A normality relationship between two families and its applications

By YAN XU (Nanjing)

Abstract

Let k be a positive integer, and let \mathcal{F} be a family of meromorphic functions defined in a domain $D \subset \mathbb{C}$, all of whose zeros have multiplicity at least k, and there exists $M>0$ such that $\left|f^{(k)}(z)\right| \leq M$ whenever $f(z)=0$ for $f \in \mathcal{F}$. If $\mathcal{F}_{k}=\left\{f^{(k)}: f \in \mathcal{F}\right\}$ is normal, then \mathcal{F} is also normal in D. Some applications of this result are given.

1. Introduction

Let D be a domain in \mathbb{C}, and \mathcal{F} be a family of meromorphic functions defined on $D . \mathcal{F}$ is said to be normal on D, in the sense of Montel, if for any sequence $\left\{f_{n}\right\} \in \mathcal{F}$ there exists a subsequence $\left\{f_{n_{j}}\right\}$, such that $\left\{f_{n_{j}}\right\}$ converges spherically locally uniformly on D, to a meromorphic function or ∞ (see [6], [9], [12]).

Let k be a positive integer. Consider the family \mathcal{F}_{k} consisting of k th derivative functions of all $f \in \mathcal{F}$, that is, $\mathcal{F}_{k}=\left\{f^{(k)}: f \in \mathcal{F}, z \in D\right\}$. It is natural to consider the normality relation between these two families. However, the following examples show that there seems no direct relation between \mathcal{F} and \mathcal{F}_{k}.

Example 1. Let $\Delta=\{z:|z|<1\}$, and $\mathcal{F}=\left\{f_{n}(z)=n\left(z^{2}-n^{2}\right): n=\right.$ $1,2, \ldots\}$. Then $\mathcal{F}_{1}=\left\{f_{n}^{\prime}(z)=2 n z: n=1,2, \ldots\right\}$. For each $z \in \Delta$,

$$
f_{n}^{\#}(z)=\frac{|2 n z|}{1+\left|n\left(z^{2}-n^{2}\right)\right|^{2}} \leq \frac{2 n}{1+\left(n^{3}-n\right)^{2}} \rightarrow 0
$$

Key words and phrases: meromorphic function, derivative function, normal family. The author is supported by NSFC (Grant Nos. 10871094;11171045).
as $n \rightarrow \infty$, where $f_{n}^{\#}(z)=\left|f_{n}^{\prime}(z)\right| /\left(1+\left|f_{n}(z)\right|^{2}\right)$ is the spherical derivative of f_{n}. By Marty's criterion, \mathcal{F} is normal in Δ. But it is easy to see that \mathcal{F}_{1} is not normal in Δ.

Example 2. Let $\Delta=\{z:|z|<1\}$, and $\mathcal{F}=\left\{f_{n}(z)=n z: n=1,2, \ldots\right\}$. Then $\mathcal{F}_{1}=\left\{f_{n}^{\prime}(z)=n: n=1,2, \ldots\right\}$. Clearly, \mathcal{F}_{1} is normal in Δ; but \mathcal{F} is not normal in Δ.

In 1996, Chen and Lappan [2] first gave an interesting normality relation between \mathcal{F} and \mathcal{F}_{k} under an additional condition, as follows.

Theorem A ([2, Corollary 4]). Let k be a positive integer, and let \mathcal{F} be a family of meromorphic functions defined in a domain D, all of whose zeros have multiplicity at least $k+1$. If $\mathcal{F}_{k}=\left\{f^{(k)}: f \in \mathcal{F}\right\}$ is normal, then \mathcal{F} is also normal in D.

In this paper, by using a different method from that in [2], we first give an extension to the above result, as follows.

Theorem 1. Let k be a positive integer, and let \mathcal{F} be a family of meromorphic functions defined in a domain D, all of whose zeros have multiplicity at least k, and there exists $M>0$ such that $\left|f^{(k)}(z)\right| \leq M$ whenever $f(z)=0$ for $f \in \mathcal{F}$. If $\mathcal{F}_{k}=\left\{f^{(k)}: f \in \mathcal{F}\right\}$ is normal, then \mathcal{F} is also normal in D.

