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A normality relationship between two families
and its applications

By YAN XU (Nanjing)

Abstract. Let k be a positive integer, and let F be a family of meromorphic

functions defined in a domain D ⊂ C, all of whose zeros have multiplicity at least k,

and there exists M > 0 such that |f (k)(z)| ≤ M whenever f(z) = 0 for f ∈ F . If

Fk = {f (k) : f ∈ F} is normal, then F is also normal in D. Some applications of this

result are given.

1. Introduction

Let D be a domain in C, and F be a family of meromorphic functions defined

on D. F is said to be normal on D, in the sense of Montel, if for any sequence

{fn} ∈ F there exists a subsequence {fnj
}, such that {fnj

} converges spherically

locally uniformly on D, to a meromorphic function or ∞( see [6], [9], [12]).

Let k be a positive integer. Consider the family Fk consisting of kth deriva-

tive functions of all f ∈ F , that is, Fk = {f (k) : f ∈ F , z ∈ D}. It is natural to

consider the normality relation between these two families. However, the following

examples show that there seems no direct relation between F and Fk.

Example 1. Let ∆ = {z : |z| < 1}, and F = {fn(z) = n(z2 − n2) : n =

1, 2, . . . }. Then F1 = {f ′n(z) = 2nz : n = 1, 2, . . . }. For each z ∈ ∆,

f#n (z) =
|2nz|

1 + |n(z2 − n2)|2
≤ 2n

1 + (n3 − n)2
→ 0
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as n→∞, where f#n (z) = |f ′n(z)|/(1 + |fn(z)|2) is the spherical derivative of fn.

By Marty’s criterion, F is normal in ∆. But it is easy to see that F1 is not normal

in ∆.

Example 2. Let ∆ = {z : |z| < 1}, and F = {fn(z) = nz : n = 1, 2, . . . }.
Then F1 = {f ′n(z) = n : n = 1, 2, . . . }. Clearly, F1 is normal in ∆; but F is not

normal in ∆.

In 1996, Chen and Lappan [2] first gave an interesting normality relation

between F and Fk under an additional condition, as follows.

Theorem A ([2, Corollary 4]). Let k be a positive integer, and let F be a

family of meromorphic functions defined in a domain D, all of whose zeros have

multiplicity at least k+1. If Fk = {f (k) : f ∈ F} is normal, then F is also normal

in D.

In this paper, by using a different method from that in [2], we first give an

extension to the above result, as follows.

Theorem 1. Let k be a positive integer, and let F be a family of merom-

orphic functions defined in a domain D, all of whose zeros have multiplicity at

least k, and there exists M > 0 such that |f (k)(z)| ≤ M whenever f(z) = 0 for

f ∈ F . If Fk = {f (k) : f ∈ F} is normal, then F is also normal in D.

Remark 1. Theorem 1 is sharp, which can also be shown by Example 2.

The above normality relation between F and Fk is indeed useful to study

normal families. In section 3, we shall give some applications of Theorem 1.

2. Proof of Theorem 1

We need the following well-known Pang–Zalcman lemma, which is the local

version of [8, Lemma 2](cf. [13, pp. 216–217]).

Lemma 1. Let k be a positive integer and let F be a family of functions

meromorphic in a domain D, all of whose zeros have multiplicity at least k, and

suppose that there exists A ≥ 1 such that |f (k)(z)| ≤ A whenever f(z) = 0,

f ∈ F . Then if F is not normal at z0 ∈ D, there exist, for each α, 0 ≤ α ≤ k,

(a) points zn ∈ D, zn → z0,

(b) positive numbers ρn → 0, and

(c) functions fn ∈ F
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such that gn(ζ) = ρ−αn fn(zn + ρnζ) → g(ζ) locally uniformly with respect to

the spherical metric, where g is a nonconstant meromorphic function in C, all of

whose zeros have multiplicity at least k, such that g#(ζ) ≤ g#(0) = kA+ 1.

