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The Zermelo conditions and higher order
homogeneous functions

By ZBYNĚK URBAN (Pardubice) and DEMETER KRUPKA (Beijing)

Abstract. Invariance under reparametrizations of integral curves of higher order

differential equations, including variational equations related to Finsler geometry, is

studied. The classical homogeneity concepts are introduced within the theory of (jet)

differential groups, known in the theory of differential invariants. On this basis the

well-known generalizations of the Euler theorem are obtained (the Zermelo conditions).

It is shown that every integral curve of a system of differential equations whose left-

hand sides are higher order positive homogeneous functions, is invariant with respect

to all reparametrizations, i.e. a set solution. Then the positive homogeneity concept is

applied to second order variational equations. We show that the systems with positive

homogeneous Lagrangians are defined by positive homogeneous functions, and vice versa.

1. Introduction

In this work we consider the problem of possible higher order generalizations

of the Finsler geometry, based on higher order homogeneous Finsler fundamen-

tal functions (Lagrangians). An alternative setting and understanding of this
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problem includes the definitions and analysis of the properties of functions, in-

variant with respect to diffeomorphisms of their domains of definition, and their

independence of parametrization.

It should be pointed out, that the geodesic equations in the Riemann and

Finsler geometry are variational and they are derived from the first order La-

grangians, depending on curves and their tangent vectors; the Lagrangians satisfy

the classical positive homogeneity condition for functions.

For basic Finsler geometry, related to the topics of this paper, we refer to

McKiernan [14], Crampin and Saunders [2], and Kawaguchi [7].

In this paper we analyse the relation of the homogeneity concept and the

invariance of functions with respect to the parameter changes. We use to this

purpose an elementary version of the Ehresmann’s theory of jets, differential

groups and jet prolongations of curves and tangent spaces. For sources, well

adapted to this jet approach, we refer to Ehresmann [3], [4], Grigore and

Krupka [6], D. Krupka and M. Krupka [9], and Krupka and Urban [10].

Our main result consists in introducing, on the basis of the theory of jets,

the positive homogeneity concept for functions, depending on curves and their

derivatives of an arbitrary finite order. It turns out, in particular, that the stan-

dard positive homogeneity condition for a function f = f(xK , ẋK), depending on

curves t→ xK(t) and their derivatives t→ ẋK(t), expressed by the Euler formula

∂f

∂ẋK
ẋK = f, (1)

should be replaced by not only one condition, a higher order analogue of (1), but

also additional conditions appear.

If for example, f = f(xK , ẋK , ẍK), where ẋK and ẍK are the first and the

second derivative variables, then the generalized positive homogeneous conditions

read
∂f

∂ẋK
ẋK + 2

∂f

∂ẍK
ẍK = f,

∂f

∂ẍK
ẋK = 0 (2)

(summation through double indices).

The higher order analogues of conditions (1), (2), originally described by

Zermelo [19] as the necessary conditions for the variational integral to be in-

variant under reparametrizations, are known as the Zermelo conditions, see e.g.

McKiernan [14], Kawaguchi [7], Kondo [8], Matsyuk [13], Miron [15],

P. Popescu and M. Popescu [17]. The problem of parameter invariance was

considered in more general situation by McKiernan [14] who completed suffi-

ciency of the Zermelo conditions in field theory; our results agree with his for-

mulas. However, our definition of higher order positive homogeneity differs from
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that one due to Miron [15], and Miron, Anastasiei and Bucataru [16] (the

parameter-invariance formulas are different). Parameter-invariance problem was

also discussed by Matsyuk [13] in terms of generating vector fields. An introduc-

tion to the parameter invariant variational problems can be found in e.g. Logan

[12].

In this paper we prove, by the methods of jet groups, a complete theorem,

characterizing the Zermelo conditions as higher order homogeneous functions. We

call the corresponding result the Euler–Zermelo theorem.

The higher order positive homogeneity concept is then applied to systems

of higher order differential equations; the systems need not be variational. We

show that all solutions of a system of differential equations, given by positively

homogeneous functions, are parameter-independent.

Finally, we consider second order variational equations, defined on velocity

manifolds. It is shown that systems with a positive homogeneous Lagrangian are

defined by positive homogeneous functions, and conversely, systems defined by

positive homogeneous functions admit a positive homogeneous Lagrangian.

The ideas and the proofs we propose can be extended to functions of more

independent variables, and to differential equations on manifolds. In particular,

one can state in this way the jet foundations of the geometry of general Kawaguchi

spaces.

