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On homogeneous submanifolds of negatively curved
Riemannian manifolds

By REZA MIRZAIE (Qazvin)

Abstract. We give a description of the orbits of some isometric actions on Rie-

mannian manifolds of negative curvature.

1. Introduction

The authors of [4] gave a description of homogeneous submanifolds of the

Hyperbolic space Hn(c), c < 0. Among other results they proved: If G is a

connected subgroup of the isometries of Hn(c) and the fixed point set of the ac-

tion of G on M is empty, then either there is a geodesic orbit or all orbits are

included in horospheres centered at the same point at infinity (so there is a class

[γ] of asymptotic geodesics such that G[γ] = [γ]). A similar result is true if G

is a connected and solvable subgroup of the isometries of a simply connected

Riemannian manifold M of negative curvature. We use this result as a tool to

study topological properties of some cohomogeneity two Riemannian manifolds of

negative curvature. We recall that if G is a closed and connected subgroup of the

isometries of a Riemannian manifold M , the number dimM −maxx∈M dimG(x)

is called the cohomogeneity of the action of G on M . When the cohomogeneity

is small, we expect close geometrical and topological relations between M , G and

G-orbits of M . If M has negative curvature and the cohomogeneity is zero (M

is a homogeneous G-manifold), S. Kobayashi proved that M must be simply

connected [10].
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If M is negatively curved and the cohomogeneity is one, it is proved that

either M is simply connected or the fundamental group of M is isomorphic to

Zp for some positive integer p. In the later case, if p > 1 then each orbit is

diffeomorphic to Rn−1−p×T p, n = dimM , and M is diffeomorphic to Rn−p×T p.

If p = 1 then there is an orbit diffeomorphic to S1 and the other orbits are covered

by Sn−2 ×R [15].

There is no complete classification result on cohomogeneity two Riemanniam

manifolds of negative curvature. But there are some results under conditions on

G and curvature of M . Let Fix(G,M) = {x ∈ M : G(x) = x}. If Fix(G,M) 6= ∅
and M is negatively curved and of cohomogeneity two under the action of G, then

M is diffeomorphic to S1 × Rn+1 or B2 × Rn (B2 is the mobius band), and the

principal orbits are diffeomorphic to Sn [12]. Also we have studied cohomogeneity

two Riemannian manifolds of constant negative curvature [13]. In Theorem 3.3

of the present paper, we study cohomogeneity two Riemannian G-manifolds of

negative curvature under the conditions that the singular orbits (if there is any)

are the fixed points of G and G is non-semisimple.

2. Preliminaries

First we mention some definitions and facts which we will use in the proofs. If

M is a Riemannian manifold, we denote by Iso(M) the Lie group of all isometries

of M . If δ ∈ Iso(M), the squared displacement function d2δ : M → M is defined

by

d2δ(x) = d(x, δx)

Fact 2.1 (See [1]). If M is a simply connected Riemannian manifold of

negative curvature and δ ∈ Iso(M), then one of the followings is true:

(1) d2δ has no minimum point.

(2) Minimum point set of d2δ is equal to the fixed point set of δ.

(3) Minimum point set of d2δ is the image of a geodesic γ translated by δ (i.e.,

there is a positive number t0 such that for all t, δ(γ(t)) = γ(t+ t0)).

Isometries (1), (2), and (3) are called parabolic, elliptic, and axial, respecti-

vely.

We recall (see [8]) that infinity M(∞) of a simply connected Riemannian

manifold M of non-positive curvature is the classes of asymptotic geodesics. For

each geodesic γ we denote by [γ] the asymptotic class of geodesics containing γ.

If x ∈ M then there is a unique (up to parametrization) geodesic γx in the
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class [γ] containing x, and there is a unique hypersurface Sx containing x and

perpendicular to all elements of [γ]. Sx is called a horosphere related to [γ].