Remark 1. Theorem 1 is sharp, which can also be shown by Example 2.
The above normality relation between \mathcal{F} and \mathcal{F}_{k} is indeed useful to study normal families. In section 3, we shall give some applications of Theorem 1.

2. Proof of Theorem 1

We need the following well-known Pang-Zalcman lemma, which is the local version of [8, Lemma 2](cf. [13, pp. 216-217]).

Lemma 1. Let k be a positive integer and let \mathcal{F} be a family of functions meromorphic in a domain D, all of whose zeros have multiplicity at least k, and suppose that there exists $A \geq 1$ such that $\left|f^{(k)}(z)\right| \leq A$ whenever $f(z)=0$, $f \in \mathcal{F}$. Then if \mathcal{F} is not normal at $z_{0} \in D$, there exist, for each $\alpha, 0 \leq \alpha \leq k$,
(a) points $z_{n} \in D, z_{n} \rightarrow z_{0}$,
(b) positive numbers $\rho_{n} \rightarrow 0$, and
(c) functions $f_{n} \in \mathcal{F}$
such that $g_{n}(\zeta)=\rho_{n}^{-\alpha} f_{n}\left(z_{n}+\rho_{n} \zeta\right) \rightarrow g(\zeta)$ locally uniformly with respect to the spherical metric, where g is a nonconstant meromorphic function in \mathbb{C}, all of whose zeros have multiplicity at least k, such that $g^{\#}(\zeta) \leq g^{\#}(0)=k A+1$.

Proof of Theorem 1. Suppose that \mathcal{F} is not normal at $z_{0} \in D$. By Lemma 1, there exist functions $f_{n} \in \mathcal{F}$, points $z_{n} \rightarrow z_{0}$ and positive numbers $\rho_{n} \rightarrow 0$, such that

$$
\begin{equation*}
g_{n}(\zeta)=\frac{f_{n}\left(z_{n}+\rho_{n} \zeta\right)}{\rho_{n}^{k}} \rightarrow g(\zeta) \tag{1}
\end{equation*}
$$

converges spherically uniformly on compact subsets of \mathbb{C}, where $g(\zeta)$ is a nonconstant meromorphic function in \mathbb{C}, all of whose zeros have multiplicity at least k, and $g^{\#}(\zeta) \leq g^{\#}(0)=k M+1$. (Without loss of generality, we assume that $M>1)$.

From (1), we have

$$
\begin{equation*}
g_{n}^{(k)}(\zeta)=f_{n}^{(k)}\left(z_{n}+\rho_{n} \zeta\right) \rightarrow g^{(k)}(\zeta) \tag{2}
\end{equation*}
$$

converges uniformly on compact subsets of \mathbb{C} disjoint from the poles of g. Suppose that $g\left(\zeta_{0}\right)=0$, by Hurwitz's theorem, there exist $\zeta_{n}, \zeta_{n} \rightarrow \zeta_{0}$, such that $f_{n}\left(z_{n}+\right.$ $\left.\rho_{n} \zeta_{n}\right)=0$. By the assumption of Theorem 1, we have $\left|f_{n}^{(k)}\left(z_{n}+\rho_{n} \zeta_{n}\right)\right| \leq M$. Now, it follows from (2) that $\left|g^{(k)}\left(\zeta_{0}\right)\right| \leq M$. This proves that $\left|g^{(k)}\right| \leq M$ whenever $g=0$.

We claim that g can not be a polynomial of degree less than $k+1$. Indeed, g can not be a polynomial of degree less than k since all zeros of g have multiplicity at least k. Now assume that g is a polynomial of degree k. It follows that g has the form

$$
\begin{equation*}
g(\zeta)=\frac{A}{k!}(\zeta-\alpha)^{k} \tag{3}
\end{equation*}
$$

where A, α are complex numbers. Since $g=0 \Rightarrow\left|g^{(k)}\right| \leq M$, we see that $|A| \leq M$. Calculating $g^{\#}(0)$, we get

$$
g^{\#}(0)=\frac{\frac{|A||\alpha|^{k-1}}{(k-1)!}}{1+\left(\frac{\left.|A||\alpha|\right|^{k}}{k!}\right)^{2}}=\frac{k}{|\alpha|} \cdot \frac{\frac{|A||\alpha|^{k}}{k!}}{1+\left(\frac{|A||\alpha|^{k}}{k!}\right)^{2}}
$$

From the middle expression, we see that $g^{\#}(0) \leq|A|$ if $|\alpha| \leq 1$, and from the expression on the right we see that $g^{\#}(0)<k / 2$ if $|\alpha|>1$. But these contradict the fact that $g^{\#}(0)=k M+1$ and $|A| \leq M$.