2. Regular velocities

In this section we associate to curves in a smooth manifold a space on which

reparametrizations of curves act as a (finite-dimensional) Lie group (the differ-

ential group). Invariants of this Lie group action correspond with parameter-

invariant functions or parameter-equivariant mappings. Basic theoretical con-

structions we use are special cases of general higher order theory of contact ele-

ments of mappings of the Euclidean spaces Rn into m-dimensional manifolds (see

e.g. [3], [4], [6], [9], [10]).

Throughout this section, we consider curves in the Euclidean space of dimen-

sion m+ 1, Rm+1, where m ≥ 1. The canonical coordinates on Rm+1 are denoted

by yK , where K = 1, 2, . . . ,m+ 1.

By a velocity of order r at a point y ∈ Rm+1 we mean an r-jet P = Jr0 ζ with

source 0 ∈ R and target ζ(0) = y. Given a representative ζ of the equivalence

class P , we can identify P in the well-known sense with the ordered collection

of numbers (yK(P ), yK1 (P ), . . . , yKr (P )), defined by the derivatives of the curve
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t→ yKζ(t) at the origin 0 ∈ R,

yKl (P ) = Dl(yKζ)(0). (3)

The set of velocities at y ∈ Rm+1 is denoted Jr(0,y)(R,R
m+1). Velocities of order r

are also called tangent vectors of order r. We denote

T rRm+1 =
⋃

y∈Rm+1

Jr(0,y)(R,R
m+1),

and define surjective mappings τ r,s : T rRm+1 → T sRm+1, where 0 ≤ s ≤ r, by

τ r,s(Jr0 ζ) = Js0ζ.

We consider the set of velocities of order r T rRm+1 with standard geometric

structures. The functions (yK , yK1 , y
K
2 , . . . , y

K
r ), defined by formula (3), are the

canonical coordinates on T rRm+1. Sometimes we also use in computations an

equivalent formula yKl (P ) = Dl(trKψζ(0) ψζ)(0), where ψ = (yK) and trKξ is the

K-component of the translation

Rm+1 3 x→ trξ(x) = x− ξ ∈ Rm+1

of Rm+1. The canonical trivialization of T rRm+1 is the mapping

T rRm+1 ∈ Jr0 ζ → (ζ(0), Jr0 trψζ(0) ψζ) ∈ Rm+1 × Jr(0,0)(R,R
m+1). (4)

In particular, the mapping (4) shows that T rRm+1 is a trivial vector bundle with

base Rm+1, projection τ r,0 : T rRm+1 → Rm+1, and type fibre Jr(0,0)(R,R
m+1).

We call T rRm+1 the bundle of velocities of order r over Rm+1.

We now recall the definition of the r-th differential group of the real line R.

Let r be a positive integer, and consider the manifold of r-jets with source and

target 0 ∈ R, Jr(0,0)(R,R). We set for every r-jet A ∈ Jr(0,0)(R,R), A = Jr0α,

al(A) = Dlα(0). (5)

Formula (5) defines real functions al : Jr(0,0)(R,R) → R, where l = 1, 2, . . . , r.

These functions constitute a coordinate system, and are called the canonical co-

ordinates on Jr(0,0)(R,R).

The set Jr(0,0)(R,R) contains the subset of invertible r-jets, the r-jets of im-

mersions

Lr = Imm Jr(0,0)(R,R) = {Jr0α ∈ Jr(0,0)(R,R) | a1(Jr0α) 6= 0}.

Lr is dense and open subset in Jr(0,0)(R,R). Restricting the functions

al : Jr(0,0)(R,R)→ R we get the canonical coordinates on Lr.
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The composition of jets defines a mapping

Lr × Lr 3 (A,B)→ A ◦B ∈ Lr, (6)

which is easily seen to be a group multiplication. Explicitly, if A = Jr0α and

B = Jr0β, then A ◦B = Jr0 (α ◦ β). The set Lr with this group multiplication has

a Lie group structure, and is called the r-th differential group of R.

Let a positive integer l be given, and let the symbol∑
(I1,I2,...,Ip)

denote the summation through all partitions (I1, I2, . . . , Ip) of the set {1, 1, . . . , 1}
(l elements). By |Ik| we mean the number of elements of Ik.

Using the canonical coordinates we can easily describe the multiplication (6)

explicitly. Denote C = A ◦B = Jr0 (α ◦ β), and write in the canonical coordinates

ak = ak(A), bk = bk(B), and ck = ck(C).