Fact 2.2. Let M be a simply connected Riemannian manifold of negative

curvature.

a) If g is an axial isometry of M then the geodesic γ with the property g(γ) = γ

is unique.

b) If g is a parabolic isometry of M then there is a unique class of asymptotic

geodesics [γ] such that g[γ] = [γ].

Proof. (a) is a direct consequence of Proposition 4.2(3) in [1].

(b) By Lemma 6.1 in [7], g has a fixed point in M(∞), so there is a class [γ]

of asymptotic geodesics such that g[γ] = [γ], and by Proposition 6.4 in [7], [γ] is

unique (because if not, g must be elliptic or axial). ¤
Fact 2.3. Let G be a connected and solvable Lie subgroup of isometries of

a simply connected and negatively curved Riemannian manifold M . Then one of

the followings is true:

(1) Fix(G,M) 6= ∅.
(2) There is a unique G-invariant geodesic.

(3) There is a unique class of asymptotic geodesics [γ] such that G[γ] = [γ].

Proof. For the proof of existence, see Theorem 5 in [3]. Uniqueness in (2),

(3) comes from Fact 2.2. ¤
Corollary 2.4. If M is a simply connected Riemannian manifold of nega-

tive curvature and G is a closed and connected subgroup of Iso(M) such that

Fix(G,M) = ∅, then there is at most one totally geodesic G-orbit in M .

Proof. The proof of this corollary is as like as the proof of Lemma 3.1 of

[4] which we rewrite it for facility. Denote by ∇ and ∇ the Riemannian connec-

tions of M and submanifolds of M . Suppose that G(q′), G(q) are distinct totally

geodesic orbits of M . Consider a point p ∈ G(q′) such that d(q,G(q′)) = d(q, p).

Let γ be a minimizing geodesic such that γ(0) = p, γ(1) = q. Then, γ′(0) is

perpendicular to G(q′)(= G(p)) at the point p. If N is a G-orbit and a ∈ N , then

the tangent space TaN is generated by

{Y (a) : Y is a vector field in the Lie algebra of G}.
Consider a vector field Y in the Lie algebra of G and put g(t) = 〈Y (γ(t)), γ′(t)〉.
Then

g′(t) =
d

dt
〈Y (γ(t)), γ′(t)〉 = 〈∇γ′(t)Y, γ

′(t)〉
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Since Y is a Killing vector field (see [14], p. 255) then g′(t) = 0. Since γ′(0) is

perpendicular to G(p) then g(0) = 0, so for each t ∈ I, g(t) = 0. Then for each

t ∈ I, γ′(t) is perpendicular to G(γ(t)). Since G(q) 6= q, there is a vector field X

in the Lie algebra of G such that X(q) 6= 0. Put

f(t) = −〈Sγ′(t)(X(γ(t)), X(γ(t))〉

Where Sγ′(t) is the shape operator of G(γ(t)). G(p) and G(q) are totally geodesic,

then

f(0) = f(1) = 0 (∗)
The vector field X(γ(t)) is a Jaccobi vector field along γ (see [14], p. 252,

Lemma 26). Thus

X ′′ +R(γ′, X)γ′ = 0

and X is a Killing vector field, so

−〈∇XX, γ′(t)〉 = 〈∇γ′X,X〉

Then we have:

f(t) = −〈∇XX −∇XX, γ′(t)〉 = −〈∇XX, γ′(t)〉 = 〈∇γ′X,X〉

⇒ f ′(t) =
d

dt
〈∇γ′X,X〉 = 〈X ′′, X〉+ 〈∇γ′(t)X,∇γ′(t)X〉

= −〈R(γ′(t), X)γ′(t), X〉+ 〈∇γ′X,∇γ′X〉

Since M is negatively curved then f ′(t) > 0, which is a contradiction by (∗). ¤

Remark 2.5. If M is a Riemannian manifold and G is a connected subgroup

of Iso(M), and if M̃ is the universal Riemannian covering manifold of M with

the covering map κ : M̃ → M , then there is a connected covering G̃ of G with

the covering map π : G̃ → G, such that G̃ acts isometrically on M̃ and

(1) Each deck transformation δ of the covering κ : M̃ → M maps G̃-orbits on to

G̃-orbits.