Hence, there exist a point ζ_{0} and $M_{1}>0$ such that

$$
M_{1}^{-1} \leq\left|g^{(j)}\left(\zeta_{0}\right)\right| \leq M_{1}, \quad \text { for } j=k, k+1
$$

It follows that $\left(2 M_{1}\right)^{-1} \leq\left|g_{n}^{(j)}\left(\zeta_{0}\right)\right| \leq 2 M_{1}(j=k, k+1)$ for sufficiently large n. From (2), $g_{n}^{(k)}\left(\zeta_{0}\right)=f_{n}^{(k)}\left(z_{n}+\rho_{n} \zeta_{0}\right)$, and then $\left|f_{n}^{(k)}\left(z_{n}+\rho_{n} \zeta_{0}\right)\right| \leq 2 M_{1}$ for sufficiently large n. So we have

$$
\begin{align*}
\left(2 M_{1}\right)^{-1} \leq\left|g_{n}^{(k+1)}\left(\zeta_{0}\right)\right| & =\rho_{n}\left|f_{n}^{(k+1)}\left(z_{n}+\rho_{n} \zeta_{0}\right)\right| \\
& \leq \rho_{n}\left(1+4 M_{1}^{2}\right) \frac{\left|f_{n}^{(k+1)}\left(z_{n}+\rho_{n} \zeta_{0}\right)\right|}{1+\left|f_{n}^{(k)}\left(z_{n}+\rho_{n} \zeta_{0}\right)\right|^{2}} \tag{4}
\end{align*}
$$

for sufficiently large n.
On the other hand, by Marty's criterion, the normality of the family \mathcal{F}_{k} implies that for each compact subset $K \subset D$, there exists a positive number M_{2} such that

$$
\frac{\left|f^{(k+1)}(z)\right|}{1+\left|f^{(k)}(z)\right|^{2}} \leq M_{2}
$$

for each $f \in \mathcal{F}$ and $z \in K$. Then, for sufficiently large n, we have

$$
\begin{equation*}
\frac{\left|f_{n}^{(k+1)}\left(z_{n}+\rho_{n} \zeta_{0}\right)\right|}{1+\left|f_{n}^{(k)}\left(z_{n}+\rho_{n} \zeta_{0}\right)\right|^{2}} \leq M_{2} \tag{5}
\end{equation*}
$$

Substituting (5) in (4), we obtain

$$
\left(2 M_{1}\right)^{-1} \leq\left|g_{n}^{(k+1)}\left(\zeta_{0}\right)\right| \leq \rho_{n}\left(1+4 M_{1}^{2}\right) M_{2} \rightarrow 0
$$

as $n \rightarrow \infty$, a contradiction. Theorem 1 is thus proved.

3. Some applications of Theorem 1

In this section, we shall give some applications of Theorem 1.
Recently, Chang [1] proved the following result, which improve and generalize the related results due to Pang and Zalcman [8], Fang and Zalcman [5].

Theorem B ([1, Theorem 1]). Let \mathcal{F} be a family of meromorphic functions defined in a domain D, let a, b be two nonzero complex numbers such that $a / b \notin \mathbb{N} \backslash\{1\}$. If, for each $f \in \mathcal{F}, f=a \Rightarrow f^{\prime}(z)=a$, and $f^{\prime}(z)=b \Rightarrow f^{\prime \prime}(z)=b$ in D, then \mathcal{F} is normal.

There is an example [1, Example 1], which shows that the condition ' $a / b \notin$ $\mathbb{N} \backslash\{1\}^{\prime}$ in Theorem B is necessary. Chang proved another result without the condition ' $a / b \notin \mathbb{N} \backslash\{1\}$ ', as follows.

