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Nonlinear contractions in metrically convex space

By JANUSZ MATKOWSKI (Bielsko-BiaÃla)

Abstract. In this paper we prove among other things the following fixed point
theorem. Let T be a selfmapping of a complete Menger convex metric space (X, d) and
ψ : [0,∞) → [0,∞) a function such that

d(T (x), T (y)) ≤ ψ(d(x, y)), (x, y ∈ X).

Suppose that ψ is continuous at 0 and that there exists a positive sequence tn,
(n ∈ N), such that lim

n→∞ tn = 0 and ψ(tn) < tn, (n ∈ N). Then T has a unique fixed

point. Moreover T is γ-contractive for an increasing concave function γ and such that
γ(t) < t for all t > 0.

An application to a functional equation is also given.

Introduction

Let (X, d) be a metric space and T : X → X a selfmapping of X. If
there exists a function ψ : [0,∞) → [0,∞) such that

1◦. d(T (x), T (y)) ≤ ψ(d(x, y)) for all x, y ∈ X;
2◦. ψ(t) < t for every t > 0,

then we say that T is ψ-contractive.
A metric space (X, d) is said to be Menger convex or metrically convex

iff for every x, y ∈ X, x 6= y, there is z ∈ X such that x 6= z 6= y and

d(x, y) = d(x, z) + d(z, y).

Let T be a ψ-contractive selfmap of a Menger convex metric space.
D. W. Boyd and J. S. W. Wong [4] proved that T has a unique fixed
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point. Moreover, there exists a subadditive and right continuous function
γ : [0,∞) → [0,∞) such that T is γ-contractive. The last statement
of the Boyd and Wong result has been improved by C. S. Wong [12] who
showed that T is γ-contractive with γ sucht that the function t → γ(t)/t is
nonincreasing in (0,∞). Afterwards J. Matkowski and R. Wȩgrzyk [8]
proved that T is γ-contractive with an increasing and concave function γ.

In this paper we prove the following generalization of the result of
D. W. Boyd and J. S. W. Wong.

Let T be a selfmapping of a complete Menger convex metric space
(X, d) and ψ : [0,∞) → [0,∞) a function such that

d(T (x), T (y) ≤ ψ(d(x, y)), (x, y ∈ X).

If ψ is continuous at 0 and there exists a positive sequence tn, (n ∈ N),
such that

lim
n→∞

tn = 0, ψ(tn) < tn, (n ∈ N),

then T has a unique fixed point a ∈ X and lim
n→∞

Tn(x) = a for every

x ∈ X. Moreover there exists an increasing and concave function γ :
[0,∞) → [0,∞) such that T is γ-contractive.

The arguments of the present paper strongly depend on some proper-
ties of subadditive functions discussed in section 1. We wish to emphasise
that, due to them, the proof of the above result is short and elementary.

In section 4, as a consequence of our main result, we obtain the follow-
ing theorem. Let T be a uniformly continuous selfmapping of a nonempty
closed convex subset X of a Banach space. If for a positive sequence tn,
(n ∈ N), with lim

n→∞
tn = 0 we have

sup {‖T (x)− T (y)‖ : ‖x− y‖ = tn; x, y ∈ X} < tn, (n ∈ N),

then T has a unique fixed point. Moreover T is γ-contractive for an in-
creasing and concave function γ.

In the same section we improve some results obtained by Nadim A.
Assad and W. A. Kirk in [1] and [2].

At the end of this paper we apply the main result to the theory of inte-
grable solutions of a nonlinear iterative functional equation. The concavity
of γ plays there an important role.

Let us also mention that using the methods applied in this paper
one can generalize the Browder–Goehde–Kirk fixed point theorem for
nonexpansive mappings (cf. [11]).
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1. Some remarks on subadditive functions

A function λ : [0,∞) → [0,∞) is a said to be subadditive if

λ(s + t) ≤ λ(s) + λ(t), (s, t ≥ 0).

The following result plays an important role in this paper.

Proposition 1. Let λ : (0,∞) → [0,∞) be subadditive and let
g : (0,∞) → [0,∞) be defined by

g(t) :=
λ(t)

t
, t > 0.