(2) If x ∈ M and x̃ ∈ M̃ then κ(G̃(x̃)) = G(x).

(3) Fix(G̃, M̃) = κ−1(Fix(G,M)).

(4) If G is non-semisimple then G̃ is no-semisimple.

(5) The deck transformation group, which we denote it by ∆, centralizes G̃ (i.e.,

for each δ ∈ ∆ and g̃ ∈ G̃, δg̃ = g̃δ).
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Proof. G̃ can be defined in a similar way in [2] pages 63, 64. (1), (2), (3)

and (4) are simple consequences of the definition of G̃. The proof of (5) can be

made as a similar way in the proof of Theorem 9.1 in [2]. ¤

Remark 2.6. Let M̃ be a complete and simply connected Riemannian mani-

fold of strictly negative curvature (curvature is ≤ c < 0, for a constant number c)

and let S be a horosphere in M̃ related to asymptotic class of geodesics [γ]. The

function f : M̃ → R, f(p) = limt→∞ d(p, γ(t))− t, is called a Bussmann function.

(a) For each point p ∈ M̃ there is a point η
S
(p) in S, which is the unique

point of S nearest p, and the following map is a homeomorphism:

φ : M̃ → S ×R, φ(p) = (η
S
(p), f(p)).

(b) If g is an isometry of M̃ such that g[γ] = [γ] (g leaves invariant the

horosphere foliation related to [γ]) then gS = S or g is axial and the axes of g

belongs to [γ].

Proof. For (a) see [7], p. 57, 58, Propositions 3.2 and 3.4. Proof of (b) is

as like as the proof of Lemma 3 in [3]. ¤

Lemma 2.7 (See [13]). Let M be a Riemannian manifold of negative cur-

vature, n = dimM ≥ 3, and M̃ be its universal covering. If there is a geodesic γ

on M̃ and an element δ in the center of the deck transformation group ∆, such

that δγ = γ, then M is diffeomorphic to one of the following spaces

S1 ×Rn−1, B2 ×Rn−2

where, B2 is the mobius band.

3. Results

In the present section we study topological properties of some cohomogeneity

two Riemannian manifolds of negative curvature. We refer to [2] and [11] for

definitions and details about singular and principal orbits of the actions of Lie

groups on manifolds.

Theorem 3.1 (See [13]). Let Mn+2 be a complete negatively curved and

non-simply connected Riemannian manifold which is of cohomogeneity two under

the action of a closed and connected Lie subgroup of isometries. If Fix(G,M) 6= ∅
then
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(a) M is diffeomorphic to S1 ×Rn+1 or B2 ×Rn (B2 is the mobius band).

(b) Fix(G,M) is diffeomorphic to S1.

(c) Each principal orbit is diffeomorphic to Sn.

Remark 3.2. By Theorem 3.7 (a) in [15], if M is a non-simply connected

and complete Riemannian manifold which is of cohomogeneity one under the

action of a connected and closed subgroup of isometries, and if there is not any

singular orbit, then there are positive integers p, s such that M is diffeomorphic

to Rp ×Rs+1 and each orbit is diffeomorphic to Rp ×Rs, p+ s = dimM − 1.

Theorem 3.3. Let Mn+2 be a complete Riemannian manifold of strictly

negative curvature and let G be a closed, connected and non-semisimple subgroup

of isometries of Mn+2. If M is a cohomogeneity two G-manifold such that the

singular orbits (if there is any) are fixed points of G. Then one of the following

is true:

(1) M is simply connected (diffeomorphic to Rn+2).

(2) M is diffeomorphic to S1×Rn+1 or B2×Rn (B2 is the mobius band). Each

principal orbit is diffeomorphic to Sn. Union of singular orbits (Fix(G,M))

is diffeomorphic to S1.