Theorem C ([1, Theorem 2]). Let \mathcal{F} be a family of meromorphic functions defined in a domain D, let a, b be two nonzero complex numbers. If, for each $f \in \mathcal{F}, f=a \Rightarrow f^{\prime}(z)=a, f^{\prime}(z) \neq b$ and $f^{\prime \prime}(z) \neq b$ in D, then \mathcal{F} is normal.

Remark 2. Chang also gave another example [1, Example 2] to show that the condition ' $f^{\prime \prime}(z) \neq b$ ' in Theorem C can not be omitted. However, it is easy to see that ' $f^{\prime \prime}(z) \neq b$ ' in Theorem C is not necessary for the case $a=b(\neq 0)$. Indeed, $f=a \Rightarrow f^{\prime}(z)=a$ and $f^{\prime}(z) \neq b$ yield that $f \neq a$ and $f^{\prime} \neq a$ since $a=b$, then GU's normal criterion [3] implies that \mathcal{F} is normal. We also find that ' a is nonzero' in Theorem C can be removed. In fact, if $a=0$ and $b \neq 0$, noting that $f^{\prime} \neq b$ and $f^{\prime \prime} \neq b$, Gu's normal criterion asserts that $\mathcal{F}_{1}=\left\{f^{\prime}: f \in \mathcal{F}\right\}$ is normal in D. Since $f=0 \Rightarrow f^{\prime}=0$, we conclude from Theorem 1 that \mathcal{F} is also normal in D.

Here, by using Theorem 1 and some known results, we can prove the following results, which improve and generalize Theorem C much more.

Theorem 2. Let a, b, c be three complex numbers with $c \neq 0, k, l$ be two positive integers, and let \mathcal{F} be a family of meromorphic functions defined in a domain D. Suppose that, for each $f \in \mathcal{F}$ and $z \in D$,
(1) all zeros of $f-a$ have multiplicity at least k, and there exists $M>0$ such that $f=a \Rightarrow\left|f^{(k)}\right| \leq M$;
(2) all zeros of $f^{(k)}-b$ have multiplicity at least $l+1$, and $f^{(k+l)} \neq c$.

Then \mathcal{F} is normal in D.
Let $k=l=1$ and $b=c$ in Theorem 2, we have
Corollary 1. Let a, b be two complex numbers with $b \neq 0$, and let \mathcal{F} be a family of meromorphic functions defined in a domain D. Suppose that, for each $f \in \mathcal{F}$ and $z \in D$,
(1) there exists $M>0$ such that $f=a \Rightarrow\left|f^{\prime}\right| \leq M$;
(2) all zeros of $f^{\prime}-b$ have multiplicity at least 2 , and $f^{\prime \prime} \neq b$.

Then \mathcal{F} is normal in D.
Obviously, the above results improve and generalize Theorem C.
Next we give some more general extensions of Theorem C by extending constants ' a, b, c ' in Theorem 2 to functions ' $a(z), b(z), c(z)$ '.

Theorem 3. Let k, l be two positive integers, D be a domain in \mathbb{C}, let $a(z)$, $b(z)$ be two holomorphic functions in D, and $c(z)$ be a meromorphic function in D such that $c(z) \not \equiv \infty$ and $c(z) \not \equiv b^{\prime}(z)$, and let \mathcal{F} be a family of meromorphic functions defined in D. Suppose that, for each $f \in \mathcal{F}$ and $z \in D$,
(i) all zeros of $f(z)-a(z)$ have multiplicity at least k, and there exists $M>0$ such that $f(z)=a(z) \Rightarrow\left|f^{(k)}\right| \leq M$;
(ii) all zeros of $f^{(k)}(z)-b(z)$ have multiplicity at least 3 , and $f^{(k+1)}(z) \neq c(z)$.

Then \mathcal{F} is normal in D.
Theorem 4. Let $k, l(\geq 2)$ be two positive integers, D be a domain in \mathbb{C}, let $a(z), b(z)$ be two holomorphic functions in D, and $c(z)$ be a meromorphic function in D such that $c(z) \not \equiv \infty$ and $c(z) \not \equiv b^{(l)}(z)$, and let \mathcal{F} be a family of meromorphic functions defined in D. Suppose that, for each $f \in \mathcal{F}$ and $z \in D$,
(i) all zeros of $f(z)-a(z)$ have multiplicity at least k, and there exists $M>0$ such that $f(z)=a(z) \Rightarrow\left|f^{(k)}\right| \leq M$;
(ii) all zeros of $f^{(k)}(z)-b(z)$ have multiplicity at least $l+1$, and $f^{(k+l)}(z) \neq c(z)$. Then \mathcal{F} is normal in D.