If lim
t→0

λ(t) = 0 then

a) there exists g(0) := lim
t→0

g(t) and g(0) = sup
t>0

g(t);

b) there exists g(∞) := lim
t→∞

g(t) and g(∞) = inf
t>0

g(t);

c) for every positive r there exist the one-sided limits g(r−), g(r+)
and g(r+) ≤ g(r) ≤ g(r−). If moreover g(0) < ∞ and there is an s > 0
such that g(s) < g(0) then for every r ∈ (s,∞) we have

g(r−) < g(0).

Proof. Part a) is a reformulation of Theorem 7.11.1 in [6]. Part b)
follows from Theorem 7.6.1 in [6] and c) is an immediate consequence of
Theorem 7.8.3 in [6]. To prove the last statement of the proposition note
that g(t) ≤ g(0) for all t > 0. Now the definition of g and subadditivity of
λ imply that

λ(t) ≤ λ(s) + λ(t− s) ≤ λ(s) + g(0)(t− s), t ∈ (s, r).

Letting here t tend to r, we obtain λ(r−) ≤ λ(s)+g(0)(r−s). Making use of
the inequality g(s) < g(0), (i.e. λ(s) < g(0)s), we hence get λ(r−) < g(0)r,
which means that g(r−) < g(0). This completes the proof.

Corollary 1. Let λ : [0,∞) → [0,∞) be a subadditive and continuous
at 0. Suppose that there exist c > 0 and tn > 0, (n ∈ N), such that

lim
n→∞

tn = 0, λ(tn) < ctn, (n ∈ N).

Then the function µ : (0,∞) → [0,∞) defined by the formula

µ(t) := sup
{

λ(u)
u

: u > t

}

is decreasing and
µ(t) < c, (t > 0).
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In particular we have λ(t) < ct, (t > 0).

Proof. It is enough to note that g(0) ≤ c and apply Proposition 1
with s := tn, (n ∈ N).

Corollary 2. If λ : (0,∞) → [0,∞) is subadditive, moreover there
exists a c > 0 such that λ(t) ≤ ct, t > 0, and lim sup

t→r
λ(t) = cr for some

positive r, then λ(t) = ct for all t ∈ (0, r).

Remark 1. The above Proposition 1 shows that every subadditive
function λ : (0,∞) → [0,∞) such that λ(t) < ct, (t > 0), for some c > 0
satisfies the following condition: for any s > 0 we have

sup
{

λ(t)
t

: t > s

}
< c.

Taking c = 1 we hence obtain a negative answer to the problem posed by
D. W. Boyd and J. S. W. Wong at the end of the paper [4]. A longer
argument is given in [12].

In the sequel we need the following

Lemma 1. Suppose that λ : (0,∞) → [0,∞) and c > 0. If

sup
{

λ(t)
t

: t > s

}
< c

for every s > 0 then there exists an increasing and concave function γ :
(0,∞) → [0,∞) such that λ(t) ≤ γ(t) < ct, (t > 0).

Proof. Denote by L the family of all the functions ` : (0,∞) →
[0,∞) of the form `(t) = at + b, (a, b ≥ 0), such that λ(t) ≤ `(t) for every
t > 0 and put γ(t) := inf

`∈L
`(t).

For every α, β > 0; α + β = 1, and u, v > 0 we have

γ(αu + βv) = inf
`∈L

`(αu + βv) = inf
`∈L

(α`(u) + β`(v)) ≥
≥ α inf

`∈L
`(u) + β inf

`∈L
`(v) = αγ(u) + βγ(v),

which shows that γ is concave in (0,∞). Since the function `(t) := ct,
(t > 0), belongs to L, we have

γ(t) ≤ ct, (t > 0).
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Now we have to show that the set A := {t > 0 : γ(t) = ct} is empty. By
assumption there are s > 0 and k, 0 < k < c, such that λ(t) ≤ kt for t > s,
and therefore,

λ(t) ≤ k(t− s) + cs = kt + (c− k)s, (t > 0).