Lemma 1. The group multiplication (A,B)→ A ◦B has the equations

cl =

l∑
p=1

ap
∑

(I1,I2,...,Ip)

b|I1|b|I2| . . . b|Ip|. (7)

Proof. To obtain formula (7), we use definition (6) of the r-jet Jr0 (α ◦ β),

and apply the chain rule and the formula for differentiating of a product. �

The differential group Lr acts on T rRm+1 to the right by composition of jets

(Jr0 ζ, J
r
0α)→ Jr0 ζ ◦ Jr0α = Jr0 (ζ ◦ α);

sometimes we express this action as

T rRm+1 × Lr 3 (P,A)→ P ◦A = Jr0 (ζ ◦ α) ∈ T rRm+1, (8)

where P = Jr0 ζ and A = Jr0α. In order to describe this action in canonical

coordinates, we denote

ȳKl (Jr0 ζ) = yKl (Jr0 ζ ◦ Jr0α).

Lemma 2. The group action (Jr0 ζ, J
r
0α) → Jr0 ζ ◦ Jr0α is expressed by the

equations

ȳK = yK , ȳKl =

l∑
p=1

yKp
∑

(I1,I2,...,Ip)

a|I1|a|I2| . . . a|Ip|. (9)
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Proof. Formula (9) follows from the definition (8), the chain rule and from

the formula for differentiating of a product. �

We introduce the concept of the prolongation of a curve in Rm+1 to a curve

in the manifold of velocities T rRm+1.

Let γ be a differentiable curve in Rm+1, defined on an open interval I ⊂ R.

Any point t ∈ I gives rise to a curve s→ γ ◦ tr−t(s), defined on a neighbourhood

of the origin 0, and to the r-jet Jr0 (γ ◦ tr−t); we get the curve

I ∈ t→ T rγ(t) = Jr0 (γ ◦ tr−t) ∈ T rRm+1, (10)

called the r-jet prolongation of the curve γ.

Note that for every isomorphism µ : J → I of open intervals, and every point

s ∈ J , the r-jet Jr0 (trµ(s) ◦µ ◦ tr−s) belongs to the differential group Lr; denote

µs = trµ(s) ◦µ ◦ tr−s, µr(s) = Jr0µs. (11)

The following theorem characterizes basic properties of the r-jet prolongation

of a curve; in particular, we get a formula for reparametrizations of the domain

of definition of the prolonged curve.

Theorem 1. The r-jet prolongation T rγ of a curve γ : I → Rm+1 has the

following properties:

(a) The expression of T rγ in canonical coordinates satisfies the recurrence for-

mula

yKl ◦ T rγ(t) = D(yKl−1 ◦ T rγ)(t). (12)

(b) For any diffeomorphism µ : J → I the mapping T rγ satisfies

T r(γ ◦ µ)(s) = T rγ(µ(s)) ◦ µr(s). (13)

Proof. (a) Clearly, we have yKl ◦T rγ(t) = Dl(yKγ)(t) = D(Dl−1(yKγ))(t),

proving (12).

(b) Since by (10), T r(γ ◦ µ)(s) = Jr0 (γ ◦ tr−µ(s) ◦ trµ(s) ◦µ ◦ tr−s), we have

T r(γ ◦ µ)(s) = T rγ(µ(s)) ◦ Jr0 (trµ(s) ◦µ ◦ tr−s),

proving (13). �

Formula (13) shows that the curve s→ T r(γ ◦ µ)(s) in uniquely determined

by the curve s → T rγ(s) and a family of group elements µr(s) ∈ Lr, derived

from µ.
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We now restrict our attention to curves that are immersions, i.e., the curves

whose tangent vectors are never zero. A velocity P ∈ T rRm+1 is said to be

regular, if P = Jr0 ζ for an immersion ζ. Regular velocities form an open, dense,

and Lr-invariant set in T rRm+1, denoted by ImmT rRm+1.

Restricting the canonical coordinates (yK , yK1 , y
K
2 , . . . , y

K
r ), we get the canon-

ical coordinates on the set ImmT rRm+1. But from the definition of an immersion

it follows that for every point P ∈ ImmT rRm+1, at least one of the coordinates

y11(P ), y21(P ), . . . , ym+1
1 (P ) is different from 0. We set for every element L of the

sequence (1, 2, . . . ,m+ 1)

V r,L = {P ∈ T rRm+1 | yL1 (P ) 6= 0}.