Remark 3. If $k=1$, the condition 'all zeros of $f-a$ or $(f-a(z))$ have multiplicity at least k^{\prime} in Theorem 2-4 holds naturally, and then can be removed.

Remark 4. The condition $c \neq 0$ in Theorem $2(b \neq 0$ in Corollary 1$), c(z) \not \equiv$ $b^{\prime}(z)$ in Theorem 3 , and $c(z) \not \equiv b^{(l)}(z)$ in Theorem 4 can not be omitted, as is shown by the following examples.

Example 3. Let $\Delta=\{z:|z|<1\}, a \neq 0$ and $b=c=0$, and let $\mathcal{F}=\left\{f_{n}(z)=\right.$ $\left.e^{n z}+a: n=1,2, \ldots ; z \in \Delta\right\}$. Obviously, $f_{n}(z) \neq a$, thus $f(z)=a \Rightarrow f^{\prime}(z)=a$; $f_{n}^{\prime}(z)=n e^{n z} \neq 0$, and $f_{n}^{\prime \prime}(z)=n^{2} e^{n z} \neq 0$. Then all conditions excepting $c \neq 0$ (or $c \neq 0$) of Theorem 2 (Corollary 1) are satisfied. But \mathcal{F} is not normal in Δ.

Example 4. Let $\Delta=\{z:|z|<1\}, a(z)=b(z)=c(z)=e^{z}$, and let $\mathcal{F}=\left\{f_{n}(z)=e^{n z}+e^{z}: n=1,2, \ldots ; z \in \Delta\right\}$. It is easy to see that all conditions excepting $c(z) \not \equiv b^{\prime}(z)\left(c(z) \not \equiv b^{(l)}(z)\right)$ of Theorem 3-4 are satisfied. But \mathcal{F} is not normal in Δ.

Remark 5. Example 4 also shows that 'nonzero constants a, b ' in Theorem B can not be replaced two nonconstant functions (even for non-vanishing holomorphic functions).

To prove the above theorems, we need some known results.
Lemma 2 ([10, Theorem 5]). Let k be a positive integer, and let \mathcal{F} be a family of meromorphic functions defined in a domain D, all of whose poles are multiple and whose zeros all have multiplicity at least $k+1$. If, for each $f \in \mathcal{F}$, $f^{(k)}(z) \neq 1$ in D, then \mathcal{F} is normal in D.

Lemma 3 ([7, Theorem 1.3], cf. [11, Theorem 2]). Let \mathcal{F} be a family of meromorphic functions defined in a domain D, all of whose poles are multiple and whose zeros all have multiplicity at least 3 , and let $\psi(z)(\not \equiv 0, \infty)$ be a function meromorphic in D. If, for each $f \in \mathcal{F}$ and for each $z \in D, f^{\prime}(z) \neq \psi(z)$, then \mathcal{F} is normal in D.

Lemma 4 ([14, Theorem 2]). Let $k \geq 2$ be an integer, \mathcal{F} be a family of meromorphic functions defined in a domain D, all of whose poles are multiple and whose zeros all have multiplicity at least $k+1$, and let $\psi(z)(\not \equiv 0, \infty)$ be a function meromorphic in D. If, for each $f \in \mathcal{F}$ and for each $z \in D, f^{(k)}(z) \neq \psi(z)$, then \mathcal{F} is normal in D.

Proof of Theorem 2. Let $\mathcal{G}=\left\{g=f^{(k)}-b: f \in \mathcal{F}\right\}$. Obviously, the poles of g have multiplicity at least $k+1 \geq 2$. By the assumptions of theorem, for each $g \in \mathcal{G}$, all zeros of g have multiplicity at least $l+1$, and $g^{(l)}=f^{(k+l)} \neq c$. Lemma 2 implies that \mathcal{G} is normal in D. Hence, the family $\mathcal{H}_{k}=\left\{(f-a)^{(k)}: f \in \mathcal{F}\right.$, $z \in D\}$ is also normal in D, where $\mathcal{H}=\{f-a: f \in \mathcal{F}\}$. Noting condition (1), by Theorem 1, we get that \mathcal{H} is normal, and then \mathcal{F} is normal in D. Theorem 2 is proved.