In view of the definition of γ we have γ(t) < c(t − s) + cs = ct for t > s.
This proves that A ⊂ (0, s). Suppose for an indirect proof that A 6= ∅ and
put t0 := sup A. The concavity of γ and the inequality γ(t) ≤ ct, (t > 0),
imply that

γ(t) = ct, (0 < t ≤ t0); γ(t) < ct, (t > t0).

According to the assumption there are t1, t2; t1 < t0 < t2, such that

λ(t) < ct1, (t1 ≤ t ≤ t2).

Let m := max{ct1, γ(t2)}. By the concavity of γ the function

`(t) :=
m− ct1
t2 − t1

(t− t1) + ct1, (t > 0),

satisfies the inequality λ(t) ≤ `(t) for all t > 0 and, consequently,

γ(t0) ≤ `(t0) =
m− ct1
t2 − t1

(t0 − t1) + t1 < c(t0 − t1) + ct1 = ct0.

This contradiction shows that A = ∅. Since every ` ∈ L is increasing it
follows that so is γ. This completes the proof.

2. A fixed point theorem for an arbitrary complete metric space

In this section we present the following

Proposition 2. Let (X, d) be an arbitrary complete metric space and
T : X → X a selfmapping of X. Suppose that λ : [0,∞) → [0,∞) is
continuous at 0, subadditive and there exists a sequence tn > 0, (n ∈ N),
such that

lim
n→0

tn = 0, λ(tn) < tn, (n ∈ N).

If
d(T (x), T (y)) ≤ λ(d(x, y)), (x, y ∈ X),

then T has a unique fixed point a ∈ X and lim
n→∞

Tn(x) = a for every

x ∈ X. Moreover T is a γ-contractive with an increasing and concave γ.

Proof. By Corollary 1 and Lemma 1 the mapping T is a γ-contra-
ctive with an increasing and concave γ. Denote by γn the nth iterate of
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γ. Since γ(t) < t for t > 0, we have

lim
n→∞

γn(t) = 0, (t > 0).

Now the existence of a unique fixed point of T and the convergence of
every sequence of successive approximations follows from [9] p. 8, Theo-
rem 1.2, (cf. also J. Dugundji, A. Granas [5] p. 12, Theorem 3.2, and
[10], Theorem 2).

3. A family of nonlinear contractions in Menger convex space

We begin this section with the following well known result of Menger
(cf. [3], p. 41).

Lemma 2. If (X, d) is a complete and Menger convex metric space
then any two points are the endpoints of at least one metric segment. More
precisely, for every x, y ∈ X, x 6= y, there exists a function
F : [0, d(x, y)] → X such that

F (0) = x, F (d(x, y)) = y

and for every s, t ∈ [0, d(x, y)] we have

d(F (s), F (t)) = |s− t|.
In particular, for every x, y ∈ X and α ∈ (0, 1) there is z ∈ X such that

d(x, z) = αd(x, y), d(z, y) = (1− α)d(x, y).

By this Lemma P := d(X × X), the range of the metric d, is an
interval of the form [0, b), (0 ≤ b ≤ ∞), or [0, b], (0 ≤ b < ∞).

Now, applying Lemma 1, Lemma 2 and Corollary 1, we can prove the
following basic

Proposition 3. Let (X, d) be a complete Menger-convex metric space,
(Y, ρ) a metric space, Tι : X → Y , (ι ∈ I), a family of mappings and
ψ : [0,∞) → [0,∞) continuous at 0. Suppose that there exist c > 0 and a
positive sequence tn, (n ∈ N), such that

lim
n→∞

tn = 0, ψ(tn) < ctn, (n ∈ N).

If
ρ(Tι(x), Tι(y)) ≤ ψ(d(x, y)), (x, y ∈ X; ι ∈ I),

then there exists an increasing concave function γ : [0,∞) → [0,∞) such
that γ(t) < ct, (t > 0), and

ρ(Tι(x), Tι(y)) ≤ γ(d(x, y)), (x, y ∈ X; ι ∈ I).
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Proof. Let us define a function λ : [0,∞) → [0,∞) by the formula

λ(t) := sup {ρ(Tι(x), Tι(y)) : x, y ∈ X, ι ∈ I, d(x, y) = t} ,

t ∈ P = d(X ×X),

and, if P̄ = [0, b] with b < ∞, we put

λ(t) := 0, t ∈ [0,∞) \ P.

