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Initial hulls and zero dimensional objects

By JAY STINE (Dallas)

Abstract. In this paper we use initial hulls to define zero dimensional (and other)

objects in topological categories. In the process we characterize some initial hulls in

the category of topological spaces. Examples of zero dimensional objects in several

topological categories are given. We relate zero dimensional objects to preT2 objects via

a Theorem which generalizes their relationship for topological spaces.

1. Introduction

Topological categories; i.e., the domain of a topological functor U : E → B (U
is concrete, has small (set-indexed) fibers, and every U-source has an initial lift)

have appeared extensively in the literature since the early 1970’s (comprehensive

expository treatments of categorical topology can be found in [1] or [16]). The

prototype example of a topological category is T OP, the category of topological

spaces and continuous functions, which is topological over SET , the category of

sets and functions, with U : T OP → SET being the standard forgetful functor.

Given a non-empty collection of objects E0 in a topological category E , it is

natural to try and find the smallest full subcategory of E which contains all

objects in E0, and which is also topological with respect to the inherited initial

lift formulations from E . This subcategory is refered to as the initial hull of E0

(see [10], [17]). Several examples of initial hulls in T OP are given in [11]; in
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particular, the initial hulls for the collections of all T1 and all T2-spaces are stated

(see proposition 7 below).

In [8] a topological space is defined to be zero dimensional provided it has

a basis consisting of clopen (both open and closed) sets. These zero dimensional

spaces have been used in the construction of many useful classes of topologi-

cal spaces including Lusin spaces ([4]), Stone spaces ([9]), and non-Archimedean

spaces ([6]). To extend classical notions such as dimension zero in T OP to an

arbitrary topological category, one must express these notions in terms which

are available in topological categories; i.e., in terms of final or initial structu-

res, (co)limits, (in)discreteness, etc. The main goal of this paper is to employ

initial hulls as a vehicle to extend certain classical notions based on separation,

particularly dimension zero, to the general setting of a topological category.

The paper is organized as follows. Section 2 states the definition of the

initial hull of a collection of objects in a topological category and we state a

characterization of the initial hull which will be used throughout the remainder

of the paper. Also included in this section are several examples of initial hulls in

T OP. Section 3 contains the main results of the paper; namely the use of initial

hulls to generalize the classical notion of a zero dimensional topological space

to zero dimensional objects in a topological category. Several examples of zero

dimensional objects in some well-known topological categories are calculated. We

also develop some general theoretical results concerning zero dimensional objects.

In particular, we relate zero dimensional objects to the so-called pre-Hausdorff

objects ([2], [3], [13], [14], [19]) in a topological category by way of a theorem

which generalizes their relationship in T OP. In Section 4 we conclude the paper

by defining other objects in topological categories in a fashion similar to the

method in Section 3; namely, by using initial hulls. We also mention an open

problem concerning initial hulls which is of interest to the theoretical development

of pre-Hausdorff objects. Throughout the paper, U : E → B will be assumed to be

a topological functor, E0 will denote a non-empty collection of subobjects of E ,
and T OP and SET will denote the categories as mentioned above.

2. Initial hulls and examples

In this section we define initial hulls and we characterize some initial hulls in

T OP which will be used later in the paper.

Definition 1. The initial hull of E0, denoted IH(E0), is the smallest full

concrete initially closed subcategory of E whose object class contains E0.
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The following proposition gives a useful characterization of initial hulls. A

proof can be found in [17].

Proposition 2. IH(E0) is determined by the following object class.

{e ∈ E | ∃U − initial source{fi : e → ei}i∈I with ei ∈ E0, ∀i ∈ I}
That is, IH(E0) is the full subcategory of E consisting of all objects which

can be induced from a family of objects in E0.

Example 3. In T OP, suppose E0 is a family consisting of a single space which

consists of a single point. Then IH(E0) = I(SET ), the collection of all indiscrete

spaces. More generally, recall that each topological functor U : E → B has a right

adjoint I : B → E called the indiscrete functor, and that I(b) is the maximum

element in U−1(b) for each b ∈ B. We denote the collection of all these indiscrete

objects by I(B). Suppose B is any category with a terminal object 1. If ∗ = I(1)
and E0 consists solely of ∗, then IH(E0) = I(B). This follows immediately from

the fact that the initial lift of an indiscrete object yields an indiscrete object (see

Lemma 2.1.2 in [19]).