Proof of Theorem 3. Since normality is a locally property, we only need to prove \mathcal{F} is normal at each point in D.

Let $z_{0} \in D$, then there exists $\delta>0$ such that $\bar{D}_{\delta}\left(z_{0}\right) \subset D$, where $\bar{D}_{\delta}\left(z_{0}\right)=$ $\left\{z:\left|z-z_{0}\right| \leq \delta\right\}$. Let $\mathcal{G}=\left\{g(z)=f^{(k)}(z)-b(z): f \in \mathcal{F}\right\}$. Clearly, all poles of $g \in \mathcal{G}$ are multiple. By the hypotheses of the theorem, for each $g \in \mathcal{G}$, all zeros of g have multiplicity at least 3. Noting that $b(z)$ is holomorphic and $f^{(k+1)}(z) \neq c(z)$, we have $g^{\prime}=f^{(k+1)}(z)-b^{\prime}(z) \neq c(z)-b^{\prime}(z)(\not \equiv 0)$. Then, by Lemma $3, \mathcal{G}$ is normal in D, and then in $D_{\delta}\left(z_{0}\right)=\left\{z:\left|z-z_{0}\right|<\delta\right\}$. It follows that the family $\mathcal{H}_{k}=\left\{(f(z)-a(z))^{(k)}: f \in \mathcal{F}\right\}$ is normal in $D_{\delta}\left(z_{0}\right)$, where $\mathcal{H}=\{h=f(z)-a(z): f \in \mathcal{F}\}$. By the hypotheses of the theorem, for each $h \in \mathcal{H}$, all zeros of h have multiplicity at least k. Moreover, if $h(z)=0$, that is, $f(z)=a(z)$, then $\left|f^{(k)}(z)\right| \leq M$, and thus

$$
\left|h^{(k)}(z)\right| \leq M+\left|a^{(k)}(z)\right|
$$

Noting that $a(z)$ is holomorphic in D, there exists $M_{1}>0$ such that $\left|a^{(k)}(z)\right| \leq$ M_{1} in $\bar{D}_{\delta}\left(z_{0}\right)$, and then in $D_{\delta}\left(z_{0}\right)$. We get that $h(z)=0 \Rightarrow\left|h^{(k)}(z)\right| \leq M_{2}$ for $z \in D_{\delta}\left(z_{0}\right)$, where $M_{2}=M+M_{1}$. By Theorem $1, \mathcal{H}$ is normal in $D_{\delta}\left(z_{0}\right)$. It follows that \mathcal{F} is normal in $D_{\delta}\left(z_{0}\right)$, and this means that \mathcal{F} is normal at z_{0}. Theorem 3 is thus proved.

Proof of Theorem 4. Using the same argument as in Theorem 3 and Lemma 4, we can prove Theorem 4. We here omit the details.

Next we give another application of Theorem 1. In [4], Fang and Chang gave an extension to Gu's normal criterion in some sense, by allowing $f^{(k)}-1$ have zeros but restricting the zeros of $f^{(k)}$, as follows.

Theorem $\mathbf{D}([4$, Theorem 1]). Let \mathcal{F} be a family of meromorphic functions defined in a domain D, and let k be a positive integer. If, for each $f \in \mathcal{F}, f \neq 0$, $f^{(k)} \neq 0$ and the zeros of $f^{(k)}-1$ have multiplicity at least $(k+2) / k$, then \mathcal{F} is normal.

Here, we can prove the following extension of Theorem D.
Theorem 5. Let k, l_{1}, l_{2} be three positive integers (l_{1}, l_{2} can be ∞) with $1 / l_{1}+1 / l_{2}<k /(k+1)$, and let \mathcal{F} be a family of meromorphic functions defined in a domain D. Suppose that, for each $f \in \mathcal{F}$ and $z \in D$,
(1) all zeros of f have multiplicity at least k and there exists $M>0$ such that $\left|f^{(k)}(z)\right| \leq M$ whenever $f(z)=0$;
(2) all zeros of $f^{(k)}$ have multiplicity at least l_{1}; and
(3) all zeros of $f^{(k)}-1$ have multiplicity at least l_{2}.