Proof of Theorem 1. Suppose that F is not normal at z0 ∈ D. By Lem-

ma 1, there exist functions fn ∈ F , points zn → z0 and positive numbers ρn → 0,

such that

gn(ζ) =
fn(zn + ρnζ)

ρkn
→ g(ζ) (1)

converges spherically uniformly on compact subsets of C, where g(ζ) is a noncons-

tant meromorphic function in C, all of whose zeros have multiplicity at least k,

and g#(ζ) ≤ g#(0) = kM + 1. (Without loss of generality, we assume that

M > 1).

From (1), we have

g(k)n (ζ) = f (k)n (zn + ρnζ)→ g(k)(ζ) (2)

converges uniformly on compact subsets of C disjoint from the poles of g. Suppose

that g(ζ0) = 0, by Hurwitz’s theorem, there exist ζn, ζn → ζ0, such that fn(zn +

ρnζn) = 0. By the assumption of Theorem 1, we have |f (k)n (zn+ρnζn)| ≤M . Now,

it follows from (2) that |g(k)(ζ0)| ≤ M . This proves that |g(k)| ≤ M whenever

g = 0.

We claim that g can not be a polynomial of degree less than k+ 1. Indeed, g

can not be a polynomial of degree less than k since all zeros of g have multiplicity

at least k. Now assume that g is a polynomial of degree k. It follows that g has

the form

g(ζ) =
A

k!
(ζ − α)k (3)

where A,α are complex numbers. Since g = 0⇒ |g(k)| ≤M , we see that |A| ≤M .

Calculating g#(0), we get

g#(0) =

|A| |α|k−1

(k−1)!

1 +
( |A| |α|k

k!

)2 =
k

|α|
·

|A| |α|k
k!

1 +
( |A| |α|k

k!

)2 .
From the middle expression, we see that g#(0) ≤ |A| if |α| ≤ 1, and from the

expression on the right we see that g#(0) < k/2 if |α| > 1. But these contradict

the fact that g#(0) = kM + 1 and |A| ≤M .

Hence, there exist a point ζ0 and M1 > 0 such that

M−11 ≤ |g(j)(ζ0)| ≤M1, for j = k, k + 1.



4 Yan Xu

It follows that (2M1)−1 ≤ |g(j)n (ζ0)| ≤ 2M1(j = k, k + 1) for sufficiently large n.

From (2), g
(k)
n (ζ0) = f

(k)
n (zn + ρnζ0), and then |f (k)n (zn + ρnζ0)| ≤ 2M1 for

sufficiently large n. So we have

(2M1)−1 ≤ |g(k+1)
n (ζ0)| = ρn|f (k+1)

n (zn + ρnζ0)|

≤ ρn(1 + 4M2
1 )
|f (k+1)
n (zn + ρnζ0)|

1 + |f (k)n (zn + ρnζ0)|2
, (4)

for sufficiently large n.

On the other hand, by Marty’s criterion, the normality of the family Fk
implies that for each compact subset K ⊂ D, there exists a positive number M2

such that
|f (k+1)(z)|

1 + |f (k)(z)|2
≤M2

for each f ∈ F and z ∈ K. Then, for sufficiently large n, we have

|f (k+1)
n (zn + ρnζ0)|

1 + |f (k)n (zn + ρnζ0)|2
≤M2. (5)

Substituting (5) in (4), we obtain

(2M1)−1 ≤ |g(k+1)
n (ζ0)| ≤ ρn(1 + 4M2

1 )M2 → 0,

as n→∞, a contradiction. Theorem 1 is thus proved. �

3. Some applications of Theorem 1

In this section, we shall give some applications of Theorem 1.

Recently, Chang [1] proved the following result, which improve and genera-

lize the related results due to Pang and Zalcman [8], Fang and Zalcman [5].