In a topological category E , the initial hull of a family of objects E0 may be

trivial in the sense that IH(E0) = E . In T OP, we characterize the families of

spaces whose initial hull is trivial in this sense.

Proposition 4. A family of topological spaces F satisfies IH(F ) = T OP
iff F contains a space which contains a Sierpinski space (as a subspace).

Proof. Suppose F is a family of topological spaces containing the space

(Y, σ) which contains the Sierpinski space (S, σS), where S = {p, q} and let (X, τ)

be any topological space. Suppose the point p has no proper neighborhood in σS ,

and there exists a proper open set OS ∈ σ such that OS ∩ S = {q}. For each

U ∈ τ , define a function fU : X → Y

fU (x) =

{
q, if x ∈ U

p, if x /∈ U.

Then τ is the topology induced on X via {fU}U∈τ . Conversely, suppose F is

a family of topological spaces satisfying IH(F ) = T OP. Then the Sierpinski

space S can be induced from a family of spaces {(Xi, τi)}i∈I ⊆ F via a family

of functions {fi : S → Xi}i∈I . Since S is not indiscrete, there exists j ∈ I

such that fj is injective and fj(S) is not indiscrete. Furthermore, since S is not

discrete, fj(S) is not discrete. Thus fj(S) is a Sierpinski space which is a subspace

of Xj . ¤
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Accordingly, for instance, a family consisting of a single space which has a

Sierpinski space as a subspace will generate all of T OP by its initial hull.

Example 5. Let X = {1, 2, 3} with topology τ generated by the basis {{1, 2},
{2, 3}}, and let F = {(X, τ)}. Then IH(F ) = T OP since {1, 2} endowed with

the subspace topology is a Sierpinski space.

If we denote by T0−T OP the full subcategory of T OP consisting of all

T0-spaces, then IH(T0−T OP) = T OP since a Sierpinski space is always T0.

Consequently, Proposition 4 suggests that collections of spaces with non-trivial

initial hulls will consist of spaces which possess separation properties stronger

than T0, as in the following two examples.

Proposition 6. In T OP, denote by D0 the collection of all discrete spa-

ces, and by 0−Dim the collection of all 0 dimensional spaces. Then IH(D0) =

0−Dim.

Proof. Suppose that (X, τ) is 0-dimensional with basis {Ui}i∈I consisting

of clopen sets. For each i ∈ I, let Xi = {0, 1} with the discrete topology, and

define fi : X → Xi by

fi(x) =

{
0, if x ∈ Ui

1, if x /∈ Ui.

Then τ is the topology induced on X by {Xi}i via {fi}i, so that 0 − Dim ⊆
IH(D0). For the reverse inclusion, suppose that τ is the topology induced on a

set X from a family of discrete spaces {(Xi, τi)}i∈I via fi : X → Xi, and that

U ∈ τ . Without loss of generality we can assume that U is a basis element, so

there exists i1, . . . , in ∈ I and there exisis Ui1 ∈ τi1 , . . . , Uin ∈ τin such that U =⋂n
j=1 f

−1
ij

(Uij ), which implies that UC = (
⋂n

j=1 f
−1
ij

(Uij ))
C =

⋃n
j=1 f

−1
ij

(UC
ij
).

Since UC
ij

is open in Xij we have that UC is open in X and, hence, X is 0-

dimensional. ¤

Recall [18] that a topological space X is called a Ti,j-space (for 0 ≤ i < j ≤ 2)

provided each pair of points a, b ∈ X which has a Ti-separation in X also has a

Tj-separation in X.

Note. T0,2-spaces are also called pre-Hausdorff spaces in the literature. De-

note by Ti,j−T OP (resp. Ti−T OP) the full subcategory of T OP consisting of

the Ti,j-spaces (resp. Ti-spaces). Note that a Ti-space is T0,i.