V r,L is an open set in ImmT rRm+1 and in T rRm+1, endowed with the canonical

coordinates (yK , yK1 , y
K
2 , . . . , y

K
r ), satisfying yL1 6= 0.

Now consider the group action (P,A) → P ◦ A of Lr on ImmT rRm+1, and

the equivalence relation R on ImmT rRm+1 “there exists A such that Q = P ◦A”.

Lemma 3. Let (P,Q) be a point of the set ImmT rRm+1 × ImmT rRm+1.

The following two conditions are equivalent:

(a) (P,Q) ∈ R.

(b) There exists an index L, 1 ≤ L ≤ m + 1, and an element A ∈ Lr such that

(P,Q) ∈ V r,L, and the coordinates yKl = yKl (P ), ȳKl = ȳKl (Q), al = al(A)

satisfy

ȳK = yK , ȳσl =

l∑
p=1

yσp
∑

(I1,I2,...,Ip)

a|I1|a|I2| . . . a|Ip|, 1 ≤ σ ≤ m+ 1, σ 6= L,

and the recurrence formula

a1 =
ȳL1
yL1
, al =

1

yL1

(
ȳLl −

l∑
p=2

yLp
∑

(I1,I2,...,Ip)

a|I1|a|I2| . . . a|Ip|

)
.

Proof. This assertion is a direct consequence of the group action of Lr on

ImmT rRm+1, expressed in coordinates by Lemma 2. �

Now, using Lemma 3, we construct new coordinate functions on each of

the sets V r,L, L = 1, 2, . . . ,m + 1, adapted to the canonical action of Lr on

ImmT rRm+1.

Theorem 2. Let yK be the canonical coordinates on a chart on Rm+1. Fix

an index L, 1 ≤ L ≤ m+1, and let σ be an index, belonging to the complementary

sequence of the index L.
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(a) There exist unique functions wσ, wσ1 , w
σ
2 , . . . , w

σ
r , defined on V r,L such that

yσ = wσ, yσl =

l∑
p=1

∑
(I1,I2,...,Ip)

yL|I1|y
L
|I2| . . . y

L
|Ip|w

σ
p . (14)

These functions are Lr-invariant.

(b) The functions wL, wL1 , w
L
2 , . . . , w

L
r , w

σ, wσ1 , w
σ
2 , . . . , w

σ
r , where

wL = yL, wL1 = yL1 , wL2 = yL2 , . . . , wLr = yLr , (15)

are coordinate functions on V r,L.

(c) The canonical group action of the differential group Lr on ImmT rRm+1 is

expressed by the equations

w̄L = wL, w̄σ = wσ, w̄σl = wσl ,

w̄Ll =

l∑
p=1

wLp
∑

(I1,I2,...,Ip)

a|I1|a|I2| . . . a|Ip|.

Equations of the Lr-orbits are

wL = cL, wσ = cσ, wσl = cσl ,

where cL, cσ, cσl ∈ R.

Proof. The proof that the system of algebraic equations (14) can be solved

with respect to the functions wσ, wσ1 , w
σ
2 , . . . , w

σ
r , is based on combinatorial con-

structions. �

3. Higher order homogeneous functions

Let r be a positive integer, and let us consider the manifold of regular veloc-

ities ImmT rRm+1 endowed with the canonical coordinates yK , yK1 , y
K
2 , . . . , y

K
r .

Suppose we have a function F : ImmT rRm+1 → R. Let I be an open interval,

and let γ : I → Rm+1 be an immersion. Any compact subinterval S of I associates

with F the integral

FS(γ) =

∫
S

(F ◦ T rγ)(t)dt. (16)

In the following theorem we use the canonical right action of the differential

group Lr on ImmT rRm+1, characterized by Lemma 2. We denote by a1(A) the

first canonical coordinate of an element A = Jr0α of the differential group Lr.
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Theorem 3. Let γ : I → Rm+1 be an immersion, J an open interval, and

µ : J → I a diffeomorphism such that Dµ(s) > 0 on J . The following conditions

are equivalent:

(a) For any two compact intervals J0 ⊂ J and I0 ⊂ I such that µ(J0) = I0,

FI0(γ) = FJ0(γ ◦ µ). (17)

(b) The function F satisfies on I

(F ◦ T rγ)(t) = (F ◦ T r(γ ◦ µ))(µ−1(t))Dµ−1(t). (18)

(c) The function F satisfies

F (P ◦A) = a1(A) · F (P ) (19)

for all P ∈ ImmT rRm+1 and A ∈ Lr.