Applying an idea of Boyd and Wong, (cf. [4], Lemma 2), we first prove
that λ is subadditive, i.e. that λ(s + t) ≤ λ(s) + λ(t), (s, t ≥ 0). Take
arbitrary s, t ≥ 0. This inequality is obviously true if b < ∞ and s + t ∈
[0,∞) \P . Suppose that s+ t ∈ P . Thus s+ t = d(x, y) for some x, y ∈ X
and, in view of Lemma 2, there exists a point z ∈ X such that d(x, z) = s
and d(z, y) = t. Then we clearly have

ρ(Tι(x), Tι(y)) ≤ ρ(Tι(x), Tι(z)) + ρ(Tι(z), Tι(y)) ≤ λ(s) + λ(t)

for all ι ∈ I. Now, taking the supremum over all x, y ∈ X with d(x, y) =
s + t and ι ∈ I, we get λ(s + t) ≤ λ(s) + λ(t).

By the definition of λ we clearly have

λ(t) ≤ ψ(t) ≤ ct, (t ≥ 0).

Moreover, according to the assumption, we hence get

λ(tn) ≤ ψ(tn) < ctn, (n ∈ N).

Now the proposition results from Corollary 1 and Lemma 1.

4. Fixed point theorems in Menger convex space

We begin this section with the following

Theorem 1. Let T be a selfmapping of a complete Menger convex
metric space (X, d) and ψ : [0,∞) → [0,∞) a function such that

d(T (x), T (y)) ≤ ψ(d(x, y)), (x, y ∈ X).

If ψ is continuous at 0 and there exists a positive sequence tn, (n ∈ N),
such that

lim
n→∞

tn = 0, ψ(tn) < tn, (n ∈ N),

then T has a unique fixed point a ∈ X and lim
n→∞

Tn(x) = a for every

x ∈ X. Moreover T is γ-contractive for an increasing and concave γ.

Proof. Taking in Proposition 3 : (Y, ρ) := (X, d), Tι:=T , (ι∈I), and
c := 1 we infer that there exists an increasing concave γ : [0,∞) → [0,∞),
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γ(t) < t, (t > 0), such that

d(T (x), T (y)) ≤ γ(d(x, y)), (x, y ∈ X).

Since lim
k→∞

γk(t) = 0 for every t > 0, the existence of a unique fixed point

of T and the convergence of every sequence of successive approximations
easily follows (cf. [9] p. 8, Theorem 1.2, [5] p. 12, Theorem 3.2, and [10],
Theorem 2).

Theorem 2. Let T be a uniformly continuous selfmapping of a com-
plete Menger convex metric space (X, d). If there exists a positive sequence
tn, (n ∈ N), lim

n→∞
tn = 0, such that

sup {d(T (x), T (y)) : d(x, y) = tn; x, y ∈ X} < tn, (n ∈ N),

then T has a unique fixed point a ∈ X and lim
n→∞

Tn(x) = a for every

x ∈ X. Moreover T is γ-contractive for an increasing and concave γ.

Proof. According to the assumptions, given ε > 0 there is a δ(ε) > 0
such that for every x, y ∈ X, d(x, y) < δ(ε) implies d(T (x), T (y)) < ε.
Take ε := 1, an arbitrary t ∈ P := d(X × X) and x, y ∈ X such that
d(x, y) = t. In view of Lemma 2 there exist n=n(t) ∈ N and z0, . . . , zn ∈ X
such that z0 = x, zn = y; d(zi−1, zi) = n−1d(x, y) < δ(1). Hence

d(T (x), T (y)) ≤
n∑

i=1

d(T (zi−1), T (zi)) < n = n(t).