(3) M is diffeomorphic to S1×R2 or B2×R. All orbits are diffeomorphic to S1.

(4) π1(M) = Zp for some positive integer p, and all orbits are diffeomorphic to

Rn−p × T p.

(5) M is a parabolic manifold homeomorphic to M1 × R. Where, M1 is a co-

homogeneity one G-manifold and there is a horosphere S in the universal

Riemannian covering of M such that M1 is diffeomorphic to S
π1(M) .

Proof. Following Remark 2.5, let M̃ be the universal Riemannian covering

manifold of M with the deck transformation group ∆ and let G̃ be the corres-

ponding connected covering of G which acts isometrically and by cohomogeneity

two on M̃ . If Fix(G̃, M̃) 6= ∅ then Fix(G,M) 6= ∅, so by Theorem 3.1, we get the

parts (1) or (2) of the theorem. Now, we suppose that

Fix(G̃, M̃) = ∅ ((∗))

By assumptions of the theorem, if there is a singualr orbit, it must be a fixed point,

so by (∗) all G̃-orbits in M̃ must be n-dimensional. Since G is non-semisimple,

G̃ is non-semisimple. Let H be a solvable normal subgroup of G̃ and put N =

Fix(H, M̃). We consider following two cases separately:

(a) N = ∅ (b) N 6= ∅
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(a): By Fact 2.3, one of the following is true:

(a-i) There is a unique geodesic γ such that H(γ) = γ.

(a-ii) There is a unique class of asymptotic geodesics [γ] such that H[γ] = [γ].

(a-i): From normality of H in G̃ and uniqueness of γ, we get that G̃(γ) = γ. Since

Fix(G̃, M̃) = ∅ then γ is a G̃-orbit in M̃ . But all orbits are n-dimensional and the

orbit γ is of dimension one. Thus all orbits are of dimension one and n = 1. Each

δ ∈ ∆ maps G̃-orbits onto G̃-orbits. So δ(γ) is a G̃-orbit. Since by Corollary 2.4,

γ is the unique geodesic orbit, then δ(γ) = γ. Thus ∆γ = γ and π1(M) = Z (see

[6], Theorem 3.4 pa. 261). Now, by Lemma 2.7, M is diffeomorphic to S1×R2 or

B2×R. Since all G-orbits of M are regular (and diffeomorphic to each other) and

the G-orbit γ
∆ is diffeomorphic to γ

Z = R
Z = S1, all G-orbits are diffeomorphic to

S1. This is the part (3) of the theorem.

(a-ii) As like as (a-i), we get from normality of H in M̃ and uniqueness of [γ] that

G̃[γ] = [γ]. First, suppose that there is an axial element δ ∈ ∆ and let λ be the

unique geodesic such that δλ = λ. If g ∈ G̃, δ(gλ) = gδλ = gλ. Then, we get from

uniqueness of λ that gλ = λ. So, λ is a G̃-orbit and we get part (3) of the theorem

in the same way as (a-i). Now, suppose that all elements of ∆ are non-axial.

Since elements of ∆ and G̃ are commutative we get that ∆[γ] = [γ]. Non-identity

elements of ∆ are fixed point free, so they are parabolic and M is a parabolic

manifold. By Remark 2.6, for each δ ∈ ∆ and each horosphere S related to the

asymptotic class [γ], δS = S. Fix a horosphere S related to [γ]. Put M1 = S
∆

and let ηS and f be the maps defined in Remark 2.6. The homeomorphism

φ : M̃ → S × R mentioned in Remark 2.6, induces a homeomorphism φ1 : M̃
∆ =

M → S
∆ × R = M1 × R, such that φ1(x) = (κηS (x̃), f(x̃)), x̃ ∈ κ−1(x). Now, we

show that for each g ∈ G̃, gS = S. If gS 6= S then we get from Remark 2.6, that

g is axial isometry and there is a unique geodesic λ in [γ] such that g translates

it. Since the members of ∆ and g are commutative, we get from uniqueness of

λ that for each δ ∈ ∆, δλ = λ. But intersection of λ and S is a one point

set. So, we get from δS = S that δ has a fixed point, which is a contradiction

for non-identity δ. Therefore, gS = S. This means that all G̃-orbits of M̃ are

included in horospheres. Thus, S is a cohomogeneity one G̃-manifold and S
∆ is a

cohomogeneity one G-manifold. This is part (5) of the theorem.