Proof. 1. We prove that (a) is equivalent with (b). The transformation

formula for an integral yields, because Dµ(s) > 0,

FI0(γ) =

∫
I0

(F ◦ T rγ)(t)dt =

∫
J0

(F ◦ T rγ)(µ(s))Dµ(s)ds, (20)

and since

FJ0(γ ◦ µ) =

∫
J0

F (T r(γ ◦ µ))(s)ds (21)

for every J0, condition (a) implies (F ◦T rγ)(µ(s))Dµ(s) = F (T r(γ ◦µ))(s) on J .

Setting µ(s) = t we get (b). The converse is obvious.

2. We prove equivalence of (b) and (c). Suppose that (b) holds. From (18)

and Theorem 1, (13),

F (T rγ(t)) = F (T r(γ ◦ µ)(µ−1(t)))Dµ−1(t)

= F (T rγ(µ(µ−1(t))) ◦ µr(µ−1(t)))Dµ−1(t)

= F (T rγ(t) ◦ µr(µ−1(t)))Dµ−1(t). (22)

Note that by (10) T rγ(t) = Jr0 (γ ◦ tr−t) and by (11) µr(µ−1(t)) = Jr0µµ−1(t),

hence

µµ−1(t) = trµ(µ−1(t)) ◦µ ◦ tr−µ−1(t) = trt ◦µ ◦ tr−µ−1(t)

and

µr(µ−1(t)) = Jr0 (trt ◦µ ◦ tr−µ−1(t)). (23)
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From (23) we have

a1(µr(µ−1(t))) = D(trt ◦µ ◦ tr−µ−1(t))(0) = Dµ(µ−1(t)). (24)

Collecting these formulas together, we can rewrite (22) as

F (Jr0 (γ ◦ tr−t))

= F (Jr0 (γ ◦ tr−t) ◦ Jr0 (trt ◦µ ◦ tr−µ−1(t))) · a1(Jr0 (trt ◦µ ◦ tr−µ−1(t)))
−1. (25)

Setting

P = Jr0 (γ ◦ tr−t), A = Jr0 (trt ◦µ ◦ tr−µ−1(t)), (26)

we get F (P ) = F (P ◦ A) · a1(A)−1. But for any given P and A, equations (26)

can always be solved with respect to γ and µ. This proves that (b) implies (c).

The converse is obvious. �

Using equations of the action of the differential group Lr on the manifold of

velocities ImmT rRm+1 (Lemma 2), one can easily restate condition (19) in an

explicit form. Denoting

ȳK = yK ,

ȳK1 = a1y
K
1 ,

ȳK2 = a21y
K
2 + a2y

K
1 ,

ȳK3 = a31y
K
3 + 3a1a2y

K
2 + a3y

K
1 ,

. . .

ȳKr−1 =

r−1∑
p=1

yKp
∑

(I1,I2,...,Ip)

a|I1|a|I2| . . . a|Ip|,

ȳKr =

r∑
p=1

yKp
∑

(I1,I2,...,Ip)

a|I1|a|I2| . . . a|Ip|, (27)

we see that condition (19) is equivalent to saying that

F (ȳK , ȳK1 , ȳ
K
2 , . . . , ȳ

K
r ) = a1F (yK , yK1 , y

K
2 , . . . , y

K
r ) (28)

for all points (yK , yK1 , y
K
2 , . . . , y

K
r ) ∈ ImmT rRm+1 and all real numbers a1, a2,

. . . , ar such that a1 > 0.

Condition (19), or (28), is called positive homogeneity condition. A func-

tion F , satisfying this condition, is said to be positive homogeneous in the variables

yK1 , y
K
2 , . . . , y

K
r , or just positive homogeneous (of degree 1).
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4. The Zermelo conditions

In this section we show that a necessary and sufficient condition for the

function F defined on ImmT rRm+1 to be positive homogeneous in its derivative

variables, is that this function satisfies the Zermelo conditions.

Theorem 4 (Euler–Zermelo theorem). Let F = F (yK , yK1 , y
K
2 , . . . , y

K
r ) be

a function. The following two conditions are equivalent:

(a) F is positive homogeneous in the variables yK1 , y
K
2 , . . . , y

K
r .

