by

(M, ḡ), in the sequel. We say that the local diffeomorphism φ : (M, g) −→ (M, ḡ)

preserves circles, if it maps circles to circles.

Let c(s) be a circle and c̄(s̄) its image by φ, where s̄ = s̄(s). Then using

definite positiveness of g and ḡ and the related fundamental forms

ds2 = gij(x, x
′)dxidxj and ds̄2 = ḡij(x, x

′)dxidxj , (15)

respectively, we can establish a relation between s and s̄ and their derivatives.
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We have δ
ds̄ = δ

ds .
ds
ds̄ , where

ds̄

ds
=

√
ḡjk(x, x′)

dxj

ds

dxk

ds
6= 0,

ds

ds̄
=

√
gjk(x, x′)

dxj

ds̄

dxk

ds̄
6= 0. (16)

If we have ds̄ = eσds, or equivalently by means of equation (15), if ḡ = e2σg or

F̄ = eσF , where σ is a scalar function on M , then two Finsler structures F̄ and

F are said to be conformal.

5. Circles in a Minkowski space

Let (V, F ) be a Minkowski space where V is a vector space and F is a

Minkowski norm on V . In a standard coordinate system in V ,

Gi = 0, N i
j = 0. (17)

Then for a vector field X = Xi(t) ∂
∂xi |c(t) along a curve c(t), the Cartan covariant

derivative ∇ċX = δXi

dt
∂
∂xi |c(t) given by equation (2) reduces to

δXi

dt
=
dXi

dt
+ ΓikhX

k dx
h

dt
. (18)

In particular, for X = c′, we have

δXi

ds
=
d2xi

ds2
+ Γikh

dxk

ds

dxh

ds
=
d2xi

ds2
+Gi,

where we have used Γijk
dxj

dt
dxk

dt = γijk
dxj

dt
dxk

dt = Gi, for which γijk are the formal

Christoffel symbols. Thus equation (17) yeilds

δXi

ds
=
d2xi

ds2
.

Therefore in a Minkowski space, a curve c(s) with arc-length parameter s is

a circle if and only if
d3xi

ds3
+ k2 dx

i

ds
= 0, (19)

where k is a constant. In this case ghk
d2xh

ds2
dxk

ds = 0 and k =
√
ghk

d2xh

ds2
d2xk

ds2 .

Now let us take a look at circles in a special Minkowski space (R2, Fb), where

Fb :=
√
u2 + v2 + bu,
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where b is a positive constant with 0 < b < 1. (R2, Fb) is called a Randers

plane. Consider a curve c(s) = (x(s), y(s)) in R2 with unit speed, namely, c′(s) =

(x′(s), y′(s)) is a unit vector. Thus√
x′(s)2 + y′(s)2 + bx′(s) = 1.

We can let

x′(s) =
cos θ(s)− b

1− b2
, y′(s) =

sin θ(s)√
1− b2

.

where θ(s) is a smooth function. Since b is bounded, components of c′(s) are

well defined and one can find out explicitly equation of c(s), the unit circle in the

Randers plane (R2, Fb).

6. Vogel theorem in Finsler geometry

Let φ : (M, g) −→ (M̄, ḡ) be a diffeomorphism. We say that φ preserves

circles, if it maps circles to circles. More precisely, if c(s) is a circle in (M, g),

where s is the arc-length of c with respect to g, then c̄(s̄) := φ ◦ c(s(s̄)) is a circle

in (M̄, ḡ), where s = s(s̄) is the arc-length of φ ◦ c with respect to ḡ.

We recall the following lemma from linear algebra which will be used in the

sequel.

Lemma 6.1. Let F and G be the two bilinear symmetric forms on Rn,

satisfying

• F and G are definite positive.

• F and G are defined on Rn×Rn −→ R, such that F (X,Y ) = 0, ∀X,Y ∈ Rn,

with

G(X,X) 6= 0, G(Y, Y ) 6= 0, and G(X,Y ) = 0, (20)

then there is a positive real number α such that F = αG.