Proposition 7. For i = 1, 2, IH(Ti−T OP) = T0,i−T OP
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Proof. It is shown in [18] that inducing on a set from a family of Ti,j-spaces

yields a Ti,j-space; i.e., Ti,j−T OP is initially closed in T OP and, hence, topologi-

cal. So, since a Ti-space is always T0,i, we have that IH(Ti−T OP) ⊆ T0,i−T OP.

To prove the reverse inclusion, suppose (X, τ) is a T0,i-space (i either 1 or 2) and

we manufacture a Ti-space which induces the topology τ as follows. Define a

relation R on X by:

(x, y) ∈ R if and only if x and y have no T0-separation in τ.

It can be readily shown that R is an equivalence relation. We claim that, for

i = 1, 2, we have (1) if (X, τ) is T0,i, then for each U ∈ τ , q−1(q(U)) = U , where

q is the cannonical quotient map which sends each x ∈ X to its equivalence class

[x] ∈ X
R . Note that this property implies that q is an open map; (2) X

R is Ti iff

(X, τ) is T0,i; and (3) τ is the topology induced on X by X
R via q. To prove (1),

suppose that x ∈ q−1q(U). Then q(x) ∈ q(U), which implies that there exists

y ∈ U with [x] = [y]. Then x and y have no T0-separation in τ , so x ∈ U . Thus

q−1q(U) ⊆ U , and the reverse inclusion always holds. To prove (2), suppose that

(X, τ) is T0,i, and that [x] 6= [y] in X
R . Then x and y have T0-separation in τ ,

which implies that they have a Ti-separation by, say, Ux, Uy ∈ τ . Since q is an

open map, q(Ux) and q(Uy) provide a Ti-separation in X
R and the implication to

the left is established. The proof of the converse is similar using inverse images

by q. For (3), let τ̃ be the topology induced on X by X
R via q. Clearly τ̃ ⊆ τ

since τ̃ is initial, and the reverse inclusion follows immediately from (1). ¤

Notes. (i) With different terminology and without proof, the results of Pro-

position 7 are stated in [11]. There, the result above for the case i = 1 is stated as

IH(T1−T OP) coincides with the class of R0-spaces (see Section 4 below). Since

it is shown in [18] that a topological space is an R0-space if and only if it is a

T0,1-space, these results are equivalent. Also, the T0,2-spaces mentioned above

are refered to as R-spaces in [11].

(ii) The relation R can be defined equivalently as: (x, y) ∈ R if and only

if for all Y ∈ T0−T OP, and for all continuous functions f : X → Y , we have

f(x) = f(y).

(iii) It is shown in [18] that the assignment X 7→ X/R defines a functor which

is left adjoint to the inclusion functor T0−T OP ↪→ T OP, so that q : X → X/R

is the T0-reflection of the space (X, τ). Accordingly, claim (2) in the proof above

states that a topological space is T0,i if and only if its T0-reflection is Ti.

Because initial hulls are initially closed, and since compositions of initial lifts

are initial, clearly the initial hull of any collection of objects E0 is a topological
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category with initial lifts formulated as in the original category E . Furthermore, it

is shown in [1] that an initially closed subcategory is always concretely reflective,

and hence, reflective. Consequently, we have the following.

Theorem 8. IH(E0) is itself topological over B and the inclusion functor

I0 : IH(E0) ↪→ E is initially preserving (hence continuous). Moreover, IH(E0) is

a reflective subcategory of E .

In the case where E0 is reflective in E , the following example gives an explicit

description of the left adjoint to I0. Note that in the construction of the left

adjoint L0, the base category B is arbitrary. Also in this construction we use the

fact that E , being a topological category, has the (bimorphism, initial morphism)

factorization structure; i.e., each morphism f : a → b in E can be factored as

f = f ◦ξa, where the initial morphism f : a → b is the initial lift of Uf : Ua → Ub,
and the bimorphism ξa : a → a is the resulting lift of the identity morphism on Ua.
Finally we note that, by virtue of Proposition 7, the following construction of L0

includes the functors L0,1 : T OP → T0,1−T OP and L0,2 : T OP → T0,2−T OP
found in [18] as special cases.