(b) F satisfies the Zermelo conditions

∂F

∂yK1
yK1 + 2

∂F

∂yK2
yK2 + 3

∂F

∂yK3
yK3 + · · ·+ r

∂F

∂yKr
yKr = F, (29)

and

∂F

∂yKr−k+1

yK1 +

(
r − k + 2

1

)
∂F

∂yKr−k+2

yK2 +

(
r − k + 3

2

)
∂F

∂yKr−k+3

yK3

+ · · ·+
(

r

k − 1

)
∂F

∂yKr
yKk = 0, k = 1, 2, . . . , r − 1. (30)

Proof. 1. Suppose that F satisfies condition (a). Then differentiating the

identity (28) with respect to the variables a1, a2, a3, . . . , ar at the identity element

(1, 0, 0, . . . , 0) of the group Lr, we get (b).

2. To prove the converse, suppose that we have a function F , satisfying

conditions (29) and (30). We define a new function G with the help of the

transformation formulas (14) and (15) of Theorem 2 by

G(wL, wL1 , w
L
2 , . . . , w

L
r , w

σ, wσ1 , w
σ
2 , . . . , w

σ
r ) = F (yK , yK1 , y

K
2 , . . . , y

K
r ). (31)

Applying the group action of the differential group Lr on both sides, we get the

identity

G(w̄L, w̄L1 , w̄
L
2 , . . . , w̄

L
r , w̄

σ, w̄σ1 , w̄
σ
2 , . . . , w̄

σ
r ) = F (ȳK , ȳK1 , ȳ

K
2 , . . . , ȳ

K
r ), (32)

where by Lemma 2

ȳK = yK , ȳKl =

l∑
p=1

yKp
∑

(I1,I2,...,Ip)

a|I1|a|I2| . . . a|Ip|, (33)
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and by Theorem 2, (c),

w̄L = wL, w̄σ = wσ, w̄σl = wσl ,

w̄Ll =

l∑
p=1

wLp
∑

(I1,I2,...,Ip)

a|I1|a|I2| . . . a|Ip|. (34)

Differentiating (32) with respect to al, 1 ≤ l ≤ r, at the identity element

(1, 0, 0, . . . , 0) of Lr we get

∂G

∂wL1
wL1 + 2

∂G

∂wL2
wL2 + 3

∂G

∂wL3
wL3 + · · ·+ r

∂G

∂wLr
wLr

=
∂F

∂yK1
yK1 + 2

∂F

∂yK2
yK2 + 3

∂F

∂yK3
yK3 + · · ·+ r

∂F

∂yKr
yKr ,

and

∂G

∂wLr−k+1

wL1 +

(
r − k + 2

1

)
∂G

∂wLr−k+2

wL2 +

(
r − k + 3

2

)
∂G

∂wLr−k+3

wL3

+ · · ·+
(

r

k − 1

)
∂G

∂wLr
wLk

=
∂F

∂yKr−k+1

yK1 +

(
r − k + 2

1

)
∂F

∂yKr−k+2

yK2 +

(
r − k + 3

2

)
∂F

∂yKr−k+3

yK3

+ · · ·+
(

r

k − 1

)
∂F

∂yKr
yKk , k = 1, 2, . . . , r − 1

(no summation through L). Hence from (29) and (30)

∂G

∂wL1
wL1 + 2

∂G

∂wL2
wL2 + 3

∂G

∂wL3
wL3 + · · ·+ r

∂G

∂wLr
wLr = G, (35)

and

∂G

∂wLr−k+1

wL1 +

(
r − k + 2

1

)
∂G

∂wLr−k+2

wL2 +

(
r − k + 3

2

)
∂G

∂wLr−k+3

wL3

+ · · ·+
(

r

k − 1

)
∂G

∂wLr
wLk = 0, k = 1, 2, . . . , r − 1. (36)

But since wL1 6= 0, equations (36) and (35) now imply

∂G

∂wLk
= 0, k = 2, 3, . . . , r, (37)
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and
∂G

∂wL1
wL1 = G. (38)

We can use these equations to complete the proof. From (38) and the classical

inverse Euler theorem on homogeneous functions we find that the function G must

be positive homogeneous of degree 1 in the variable wL1 (see e.g. E. Lindelöf

[11]), that is,

G(wL, a1w
L
1 , w

L
2 , . . . , w

L
r , w

σ, wσ1 , w
σ
2 , . . . , w

σ
r )

= a1G(wL, wL1 , w
L
2 , . . . , w

L
r , w

σ, wσ1 , w
σ
2 , . . . , w

σ
r ) (39)

for all a1 > 0. However, from (37), G does not depend on wL2 , w
L
3 , . . . , w

L
r . Thus,

the left-hand side of (39) can be expressed as

G(wL, a1w
L
1 , w

L
2 , . . . , w

L
r , w

σ, wσ1 , w
σ
2 , . . . , w

σ
r )