Theorem B ([1, Theorem 1]). Let F be a family of meromorphic functions

defined in a domain D, let a, b be two nonzero complex numbers such that

a/b 6∈ N\{1}. If, for each f ∈ F , f = a ⇒ f ′(z) = a, and f ′(z) = b ⇒ f ′′(z) = b

in D, then F is normal.

There is an example [1, Example 1], which shows that the condition ‘a/b 6∈
N\{1}’ in Theorem B is necessary. Chang proved another result without the

condition ‘a/b 6∈ N\{1}’, as follows.
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Theorem C ([1, Theorem 2]). Let F be a family of meromorphic functions

defined in a domain D, let a, b be two nonzero complex numbers. If, for each

f ∈ F , f = a⇒ f ′(z) = a, f ′(z) 6= b and f ′′(z) 6= b in D, then F is normal.

Remark 2. Chang also gave another example [1, Example 2] to show that

the condition ‘f ′′(z) 6= b’ in Theorem C can not be omitted. However, it is easy

to see that ‘f ′′(z) 6= b’ in Theorem C is not necessary for the case a = b(6= 0).

Indeed, f = a ⇒ f ′(z) = a and f ′(z) 6= b yield that f 6= a and f ′ 6= a since

a = b, then Gu’s normal criterion [3] implies that F is normal. We also find that

‘a is nonzero’ in Theorem C can be removed. In fact, if a = 0 and b 6= 0, noting

that f ′ 6= b and f ′′ 6= b, Gu’s normal criterion asserts that F1 = {f ′ : f ∈ F} is

normal in D. Since f = 0⇒ f ′ = 0, we conclude from Theorem 1 that F is also

normal in D.

Here, by using Theorem 1 and some known results, we can prove the following

results, which improve and generalize Theorem C much more.

Theorem 2. Let a, b, c be three complex numbers with c 6= 0, k, l be two

positive integers, and let F be a family of meromorphic functions defined in a

domain D. Suppose that, for each f ∈ F and z ∈ D,

(1) all zeros of f − a have multiplicity at least k, and there exists M > 0 such

that f = a⇒ |f (k)| ≤M ;

(2) all zeros of f (k) − b have multiplicity at least l + 1, and f (k+l) 6= c.

Then F is normal in D.

Let k = l = 1 and b = c in Theorem 2, we have

Corollary 1. Let a, b be two complex numbers with b 6= 0, and let F be a

family of meromorphic functions defined in a domain D. Suppose that, for each

f ∈ F and z ∈ D,

(1) there exists M > 0 such that f = a⇒ |f ′| ≤M ;

(2) all zeros of f ′ − b have multiplicity at least 2, and f ′′ 6= b.

Then F is normal in D.

Obviously, the above results improve and generalize Theorem C.

Next we give some more general extensions of Theorem C by extending cons-

tants ‘a, b, c’ in Theorem 2 to functions ‘a(z), b(z), c(z)’.

Theorem 3. Let k, l be two positive integers, D be a domain in C, let a(z),

b(z) be two holomorphic functions in D, and c(z) be a meromorphic function in

D such that c(z) 6≡ ∞ and c(z) 6≡ b′(z), and let F be a family of meromorphic

functions defined in D. Suppose that, for each f ∈ F and z ∈ D,
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(i) all zeros of f(z) − a(z) have multiplicity at least k, and there exists M > 0

such that f(z) = a(z)⇒ |f (k)| ≤M ;

(ii) all zeros of f (k)(z)− b(z) have multiplicity at least 3, and f (k+1)(z) 6= c(z).

Then F is normal in D.

Theorem 4. Let k, l(≥ 2) be two positive integers, D be a domain in C, let

a(z), b(z) be two holomorphic functions in D, and c(z) be a meromorphic function

in D such that c(z) 6≡ ∞ and c(z) 6≡ b(l)(z), and let F be a family of meromorphic

functions defined in D. Suppose that, for each f ∈ F and z ∈ D,

(i) all zeros of f(z) − a(z) have multiplicity at least k, and there exists M > 0

such that f(z) = a(z)⇒ |f (k)| ≤M ;

(ii) all zeros of f (k)(z)−b(z) have multiplicity at least l+1, and f (k+l)(z) 6= c(z).