Example 9. Suppose E0 is a reflective subcategory of E (with object collec-

tion E0) and that L : E → E0 is left adjoint to the inclusion functor I : E0↪→ E .
Then to each object e ∈ E there is a universal arrow ηe : e → Le. Let ηe◦ ξe
be the (bimorphism, initial morphism) factorization of ηe, where ξe : e → L0e

and ηe : L0e → Le. Then L0e ∈ IH(E0). We claim that ξe : e → L0e is a uni-

versal arrow and, consequently, L0 defines a left adjoint to the inclusion functor

I0 : IH(E0) ↪→ E . To prove this claim, suppose that x ∈ IH(E0) and f : e → x.

Then x can be induced from a family of objects in E0; for notational simplicity

we will assume that this family consists of a single object. So there exists e0 ∈ E0

such that x
f0−→ e0 is the initial lift of a

Uf0−−→ b0 = U(e0). Since ηe is a universal

arrow, the composition f0 ◦ f factors through ηe; i.e., there exists m0 : Le → e0
such that f0 ◦ f = m0 ◦ ηe = m0 ◦ ηe ◦ ξe. Thus, we have the commutative square

(m0 ◦ ηe) ◦ ξe = f0 ◦ f . Since ξe is a bimorphism and f0 is an initial morphism,

there exists a morphism m : L0e → x with f = m◦ξe by the unique (bimorphism,

initial morphism) diagonalization property (see Definition 14.1 of [1]).

Recall ([1]) that the reflective hull of E0 in E , hereafter denoted by R(E0),

is the smallest isomorphism closed full reflective subcategory of E which contains

E0. It is well-known that R(E0) does not always exist. However if E0 does exist,

we note that although IH(E0) is reflective and is the smallest initially closed

subcategory of E containing E0, IH(E0) may or may not coincide with R(E0).
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Indeed, if E0 is reflective but not initially closed, then clearly IH(E0) 6= R(E0).

This is the case, for instance, in T OP with E0 = Ti−T OP, for i = 1, 2, as

in Proposition 7. Alternatively if E0 is both reflective and initially closed, then

trivially IH(E0) = R(E0). An example of a non-trivial case where the initial

and reflective hulls coincide arises in T OP when E0 = D0, where it is well-known

that R(D0) = 0−Dim (see [6]), and IH(D0) = 0−Dim by Proposition 6.

3. Dimension 0 in topological categories

In this section, we employ initial hulls to extend the notion of dimension zero

to a topological category. To this end, recall ([15]) that each topological functor

U : E → B has a left adjoint D : B → E called the discrete functor, and that D(b)

is the minimum element in U−1(b) for each b ∈ B. We denote the collection of all

these discrete objects by D(B). Notice that Proposition 6 gives a characterization

of dimension 0 which involves only initial structures and discrete objects. It shows

that a topological space is zero dimensional provided it can be induced from a

family of discrete spaces. This justifies the following.

Definition 10. Suppose that U : E → B is topological with discrete func-

tor (left adjoint) D : B → E . An object x ∈ E has dimension 0 provided x ∈
IH(D(B)); i.e., there are families of B-objects {bi}i∈I and B-morphisms {fi :

U(x) → bi}i∈I such that {x fi−→ D(bi)} is the initial lift of {U(x) fi−→ bi =

U(D(bi))}. If so; i.e., if x can be induced from a family of discrete objects,

then we write dim(x) = 0.

Accordingly, in any topological category, discrete objects are always zero

dimensional. The next example shows that they may be the only zero dimensional

objects in a topological category.

Example 11. In CP , the category of pairs (objects are pairs of sets (A,C)

with C ⊆ A, morphisms from (A1, C1) to (A2, C2) are functions f : A1 → A2 with

f(C1) ⊆ C2, and
{
(A,B)

fi−→ (Ai, Bi)
}
is initial if and only if B =

⋂
i f

−1
i (Bi),

the discrete structure on a set A is D(A) = (A,∅) (see [2]). Consequently, in

CP , dim(x) = 0 iff x is discrete.