= G(w̄L, w̄L1 , w̄
L
2 , . . . , w̄

L
r , w̄

σ, w̄σ1 , w̄
σ
2 , . . . , w̄

σ
r ) = F (ȳK , ȳK1 , ȳ

K
2 , . . . , ȳ

K
r ), (40)

with arguments of the function G defined by equations (34). But the right-hand

side of formula (39) is equal to a1F (yK , yK1 , y
K
2 , . . . , y

K
r ), thus, assertion (a) is

proved. �

The principal meaning of Theorem 4 consists in a characterization of higher

order Lagrangians F whose extremals are set-solutions, and also general differ-

ential equations whose solutions are set-solutions. From this point of view the

functions F can serve as fundamental functions for possible higher order gener-

alizations of Finsler geometry. Clearly, the Finsler Lagrangians could be further

specified by additional conditions.

One can also consider auxiliary Lagrangians of the form F 2, with similar use

for finding extremals as in the first order case.

5. Homogeneous differential equations

Let r be a positive integer. Consider the manifold of regular velocities

ImmT rRm+1 with the canonical coordinates yK , yK1 , y
K
2 , . . . , y

K
r , and a finite sys-

tem of differential equations of order r

Fj(y
K , yK1 , y

K
2 , . . . , y

K
r ) = 0 (41)
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for unknown regular curves γ(t) = (y1(t), y2(t), . . . , ym+1(t)) in Rm+1, i.e., for

immersions of open intervals in the real line R into Rm+1. We wish to find

conditions under which for every solution γ of the system (41), the curve γ ◦ τ ,

obtained from γ by a reparametrization τ of its domain of definition, is again

a solution of (41).

More formally, we say that a solution γ : I → Rm+1 of the system (41),

defined on an open interval I ⊂ R, is a set-solution, if for every diffeomorphism

of open intervals τ : J → I, the curve γ ◦ τ : J → Rm+1 is again a solution.

Theorem 5 (Set-solutions). Suppose that a system of differential equations

Fj(y
K , yK1 , y

K
2 , . . . , y

K
r ) = 0

is defined by positive homogeneous functions Fj : ImmT rRm+1 → R. Then every

solution of this system is a set-solution.

Proof. From Theorem 1, (b), the r-jet prolongation T rγ satisfies

T r(γ ◦ µ)(s) = T rγ(µ(s)) ◦ µr(s).

Then, however, from Theorem 3, (c), the positive homogeneity of Fj means that

on J ,

Fj(T
r(γ ◦ µ)(s)) = Fj(T

rγ(µ(s)) ◦ µr(s)) = a1(µr(s)) · Fj(T rγ(µ(s))),

or, which is the same, on I,

Fj(T
r(γ ◦ µ)(µ−1(t))) = a1(µr(µ−1(t))) · Fj(T rγ(t)).

Consequently, Fj(T
rγ(t)) = 0 if and only if Fj(T

r(γ ◦ µ)(s)) = 0. �

A system of differential equations is said to be positive homogeneous, if it is

expressible in the form (41) with positive homogeneous functions Fj .

Remark. An example of a system of second order differential equations and

its analysis from the geometric and variational point of view will be an objective

of our subsequent paper [18].

On the other hand, examples of second order positive homogeneous equations

in the standard sense (geodesic equations) appear in Riemann and Finsler geom-

etry (see e.g. Bao, Chern and Shen [1], Miron [15]). It seems that a direct

way how to replace these equations by those homogeneous in Zermelo sense has

not been completely understood yet, and it is still subject of further research.
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6. Variational equations

We conclude this paper with the discussion of a class of second order varia-

tional differential equations. To this purpose we first present, in a slightly sim-

plified version, basic definitions.

Consider the manifolds of velocities ImmT 1Rm+1 and ImmT 2Rm+1 with

canonical coordinates yK , ẏK and yK , ẏK , ÿK , and a function F : ImmT 1Rm+1 →
R. Let I be an open interval, and let γ : I → Rm+1 be an immersion. Any

compact subinterval S of I associates with F the integral

FS(γ) =

∫
S

(F ◦ T 1γ)(t)dt, (42)

defining, in a well-known sense, the variational functional γ → FS(γ). The

Euler–Lagrange expressions associated with F are real functions EK(F ), defined

on ImmTRm+1 by

EK(F ) =
∂F

∂yK
− ∂2F

∂yL∂ẏK
ẏL − ∂2F

∂ẏL∂ẏK
ÿL,

and the differential equations for extremals of the variational functional (42) are

EK(F ) = 0.