Then F is normal in D.

Remark 3. If k = 1, the condition ‘all zeros of f − a or (f − a(z)) have

multiplicity at least k’ in Theorem 2–4 holds naturally, and then can be removed.

Remark 4. The condition c 6= 0 in Theorem 2 (b 6= 0 in Corollary 1), c(z) 6≡
b′(z) in Theorem 3, and c(z) 6≡ b(l)(z) in Theorem 4 can not be omitted, as is

shown by the following examples.

Example 3. Let ∆ = {z : |z| < 1}, a 6= 0 and b = c = 0, and let F = {fn(z) =

enz + a : n = 1, 2, . . . ; z ∈ ∆}. Obviously, fn(z) 6= a, thus f(z) = a⇒ f ′(z) = a;

f ′n(z) = nenz 6= 0, and f ′′n (z) = n2enz 6= 0. Then all conditions excepting c 6= 0

(or c 6= 0) of Theorem 2 (Corollary 1) are satisfied. But F is not normal in ∆.

Example 4. Let ∆ = {z : |z| < 1}, a(z) = b(z) = c(z) = ez, and let

F = {fn(z) = enz + ez : n = 1, 2, . . . ; z ∈ ∆}. It is easy to see that all conditions

excepting c(z) 6≡ b′(z) ( c(z) 6≡ b(l)(z)) of Theorem 3-4 are satisfied. But F is not

normal in ∆.

Remark 5. Example 4 also shows that ‘nonzero constants a, b’ in Theorem B

can not be replaced two nonconstant functions (even for non-vanishing holomor-

phic functions).

To prove the above theorems, we need some known results.

Lemma 2 ([10, Theorem 5]). Let k be a positive integer, and let F be a

family of meromorphic functions defined in a domain D, all of whose poles are

multiple and whose zeros all have multiplicity at least k + 1. If, for each f ∈ F ,

f (k)(z) 6= 1 in D, then F is normal in D.
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Lemma 3 ([7, Theorem 1.3], cf. [11, Theorem 2]). Let F be a family of

meromorphic functions defined in a domain D, all of whose poles are multiple and

whose zeros all have multiplicity at least 3, and let ψ(z)(6≡ 0,∞) be a function

meromorphic in D. If, for each f ∈ F and for each z ∈ D, f ′(z) 6= ψ(z), then F
is normal in D.

Lemma 4 ([14, Theorem 2]). Let k ≥ 2 be an integer, F be a family of

meromorphic functions defined in a domain D, all of whose poles are multiple

and whose zeros all have multiplicity at least k + 1, and let ψ(z)(6≡ 0,∞) be a

function meromorphic in D. If, for each f ∈ F and for each z ∈ D, f (k)(z) 6= ψ(z),

then F is normal in D.

Proof of Theorem 2. Let G = {g = f (k) − b : f ∈ F}. Obviously, the

poles of g have multiplicity at least k + 1 ≥ 2. By the assumptions of theorem,

for each g ∈ G, all zeros of g have multiplicity at least l+ 1, and g(l) = f (k+l) 6= c.

Lemma 2 implies that G is normal in D. Hence, the familyHk ={(f−a)(k) : f ∈F ,

z ∈ D} is also normal in D, where H = {f − a : f ∈ F}. Noting condition (1),

by Theorem 1, we get that H is normal, and then F is normal in D. Theorem 2

is proved. �

Proof of Theorem 3. Since normality is a locally property, we only need

to prove F is normal at each point in D.