The next example provides a novel interpretation of an equivalence relation

on a set; namely, a set with an equivalence relation is a zero dimensional object

in a particular topological category. Recall that a preordered set is a pair (A,R)

where A is a set and R is a relation on A which is both reflexive and transitive.
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Example 12. In Pr Ord, the category of preordered sets (objects are preor-

dered sets, morphisms from (A1, R1) to (A2, R2) are functions f : A1 → A2 such

that if aR1b then f(a)R2f(b), and
{
(A,R)

fi−→ (Ai, Ri)
}
i∈I

is initial provided

aRb iff fi(a)Rifi(b), ∀i ∈ I), the discrete structure on a set A is D(A) = (A,∆A)

where ∆A = {(a, a) | a ∈ A} is the diagonal on A (see [2]). We claim that

(A,R) ∈ Pr Ord has dimension 0 iff R is an equivalence relation; for if (A,R)

has dimension 0, then clearly R is symmetric. Conversely, suppose that R is an

equivalence relation on A and let q : A → A
R be the cannonical quotient map.

Then (A,R) is induced from
(
A
R ,∆A

R

)
via q.

It is shown in [18] that a principal topological space (also sometimes called

an Alexandroff space; i.e., a space in which arbitrary intersections of open sets

are open) has dimension 0 if and only if it is pre-Hausdorff. For any topological

space (X, τ) we have the following result, the proof of which is straightforward.

Proposition 13. If X has dimension 0, then X is pre-Hausdorff.

The pre-Hausdorff separation condition has been generalized to arbitrary

topological categories. Indeed, there are two categorical conditions, equivalent in

some categories but generally distinct, which both reduce to the pre-Hausdorff

condition in T OP. For convienience, after developing some notation which follows

that of [13], we recall the categorical definitions of pre-Hausdorff objects.

Suppose B is a category with finite powers (denoted bn, and whose projection

morphisms are denoted pi : b
n → b) and pushouts (a topos, for instance). Given

morphisms fi : a → b, i = 1, 2, . . . , n, 〈f1, . . . , fn〉 : a → bn denotes the unique

morphism f such that pif = fi, i = 1, . . . , n. The diagonal d : b → b2 is

then 〈1b, 1b〉, where 1b : b → b is the identity morphism on b. If we form the

pushout of this diagonal d against itself, the resulting object will be denoted

b2
∨
b2 (this object is denoted by b2 + b2 in [13]); i.e., i1 ◦ d = i2 ◦ d is a pushout

diagram, where i1 and i2 are the canonnical injection morphisms. Since this

diagram is a pushout and 〈p1, p1, p2〉 ◦ d = 〈p1, p2, p1〉 ◦ d, there exists a unique

morphism A : b2
∨
b2 → b3 such that A ◦ i1 = 〈p1, p2, p1〉 and A ◦ i2 = 〈p1, p1, p2〉.

Similarly, since 〈p1, p1, p2〉 ◦ d = 〈p1, p2, p2〉 ◦ d, there exists a unique morphism

S : b2
∨
b2 → b3 such that S ◦ i1 = 〈p1, p2, p2〉 and S ◦ i2 = 〈p1, p1, p2〉. Note:

the notation A and S follows the notation in [2], [3], and [19], whereas [14] labels

these morphisms as m1 and m2 (resp.), and they are labled p(2, 2)∗ and p(1, 2)∗

(resp.) in [13].

Definition 14. Suppose B is a category with finite powers and pushouts,

U : E → B is a topological functor, and that e is an E-object with U(e) = b.
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(i) e is preT2 provided the initial lift of {A : b2
∨
b2 → b3 = U(e3)} = the

initial lift of {S : b2
∨
b2 → b3 = U(e3)}. The full subcategory of E consisting of

the preT2 objects will be denoted preT2(E).
(ii) e is preT ′

2 provided initial lift of {S : b2
∨
b2 → b3 = U(e3)} = final lift of

{i1, i2 : U(e2) = b2 ⇒ b2
∨
b2}. The full subcategory of Econsisting of the preT ′

2

objects will be denoted preT ′
2(E).