This proves that for every t ∈ P the number

ψ(t) := sup{d(T (x), T (y)) : d(x, y) = t, x, y ∈ X}
is finite. Put ψ(t) := 0 for t ∈ (0,∞) \ P . Then ψ : [0,∞) → [0,∞) and

d(T (x), T (y)) ≤ ψ(d(x, y)), (x, y ∈ X).

By the uniform continuity of T the function ψ is continuous at 0. Moreover,
according to the remaining assumption, we have ψ(tn) < tn for all n ∈ N.
Now the result follows from Theorem 1.

Let us note the following obvious

Corollary 3. Let T be a uniformly continuous selfmapping of a non-
empty closed convex subset X of a Banach space. If for a positive sequence
tn, (n ∈ N), with lim

n→∞
t0 = 0 we have

sup {‖T (x)− T (y)‖ : ‖x− y‖ = tn; x, y ∈ X} < tn, (n ∈ N),
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then T has a unique fixed point. Moreover T is γ-contractive for an in-
creasing and concave function γ.

For a subset K of a metric space (X, d) denote by ∂K the boundary
of K. Nadim A. Assad [2] proved the following theorem.

Let (X, d) be a complete Menger convex metric space and K a non-
empty closed subset of X. Suppose that T : K → X satisfies the following
condition: given ε > 0, there exists δ > 0 such that

ε ≤ d(x, y) < ε + δ =⇒ d(T (x), T (y)) < ε, (x, y ∈ K),

and T (x) ∈ K for x ∈ ∂K. Then T has a unique fixed point in K.

Applying this results we prove the following

Theorem 3. Let (X, d) be a complete Menger convex metric space
and K a nonempty closed and Menger convex subset of X. Suppose that
T : K → X satisfies the following conditions: T (x) ∈ K for x ∈ K and

(∗) there exist a continuous at 0 function ψ; [0,∞) → [0,∞) and a
positive sequence tn, (n ∈ N), such that

lim
n→∞

tn = 0, ψ(tn) < tn, (n ∈ N),

and
d(T (x), T (y)) ≤ ψ(d(x, y)), (x, y ∈ K).

Then T has a unique fixed point in K. Moreover there exists an increasing
and concave function γ : [0,∞) → [0,∞) such that γ(t) < t for t > 0 and

d(T (x), T (y)) ≤ γ(d(x, y)), (x, y ∈ K).

Proof. Taking in Proposition 3 : X := K, Y := X and the one-
elemet family {T} we get the existence of the function γ. The existence of
a unique fixed point results from the above Assad theorem.

Remark 2. Let us note that the above theorem remains true on re-
placing (∗) by each of the following conditions:

(∗∗) T is uniformly continuous and there exists a positive se-
quence tn, (n ∈ N), lim

n→∞
tn = 0 such that

sup {d(T (x), T (y)) : d(x, y) = tn; x, y ∈ K} < tn, (n ∈ N);

(∗ ∗ ∗) given ε > 0, there exists δ > 0 such that

ε < d(x, y) < ε + δ =⇒ d(T (x), T (y)) ≤ ε, (x, y ∈ K).
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For a metric space (X, d) denote by (B(X), D) the metric space of
all nonempty bounded closed subsets of X with the Hausdorff metric D
induced by d. Nadim A. Assad and W. A. Kirk [1] proved the following
fixed point theorem for set-valued contractive mappings.

Let (X, d) be a complete Menger convex metric space, K a nonempty
closed subset of X and T : K → B(X) a mapping such that T (x) ⊆ K for
every x ∈ ∂K. If there is a constant c < 1 such that

D(T (x), T (y)) ≤ cd(x, y), (x, y ∈ K),

then there exists a ∈ K such that a ∈ T (a).

Using this results, Proposition 3 and Corollary 1 one can prove

Theorem 4. Let (X, d) be a complete Menger convex metric space,
K a nonempty closed Menger convex subset of X and T : K → B(X) a
mapping such that T (x) ⊆ K for every x ∈ ∂K. If there is a continuous
at 0 function ψ : [0,∞) → [0,∞), a sequence tn > 0, (n ∈ N), and c < 1
such that

D(T (x), T (y)) ≤ ψ(d(x, y)), (x, y ∈ K),

and
lim

n→∞
tn = 0, ψ(tn) ≤ ctn, (n ∈ N),

then there exists a point a ∈ K such that a ∈ T (a). Moreover

D(T (x), T (y)) ≤ cd(x, y), (x, y ∈ K).