Then \mathcal{F} is normal in D.
Remark 6. We should indicate that Theorem 5 can be followed from [4, Theorem 2] if condition (1) is replaced by a stronger condition "all zeros of f have multiplicity at least $k+1$ ". However, the method in [4] does not work here, and our proof is very simple.

To prove Theorem 5, we need the following classical result due to BLOCH and Valiron, which can be found in [6], [9], [12].

Lemma 5. Let $a_{1}, a_{2}, \ldots, a_{q}$ be q distinct complex numbers, and $l_{1}, l_{2}, \ldots, l_{q}$ be positive integers (may equal to ∞) with $\sum_{i=1}^{q}\left(1-1 / l_{i}\right)>2$. Let \mathcal{F} be a family of meromorphic functions defined in a domain D. If, for each $f \in \mathcal{F}$, the zeros of $f-a_{i}$ have multiplicity at least $l_{i}(i=1,2, \ldots, q)$ in D, then \mathcal{F} is normal in D.

Proof of Theorem 5. Obviously, the poles of $f^{(k)}$ have multiplicity at least $k+1$. Since

$$
\frac{1}{l_{1}}+\frac{1}{l_{2}}<\frac{k}{k+1}
$$

we have

$$
\left(1-\frac{1}{l_{1}}\right)+\left(1-\frac{1}{l_{2}}\right)+\left(1-\frac{1}{k+1}\right)>2 .
$$

Let $q=3, a_{1}=0, a_{2}=1$ and $a_{3}=\infty$, applying Lemma 6 for $\mathcal{F}_{k}=\left\{f^{(k)}: f \in \mathcal{F}\right\}$, we know that \mathcal{F}_{k} is normal in D. Noting condition (1), Theorem 1 implies that \mathcal{F} is also normal in D. Theorem 5 is proved.

Acknowledgement. The author thanks Professor H. H. Chen for helpful discussions. The author also thanks the referee for his/her valuable comments and suggestions made to this paper.

References

[1] J. M. Chang, Normality concerning shared values, Sci. China Ser. A 52 (2009), 1717-1722.
[2] H. H. Chen and P. Lappan, Spherical derivative, high derivatives and normal families, Adv. in Math. (China) 25 (1996), 517-524.
[3] Y. X. Gu, A normal criterion of meromorphic families, Acta Math. Sinica 23, no. 1 (1980), 267-274.
[4] M. L. Fang and J. M. Chang, Normal families and multiple values, Arch. Math. 88 (2007), 560-568.
[5] M. L. Fang and L. Zalcman, Normal families and shared values of meromorphic functions III, Comput. Methods Func. Theory 2 (2002), 383-395.
[6] W. K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.
[7] X. C. Pang, D. G. Yang and L. Zalcman, Normal families and omitted functions, Indiana Univ. Math. J. 54 (2005), 223-235.
[8] X. C. Pang and L. Zalcman, Normal families and shared values, Bull. London Math. Soc. 32 (2000), 325-331.
[9] J. Schiff, Normal Families, Springer-Verlag, New York, 1993.
[10] Y. F. WANG and M. L. FANG, Picard values and normal families of meromorphic functions with multiple zeros, Acta Math. Sinica (N.S.) 14 (1998), 17-26.
[11] Y. XU, Normal families and exceptional functions, J. Math. Anal. Appl. 329 (2007), 1343-1354.
[12] L. Yang, Value Distribution Theory, Springer-Verlag \& Science Press, Berlin, 1993.
[13] L. Zalcman, Normal families: new perspectives, Bull. Amer. Math. Soc. 35 (1998), 215-230.
[14] G. M. Zhang, X. C. Pang and L. Zalcman, Normal families and omitted functions II, Bull. London Math. Soc. 41 (2009), 63-71.

YAN XU
INSTITUTE OF MATHEMATICS
DEPARTMENT OF MATHEMATICS
NANJING NORMAL UNIVERSITY
NANJING 210046
P.R. CHINA

E-mail: xuyan@njnu.edu.cn
(Received February 26, 2010; revised February 24, 2011)