These preT2 and preT ′
2 objects were originally introduced in [?] where they

arise naturally while studying the image of a topos in a topological category

by a geometric functor (i.e., a right adjoint functor whose left adjoint preserves

finite limits), including geometric realizations in T OP (also see [13]). A general

relationship between these objects can also be found in [13], where Mielke proves

that preT ′
2(E) ⊆ preT2(E) for any topological category E in which these objects

are defined. The fact that these generally distinct concepts coincide and both

reduce to the classical pre-Hausdorff separation axiom in T OP is proved in [2].

Further remarks concerning the relationship between preT2 and preT ′
2 objects

appear in Section 4 below.

In order to generalize Proposition 13, recall ([13]) that a geometric topological

functor is a topological functor U : E → B for which the discrete functorD : B → E
preserves finite limits.

Theorem 15. Suppose that U : E → B is a geometric topological functor

into a topos B.
(i) If m : b ½ a is a mono in B, then the initial lift of b

m−→ a = U(D(a)) is

D(b)
D(m)−−−→ D(a).

(ii) For any object b ∈ B, D(b) is preT2.

(iii) Every 0-dimensional object in a geometric topological category over a topos

is preT2.

Proof. (i) Suppose that m : b ½ a is a mono in B. Since B is a topos, we

have that m is a regular monomorphism; i.e., m is the equalizer of a parallel pair

of morphisms ([12], p. 167). Then applying D yields a regular monomorphism

(in E) since D is left exact. But all regular monomorphisms (being limits) are

initial, so D(b)
D(m)−−−→ D(a) is initial.

(ii) For each b ∈ B we have that (D(b))3 = D(b3) since D is left exact. Then

the initial lift of {A : b2
∨
b2 → b3 = U(e3)} = D(b2

∨
b2) = the initial lift of

{S : b2
∨
b2 → b3 = U(e3)} by (i), since both A and S are monos (see [14]).

(iii) The result follows immediately from (ii) above, together with the fact

that preT2(E) is initially closed (see the proof of Theorem 2.1.3 in [19]). ¤
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We note that 0-dimensional objects are not always preT2. In fact, somewhat

surprisingly, discrete objects need not be preT2. This is surprising in view of

the situation in T OP where preT2 is a relatively weak separation property, and

discrete is as separated as a space can be. The following example, originally found

in [19], illustrates these comments. Recall ([2], [3]) that a stack on a set A is a

family of subsets of A which is closed under the formation of supersets, and a

stack convergence space is a pair (A,K) where A is a set and K is a function

which assigns to each a ∈ A a set of stacks on A such that 1. [a] = {S | S ⊆
A and a ∈ S} ∈ K(a), ∀a ∈ A, and 2. if α ∈ K(a) and β is a stack on A with

α ⊆ β, then β ∈ K(a), ∀a ∈ A. A stack convergence space (A,K) where K is

a constant function is called a constant stack convergence space. In a constant

stack convergent space, the roll of each K(a) will be played generically by a set

of stacks K in the following example.

Example 16. The category of constant stack convergent spaces, conSCO,

has as its objects the constant stack convergence spaces, morphisms f : (A,K) →
(B,L) are functions f : A → B such that if α ∈ K, then fα ∈ L, where fα = {V |
V ⊂ B and f(C) ⊂ V for some C ∈ α}, and {fi : (A,K) → (Bi, Li)} is initial

provided α ∈ K iff fiα ∈ Li, ∀i. It is shown in [2] that an object (A,K) ∈ conSCO

is discrete iff K = {α | α ⊃ [b] for some b ∈ A}. It is also shown there that

(A,K) ∈ preT2(conSCO) iff (A,K) is indiscrete; i.e., K = {all stacks on A}.
Clearly then, discrete objects in conSCO are not necessarily preT2. We note

that [2] also proves that (A,K) ∈ preT ′
2(conSCO) iff A contains at most one

point. Consequently, neither discrete nor indiscrete objects need be preT ′
2 either.