Now consider a system of functions εL, defined on ImmT 2Rm+1, where L =

1, 2, . . . ,m + 1. We say that this system is variational, if there exists a function

F : ImmT 1Rm+1 → R such that

εL = EL(F ),

i.e., the functions εL coincide with the Euler–Lagrange expressions of F . If F

exists, we call it the Lagrangian for the system {ε1, ε2, . . . , εm+1}. Clearly, for

variational systems {ε1, ε2, . . . , εm+1}, the corresponding second order differential

equations

εL(yK , ẏK , ÿK) = 0

coincide with equations for extremals of a certain variational functional (42).

In the following theorem, the concept of positive homogeneity is used in the

sense as introduced in this paper; for first order functions (Lagrangians) this

concept coincides with the classical one.
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Theorem 6. Suppose that the system of functions {ε1, ε2, . . . , εm+1} is vari-

ational. Then {ε1, ε2, . . . , εm+1} admits a positive homogeneous Lagrangian if and

only if the functions ε1, ε2, . . . , εm+1 are positive homogeneous.

Proof. 1. It is immediately seen by a direct computation that if F is

a positively homogeneous function, then the functions EK(F ) are positively ho-

mogeneous, i.e., satisfy

∂EK(F )

∂ẏM
ẏM + 2

∂EK(F )

∂ÿM
ÿM = EK(F ),

∂EK(F )

∂ÿM
ẏM = 0 (43)

(Theorem 4, r = 2). Indeed, if

F =
∂F

∂ẏM
ẏM , (44)

then we have

∂EK(F )

∂ẏM
ẏM + 2

∂EK(F )

∂ÿM
ÿM =

∂2F

∂ẏM∂yK
ẏM − ∂3F

∂ẏM∂yL∂ẏK
ẏLẏM

− ∂2F

∂yM∂ẏK
ẏM − ∂3F

∂ẏM∂ẏL∂ẏK
ÿLẏM − 2

∂2F

∂ẏM∂ẏK
ÿM ,

and

EK(F ) =
∂

∂yK

(
∂F

∂ẏM
ẏM
)
− ∂2

∂yL∂ẏK

(
∂F

∂ẏM
ẏM
)
ẏL − ∂2

∂ẏL∂ẏK

(
∂F

∂ẏM
ẏM
)
ÿL

=
∂2F

∂ẏM∂yK
ẏM − ∂3F

∂yL∂ẏK∂ẏM
ẏM ẏL − ∂2F

∂yL∂ẏK
ẏL

− ∂3F

∂ẏL∂ẏK∂ẏM
ẏM ÿL − ∂2F

∂ẏK∂ẏL
ÿL − ∂2F

∂ẏL∂ẏK
ÿL,

proving the first identity (43). The second identity also follows from (44):

∂EK(F )

∂ÿM
ẏM = − ∂2F

∂ẏM∂ẏK
ẏM = 0.

2. Conversely, assume that the functions εK are positive homogeneous.

Hence, by Theorem 4,

∂εK
∂ẏM

ẏM + 2
∂εK
∂ÿM

ÿM = εK ,
∂εK
∂ÿM

ẏM = 0. (45)

Denoting F the Lagrangian for the system {ε1, ε2, . . . , εm+1}, we have

0 =
∂εK
∂ÿM

ẏM = − ∂2F

∂ẏM∂ẏK
ẏM = − ∂

∂ẏK

(
∂F

∂ẏM
ẏM − F

)
. (46)
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Using (46), the first equation of (45) gives rise to two independent conditions

∂2

∂ẏL∂ẏK

(
∂F

∂ẏM
ẏM
)

=
∂2F

∂ẏL∂ẏK
, (47)

∂

∂yK

(
∂F

∂ẏM
ẏM − F

)
= 0, (48)

where (47) is a consequence of (46). From (46) and (48), it follows that the

function
∂F

∂ẏM
ẏM − F

is constant on ImmT 1Rm+1, for instance, equal c ∈ R. Then the function F + c

is the positive homogeneous Lagrangian for the system {ε1, ε2, . . . , εm+1}. This

completes the proof. �

Theorem 6, namely the identities (43), complete the classical understanding

of equations for extremals of parameter-invariant integral variational problems

(cf. I. M. Gelfand and S. V. Fomin [5]).
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