5. An application to a functional equation

In this section we apply Proposition 3 and Theorem 1 to the theory
of integrable solutions of the functional equation

(1) φ(x) = h(x, φ[f(x)])

where φ is an unknown function. We assume that the given functions f
and h satisfy the following hypotheses:

(i) f : [0, 1] → [0, 1] is increasing and absolutely continuous;
(ii) h : [0, 1]× R→ R and

(a) for every y ∈ R the function h(· , y) : [0, 1] → R is
measurable,
(b) for almost all x ∈ [0, 1] the function h(x, · ) : R → R is
continuous;
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(iii) there exist η : [0, 1] → (0,∞) and ψ : [0,∞) → [0,∞) such
that

|h(x, y1)− h(x, y2)| ≤ η(x)ψ(|y1 − y2|), (x ∈ [0, 1]; y1, y2 ∈ R)

ψ is continuous at 0, and there exists a positive sequence tn,
(n ∈ N), such that

lim
n→∞

tn = 0, ψ(tn) < tn, (n ∈ N).

Lemma 3. If h : [0, 1] × R → R satisfies (iii) then there exists an
incereasing concave function γ : [0,∞) → [0,∞) such that

|h(x, y1)− h(x, y2)| ≤ η(x)γ(|y1 − y2|), (y1, y2 ∈ R),

γ(t) < t, (t > 0).

Proof. With the following specification: X = Y := R; I := [0, 1],
(ι ≡ x); and Tι = Tx : R → R defined by Tx(y) := [η(x)]−1h(x, y), the
lemma is an immediate consequence of Proposition 3.

In the sequel L1 stands for the Banach space of all the Lebesgue
integrable functions φ : [0, 1] → R.

Theorem 2. Suppose that conditions (i)–(iii) are fulfilled. If

h(· , 0) ∈ L1 and η ≤ f ′ a.e. in [0, 1]

then equation (1) has exactly one solution φ ∈ L1. Moreover, for every
φ0 ∈ L1 the sequence of successive approximations (φn)∞n=0 given by

φn+1(x) := h(x, φn[f(x)]), (n = 0, 1, . . . ),

converges (in the L1-norm) to φ.

Proof. By (i)–(ii) and Caratheodory’s theorem, the function

T (φ)(x) := h(x, φ[f(x)]), (x ∈ [0, 1]),

is measurable for every φ ∈ L1. Moreover for φ ∈ L1 we have

|h(x, φ[f(x)])| ≤ η(x)|φ[f(x)]|+ |h(x, 0)|
and, consequently, making use of the inequality η ≤ f ′, we get

∫

I

|T (φ)(x)|dx ≤
∫

I

f ′(x)|φ[f(x)]|dx +
∫

I

|h(x, 0)|dx =

=
∫

f(I)

|φ(x)dx +
∫

I

|h(x, 0)|dx < ∞,
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which shows that T : L1 → L1. Take arbitrary φ1, φ2 ∈ L1. Applying
in turn Lemma 3, inequality η ≤ f ′ and the Jensen integral inequality for
concave functions, (cf. M. Kuczma [7], p. 181), we obtain

‖T (φ1)− T (φ2)‖ =
∫

I

|h(x, φ1[f(x)])− h(x, φ2[f(x)])|dx ≤

≤
∫

I

γ(|φ1[f(x)]− φ2[f(x)]|)f ′(x)dx =
∫

f(I)

γ(|φ1(x)− φ2)|)dx ≤

≤
∫

I

γ(|φ1(x)− φ2(x)|)dx ≤ γ

(∫

I

|φ1(x)− φ2(x)|dx

)
= γ(‖φ1 − φ2‖).

Thus the theorem folows from Theorem 1.
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