Proof. Let {ei}, be an orthonormal basis on Rn such that G(ei, ej) = δij
where i, j = 1, . . . , n. equation(20) with definite positiveness of F and G imply

that there is a positive real number αi such that F (ei, ej) = αiδij , and hence

F (ei, ej) = αiG(ei, ej). (21)

Let a, b ∈ R− {0} with a2 6= b2, then for i 6= j we have

G(aei + bej , aei + bej) = a2 + b2 6= 0,
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G(bei − aej , bei − aej) = b2 + a2 6= 0,

G(aei + bej , bei − aej) = 0.

This equation together with equations(20) and (21) for i 6= j imply

0 = F (aei + bej , bei − aej) = ab(αiG(ei, ei)− αjG(ej , ej))

and hence 0 = ab(αi − αj). Therefore we obtain αi = αj = α, and F = αG,

which completes the proof. �

Next we prove the following theorem.

Theorem 6.1. Every circle-preserving local diffeomorphism of a Finsler ma-

nifold is conformal.

Proof. Without loss of generality we can consider two Finsler metrics g

and ḡ on the same manifold. Fix a point p ∈ M . For arbitrary two unit vectors

X,Y ∈ TpM such that Y is orthogonal to X with respect to g = g
X

, let Ç =

{ck|k ∈ R} be a family of circles with the constant curvature k passing through

a fixed point c
k
(0) = p on (M, g) such that

dc

ds
(0) = X, and ∇c′X(0) = kY. (22)

We are going to show that ḡ(X,Y ) = 0, where ḡ := ḡ
X

.

Since c is assumed to be a circle with respect to the Finsler metric g, equa-

tion (11) yields, c′′′ is a multiple of c′. By Lemma 3.2, c is a circle with respect

to ḡ if and only if
...
c and c̈ are parallel to ċ or c′.

On the other hand, by virtue of equation (13), c̈ is parallel to ċ, if and only

if c′′ so does.

By means of equation (14), we can see that
...
c is parallel to ċ if and only

if c̈ so does. Denote the second term in right-hand side of equation (14), by

W := 3ḡ(ċ, c̈)c′′. Therefore, c is a circle with respect to ḡ if and only if W is

parallel to c′ = X at the point p = c(0). At p, by involving equations (12) and

(22) we have ċ = c′ḡ(ċ, ċ)1/2 = Xḡ(ċ, ċ)1/2, where ḡ(ċ, ċ) 6= 0 is constant by means

of equation (16). Hence, equation (22) yields c̈ = ∇̄ċċ = d
ds (ḡ(ċ, ċ)1/2X)dsdt and

c̈ = kY ḡ(ċ, ċ). Therefore we obtain

W = 3ḡ(ċ, ċ)3/2ḡ(X,Y )Y k2.

Hence, c is a circle with respect to ḡ if and only if the vector field W is parallel

to X or equivalently, ḡ(X,Y )Y is parallel to X for every X ∈ TpM and every
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Y ∈ TpM orthonormal to X. This implies ḡ(X,Y ) = 0 whenever g(X,Y ) = 0

and by Lemma 6.1, there is a positive scalar α2 where ḡ = α2g. Hence, the Finsler

metrics ḡ(x, x′) and g(x, x′) are conformally related. �

A geodesic circle is a curve for which the first Frenet curvature k1 is cons-

tant and the second curvature k2 vanishes. In the other words a geodesic circle

is a torsion free constant curvature curve. In Riemannian geometry as well as

in Finsler geometry, a concircular transformation is defined to be a conformal

transformation which preserves geodesic circles.

By replacing the positive scalar α in proof of the theorem 6.1 by α = eσ,

we get ḡ = e2σg, or equivalently ds̄ = eσds where σ is a scalar function on M .

Therefore, as a corollary of Theorem 6.1 we have

Theorem 6.2. Every local diffeomorphism of a Finsler manifold which pre-

serve geodesic circles is conformal.

This result shows that in the definition of concircular transformations the

conformal assumption is not necessary.
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