Let z0 ∈ D, then there exists δ > 0 such that D̄δ(z0) ⊂ D, where D̄δ(z0) =

{z : |z − z0| ≤ δ}. Let G = {g(z) = f (k)(z) − b(z) : f ∈ F}. Clearly, all poles

of g ∈ G are multiple. By the hypotheses of the theorem, for each g ∈ G, all

zeros of g have multiplicity at least 3. Noting that b(z) is holomorphic and

f (k+1)(z) 6= c(z), we have g′ = f (k+1)(z) − b′(z) 6= c(z) − b′(z) ( 6≡ 0). Then, by

Lemma 3, G is normal in D, and then in Dδ(z0) = {z : |z − z0| < δ}. It follows

that the family Hk = {(f(z) − a(z))(k) : f ∈ F} is normal in Dδ(z0), where

H = {h = f(z) − a(z) : f ∈ F}. By the hypotheses of the theorem, for each

h ∈ H, all zeros of h have multiplicity at least k. Moreover, if h(z) = 0, that is,

f(z) = a(z), then |f (k)(z)| ≤M , and thus

|h(k)(z)| ≤M + |a(k)(z)|.

Noting that a(z) is holomorphic in D, there exists M1 > 0 such that |a(k)(z)| ≤
M1 in D̄δ(z0), and then in Dδ(z0). We get that h(z) = 0 ⇒ |h(k)(z)| ≤ M2

for z ∈ Dδ(z0), where M2 = M + M1. By Theorem 1, H is normal in Dδ(z0).

It follows that F is normal in Dδ(z0), and this means that F is normal at z0.

Theorem 3 is thus proved. �
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Proof of Theorem 4. Using the same argument as in Theorem 3 and

Lemma 4, we can prove Theorem 4. We here omit the details. �

Next we give another application of Theorem 1. In [4], Fang and Chang

gave an extension to Gu’s normal criterion in some sense, by allowing f (k) − 1

have zeros but restricting the zeros of f (k), as follows.

Theorem D ([4, Theorem 1]). Let F be a family of meromorphic functions

defined in a domain D, and let k be a positive integer. If, for each f ∈ F , f 6= 0,

f (k) 6= 0 and the zeros of f (k) − 1 have multiplicity at least (k + 2)/k, then F is

normal.

Here, we can prove the following extension of Theorem D.

Theorem 5. Let k, l1, l2 be three positive integers (l1, l2 can be ∞) with

1/l1 + 1/l2 < k/(k + 1), and let F be a family of meromorphic functions defined

in a domain D. Suppose that, for each f ∈ F and z ∈ D,

(1) all zeros of f have multiplicity at least k and there exists M > 0 such that

|f (k)(z)| ≤M whenever f(z) = 0;

(2) all zeros of f (k) have multiplicity at least l1; and

(3) all zeros of f (k) − 1 have multiplicity at least l2.

Then F is normal in D.

Remark 6. We should indicate that Theorem 5 can be followed from [4,

Theorem 2] if condition (1) is replaced by a stronger condition “all zeros of f

have multiplicity at least k+ 1”. However, the method in [4] does not work here,

and our proof is very simple.

To prove Theorem 5, we need the following classical result due to Bloch

and Valiron, which can be found in [6], [9], [12].

Lemma 5. Let a1, a2, . . . , aq be q distinct complex numbers, and l1, l2, . . . , lq
be positive integers (may equal to∞) with

∑q
i=1(1−1/li) > 2. Let F be a family

of meromorphic functions defined in a domain D. If, for each f ∈ F , the zeros of

f − ai have multiplicity at least li (i = 1, 2, . . . , q) in D, then F is normal in D.

Proof of Theorem 5. Obviously, the poles of f (k) have multiplicity at

least k + 1. Since
1

l1
+

1

l2
<

k

k + 1
,

we have (
1− 1

l1

)
+ (1− 1

l2
) +

(
1− 1

k + 1

)
> 2.
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Let q = 3, a1 = 0, a2 = 1 and a3 =∞, applying Lemma 6 for Fk = {f (k) : f ∈ F},
we know that Fk is normal in D. Noting condition (1), Theorem 1 implies that

F is also normal in D. Theorem 5 is proved. �
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