Moreover, since we can induce on a set B which has more than one element by a

one-element set A via the unique constant map c : B → A, conSCO also shows

that the full subcategory of preT ′
2 objects need not be topological.

4. R0 and other objects via initial hulls

In this final section we give more examples of objects of possible interest

which, similar to dimension zero objects, are definable in topological categories

via induced closure. We leave the theoretical development of these objects as

possible directions of further study.

In [16], Preuss defines a topological space to be an R0-space provided that

x ∈ {y} (the closure of {y}) implies y ∈ {x} for all pairs of elements x, y in the

space, and then proves that R0−T OP, the full subcategory of T OP consisting

of all R0-spaces, is isomorphic to the category of topological nearness spaces.
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As noted above, the R0-spaces are exactly the T0,1 spaces. Consequently, by

Proposition 7, R0−T OP = IH(T1−T OP). Similar to the preT2 condition in

T OP, the classical T1 separation axiom has been generalized to arbitrary to-

pological categories. Recall (see [2] or [3]) that if B is a category with finite

powers and pushouts and U : E → B is a topological functor with left adjoint

D : B → E , then an E-object e (with U(e) = b) is T1 provided the initial lift of

{S : b2
∨
b2 → b3 = U(e3) and ∇ : b2

∨
b2 → b2 = UD(b2)} is discrete, where ∇

is the unique morphism such that ∇ ◦ i1 = ∇ ◦ i2 = 1b2 (the identity morphism

on b2). We denote the collection of all such T1 objects in E by T1(E).
Now suppose that B is a category with finite powers and pullbacks and U :

E → B is a topological functor. The discussion in the previous paragraph justifies

the following.

Definition 17. e is an R0-object in E provided e ∈ IH(T1(E)); i.e., there

exists a family {ei}i∈I of T1 objects in E and a family of B-morphisms {fi :

U(e) = b → bi = U(ei)}i∈I whose initial lift is
{
e

fi−→ ei
}
.

Hausdorff separation has also been generalized to topological categories; in-

deed, many different characterizations of “Hausdorff objects” have appeared in

the literature ([2], [3], [5]). All of these characterizations are equivalent to the T2

axiom in T OP, yet they may define distinct collections in the topological categ-

ories in which they are defined. Thus, each of these characterizations defines a

class of Hausdorff objects whose initial hull could justifyably (by virtue of Pro-

position 7) be used to define a new type of pre-Hausdorff objects; i.e., if Γ2(E)
denotes a collection of all Hausdorff objects in a topological category E , then we

define pre Γ2(E) = IH(Γ2(E)). We note that, as a consequence of Theorem 8,

any of these collections pre Γ2(E) are reflective, initially closed (hence topological)

subcategories of E . As mentioned in the proof of Theorem 15, preT2(E) is always
topological, while Example 16 above shows that preT ′

2(E) may not be topological.

The fact that preT ′
2(E) ⊆ preT2(E) (see [13]) makes preT2(E) a candidate for be-

ing the initial hull of preT ′
2(E). An open problem is to determine whether or not

IH(preT ′
2(E)) = preT2(E); if not, then find necessary and sufficient conditions

on E which makes them coincide. Solution of this problem may lead to a solution

of another open problem; namely, to characterize those topological categories in

which preT ′
2(E) is topological. There are many well-known topological categories,

including T OP, in which preT2(E) = preT ′
2(E) (see [2] for several other examp-

les), and in these cases, of course, preT ′
2(E) will be topological. According to the

following observation, the proof of which is a triviality, these may be the only

categories in which preT ′
2(E) is topological.
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Remark 18. Suppose IH(preT ′
2(E)) = preT2(E). Then preT ′

2(E) is topolog-
ical iff preT2(E) = preT ′

2(E).
Since pre Γ2(E), the new types of pre-Hausdorff objects defined above, are

initially closed (hence topological), we note that preT2(E) in the preceeding re-

mark could be replaced by any of the categories pre Γ2(E) for which preT ′
2(E) ⊆

pre Γ2(E).
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