(b): N is a nontrivial totally geodesic submanifold of M̃ . If g ∈ G̃, h ∈ H and

x ∈ N then

g−1hg(x) = x ⇒ hg(x) = g(x) ⇒ g(x) ∈ N

Thus G̃(N) = N . All orbits are of dimension n. So if x ∈ N then

n = dim G̃(x) ≤ dimN < dim M̃ = n+ 2 ⇒ dimN = n or n+ 1
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Now, consider two cases dimN = n and dimN = n+ 1 separately.

(b-j) dimN = n.

In this case, N is a G̃-orbit. If n = 1, in a similar way in (a-i) we get part (3) of the

theorem. Suppose n ≥ 2 and put N1 = κ(N). By Corollary 2.4, N is the unique

totally geodesic G̃-orbit in M̃ . Thus, for each δ ∈ ∆, δ(N) = N , so N1 = N
∆ .

But N1 is a totally geodesic G-orbit in M , so it must be simply connected (since

by Kobayashi’s theorem in [10] homogeneous manifolds of negative curvature are

simply connected). Therefore, ∆ is trivial and M is simply connected. This is

the part (1) of the theorem.

(b-jj) dimN = n+ 1

Since all orbits are of dimension n, N is a negatively curved cohomogeneity one

G̃-manifold. Consider following two cases:

(b-jj-1): There is a δ ∈ ∆ and x ∈ M̃ such that δG̃(x) 6= G̃(x).

(b-jj-2): For each δ ∈ ∆ and x ∈ M̃ , δG̃(x) = G̃(x).

(b-jj-1) From the fact that δ maps orbits on to orbits, we get that δG̃(x) = G̃(y),

y ∈ M̃ (i.e., G̃(x)∩ G̃(y) = ∅). By Proposition 4.2 in [15], the minimum point set

of the following function is at most the image of a geodesic

fδ : M̃ → R, fδ(x) = d2(x, δ(x))

So we can find a geodesic γ such that the image of γ is not the minimum point

set of fδ and γ(0) ∈ G(x), γ(1) ∈ G(y). Put g(t) = fδ(γ(t)). Since the elements

of ∆ and G̃ are commutative, fδ is constant along orbits (because fδ(gx) =

d2(gx, δgx) = d2(gx, gδx) = d2(x, δx) = fδ(x)). Since δ(γ(0)) ∈ G(γ(1)), then

fδ(δγ(0)) = fδ(γ(1)). Thus

g(0) = fδ(γ(0)) = d2(γ(0), δ(γ(0)))

= d2(δ(γ(0)), δ2(γ(0))) = fδ(δγ(0)) = fδ(γ(1)) = g(1)

Since g is strictly convex (see [1]), it has a unique minimum point t0 ∈ (0, 1).

Therefore, G̃(γ(t0)) is the minimum point set of fδ, which must be a geodesic.

Then G̃(γ(t0)) is a (geodesic) one dimensional G̃-orbit. Then in a similar way in

(a − i) we get part (3) of the theorem.

(b-jj-2): Put N1 = κ(N). Since for each δ ∈ ∆, δ(N) = N then π1(M) = π1(N1).

N1 is a cohomogeneity one G-manifold of negative curvature, without singular

orbits. So, by Remark 3.2, each G-orbit in N1 is diffeomorphic to T p × Rs,

p+ s = dimN − 1 = n, and N1 is diffeomorphic to T p ×Rs+1. These yield to the

part (4) of the theorem. ¤
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