On the diophantine equation $x y+y z+z x=m$

By TIANXIN CAI (Hangzhou)

Let m, n be arbitrary fixed positive integers. K. Kovács [1] investigated the diophantine equation

$$
\begin{equation*}
\sum_{1 \leq i<j \leq n} x_{i} x_{j}=m \tag{1}
\end{equation*}
$$

for x_{i} positive integers. The case $n=1$ or $n=2$ is trivial. For $n>3$, Kovács proved that (1) has a solution if $m \geq 136 n^{2}$. In the case $n=3$, the problem is still open. Kovács examined that the equation

$$
\begin{equation*}
x y+y z+z x=m \tag{2}
\end{equation*}
$$

has a solution for all $m \leq 10^{7}$ except $m=1,2,4,18,22,30,42,58,70$, $78,102,130,190,210,330$ and 462.

In this note we prove the following theorem using the properties of quadratic residues and the Chinese remainder theorem.

Theorem. Let $E(X)$ be the number of $m \leq X$ for which (2) has no solutions. Then for any $\varepsilon>0$

$$
E(X)=O\left(X 2^{-(1-\varepsilon)(\log X) / \log \log X}\right)
$$

Proof. It is easy to see that the equation (2) has a solution if and only if there exist $x, y \geq 1, x y<m$ such that

$$
\begin{equation*}
m \equiv x y(\bmod x+y) \tag{3}
\end{equation*}
$$

Replacing $x+y=t$ the congruence (3) goes over into

$$
\begin{equation*}
x^{2} \equiv-m(\bmod t), 1 \leq x<t, x(t-x)<m \tag{4}
\end{equation*}
$$

For any $Y \leq \sqrt{x}$ and prime $p \leq Y$ let $S_{p}(X, Y)=\left\{Y^{2} \leq m \leq X \mid\right.$ (4) has a solution for $p\}$.

Each reduced residue system mod p contains exactly $(p-1) / 2$ quadratic residues which yields that

$$
\begin{equation*}
\left|S_{p}(X, Y)\right|=\frac{1}{2}(1-1 / p) X+O\left(Y^{2}\right)+O((p-1) / 2) \tag{5}
\end{equation*}
$$

Using the Chinese remainder theorem for the primes $p, q, r, \cdots \leq Y$ and a simple sieve we have

$$
\begin{aligned}
X-E(X) \geq & \sum_{p \leq Y}\left|S_{p}(X, Y)\right|-\sum_{p<q \leq Y}\left|S_{p}(X, Y) \cap S_{q}(X, Y)\right| \\
& +\sum_{p<q<r \leq Y}\left|S_{p}(X, Y) \cap S_{p}(X, Y) \cap S_{r}(X, Y)\right|-\ldots \\
= & X\left(1-\prod_{p \leq Y}\left(1-\frac{1}{2}(1-1 / p)\right)\right)+O\left(Y^{2} 2^{\pi(Y)}\right) \\
& +O\left(\prod_{p \leq Y}(1+(p-1) / 2)\right) \\
= & X+O\left(X(\log Y) / 2^{\pi(Y)}\right)+O\left(Y^{2} 2^{\pi(Y)}\right) \\
& +O\left(e^{\psi(Y)}(\log Y) / 2^{\pi(Y)}\right)
\end{aligned}
$$

Using the well-known results $\prod_{p \leq Y}(1+1 / p)=O(\log Y), \pi(Y)=\sum_{p \leq Y} 1=$ $Y / \log Y(1+o(1))$ and $\psi(Y)=\sum_{p \leq Y} \log p=Y(1+o(1))$ the choice $X=e^{\psi(Y)}$ implies

$$
E(X)=O\left(X 2^{-(1-\varepsilon)(\log X) / \log \log X}\right)
$$

References

[1] K. KovÁcs, About some positive solutions of the diophantine equation $\sum_{1 \leq i<j \leq n} a_{i} a_{j}=m$, Publ. Math. Debrecen 40 (1992), 207-210.

NOW AT:

CALIFORNIA STATE UNIVERSITY - FRESNO
DEPARTMENT OF MATHEMATICS
5245 N. BACKER AVENUE
FRESNO, CALIFORNIA 93740-0108
(Received April 21, 1993)

