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On the Diophantine equation cyl = xp−1
x−1

By MOHAMMAD SADEK (Cairo)

Abstract. Let p, c be distinct odd primes, and l ≥ 2 an integer. We find sufficient

conditions for the Diophantine equation

cyl = Φp(x) =
xp − 1

x− 1
= xp−1 + xp−2 + · · ·+ 1

not to have integer solutions.

1. Introduction

The solutions of the Nagell–Ljunggren equation yq = xn−1
x−1 , where q, n ≥ 2

are integers, have been the source for many conjectures. One of these is the

following:

Conjecture 1.1. The only solutions to the Diophantine equation yq = xn−1
x−1

in integers x, y > 1, n > 2, q ≥ 2 are given by

35 − 1

3− 1
= 112,

74 − 1

7− 1
= 202, and

183 − 1

18− 1
= 73.

The above conjecture has been solved completely for q = 2. Furthermore, it

has been proved if one of the following assumptions holds:

3 | n, or 4 | n, or q = 3 and n 6≡ 5 mod 6.
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We moreover know that the Nagell–Ljunggren equation has no solutions with x

square. The main tools used to attack this Diophantine equation are effective

Diophantine approximation, linear forms in p-adic logarithms, and Cyclotomic

fields theory. For these results and more see [1], [5] and [6].

In [3] the Diophantine equation yl = cx
n−1
x−1 has been treated. A complete

list of such Diophantine equations with integer solutions has been given, under

the condition that 1 ≤ c ≤ x ≤ 100. A more general equation axn−1
x−1 = cyl where

ac > 1 has been considered in [7]. Our interest in the latter equation is when

a = 1.

In this note we will be concerned with the Diophantine equation cyl = xp−1
x−1 ,

where c, p are distinct odd primes and l ≥ 2. We exhibit the existence of an

infinite set of triples (p, c, l) for which the mentioned Diophantine equation has

no integer solutions. For example, this infinite set contains the set of triples

(p, c, l) where the Legendre symbol
(
c
p

)
= −1 and l is even.

The key idea is exploiting the following identity satisfied by the cyclotomic

polynomial Φp(x) =
xp−1
x−1

4Φp(x) = Ap(x)
2 − (−1)(p−1)/2pBp(x)

2,

where Ap(x), Bp(x) ∈ Z[x]. This identity goes back to Gauss, nevertheless the

formulae describing Ap(x) and Bp(x) were given recently in [2]. Using this identity

we show that the existence of an integer solution to the equation in question

implies the existence of a proper integer solution to some auxiliary Diophantine

equation.

2. Factorization of cyclotomic polynomials

For an odd square-free integer n > 1, and |x| ≤ 1 define

fn(x) =

∞∑

j=1

(
j

n

)
xj

j
,

where
(
j
n

)
is the Jacobi symbol of j mod n. We state Theorem 1 of [2].

Theorem 2.1. Let n > 3 be an odd square-free integer. Consider the

Gauss’s identity 4Φn(x) = An(x)
2 − (−1)(n−1)/2nBn(x)

2, where An(x), Bn(x) ∈
Z[x]. If n ≡ 1 mod 4, then

An(x) = 2
√
Φn(x) cosh

(√
n

2
fn(x)

)
, Bn(x) = 2

√
Φn(x)

n
sinh

(√
n

2
fn(x)

)
.
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If n ≡ 3 mod 4, then

An(x) = 2
√
Φn(x) cos

(√
n

2
fn(x)

)
, Bn(x) = 2

√
Φn(x)

n
sin

(√
n

2
fn(x)

)
.

3. An auxiliary Diophantine equation

The results of this section are motivated by Proposition 8.1 of [4].

By a proper solution (x0, y0, z0) to the Diophantine equation axp+byq = czr,

we mean three integers x0, y0, z0 such that axp
0+byq0 = czr0 and gcd(x0, y0, z0) = 1.

We state the following result on local solutions to cyl = x2 ± pz2 where c, p

are distinct odd primes and l ≥ 2.

Proposition 3.1. There are proper local solutions to

α2cyl = x2 ± pz2, α ∈ {1, 2},
at every prime if and only if the Legendre symbol

(∓p
c

)
= 1; and, when l is even

we have
(
c
p

)
= 1.

Proof. The given conditions are clearly necessary. Now we need to prove

they are sufficient. We use the fact that if q - 2cp, then there are q-adic integer

solutions to x2 ± pz2 = α2c, so take (x, 1, z). For the prime c, since
(∓p

c

)
= 1,

there are c-adic integer solutions to x2 = ∓p, so take (x, 0, 1). For the prime p,

if l is odd, take (αc(l+1)/2, c, 0); if l is even, hence
(
c
p

)
= 1, then there is a p-adic

integer satisfying x2 = α2c, and we take (x, 1, 0). For the prime 2, the equation

becomes x2 − z2 = α2yl, so we can lift the solution (1, 0, 1) mod 2 to a 2-adic

integer solution. ¤

Proposition 3.2. Let p, c be distinct odd primes, and l ≥ 2 be an integer.

Set δ = (−1)(p−1)/2. If the Diophantine equation

α2cyl = x2 − δpz2, α ∈ {1, 2},
has a proper solution with y being odd and gcd(x, y) = 1, then there exist coprime

ideals I, J in Q(
√
δp ) with IJ = (α2c), whose ideal classes are l-th powers inside

the class group of Q(
√
δp ).

Proof. Suppose (x, y, z) is a proper solution to α2cyl = x2 − δpz2 where y

is odd and gcd(x, z) = 1. Now considering the latter as ideal equation, we have

(α2c)(y)l =
(
x−

√
δp z

)(
x+

√
δp z

)
.

Now the ideal a =
(
x−√

δp z, x+
√
δp z

) | (2x, 2√δp, α2cyl
)
= (2, α).
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1) If α = 1, then
(
x−

√
δp z

)
= ILl

1,
(
x+

√
δp z

)
= JLl

2,

where IJ = (c) and L1L2 = (y). This implies that the ideal classes of I and

J are both l-th powers inside the class group of Q(
√
δp ).

2) If α = 2, then both x, z are odd. This will yield a contradiction when p ≡ ±1

mod 8. This follows from the fact that 4cyl = x2 − δpz2 ≡ 0 mod 8 when

p ≡ ±1 mod 8.

When p ≡ ±5 mod 8, the ideal (2) is prime inside Q(
√
δp ) because δp ≡ 5

mod 8. If a = (2), then 2 | (x − √
δpz) which implies that 2 | x, z, a

contradiction. Thus a = 1, and we argue like in the first case. ¤

4. The equation cyl = xp−1
x−1

We start by stating the following elementary lemma.

Lemma 4.1. Let a ∈ Z and p be an odd prime.

i) Φp(a) is odd.

ii) Set d = gcd(Ap(a), Bp(a)). Then d ∈ {1, 2}. If p ≡ ±1 mod 8, then d = 2.

Proof. i) Since Φp(a) ≡ 1 mod a, hence if a is even, Φp(a) is odd. If a is

odd, then Φp(a) ≡ Φ(1) = p mod 2.

ii) Assume that q | d, where q > 1 is an odd prime. We will write ã for the

reduction of a mod q.

If q 6= p, then (x − ã) | Ap(x), Bp(x) mod q because q | Ap(a) and Bp(a).

Hence (x − ã)2 | Φp(x) mod q. The latter statement contradicts the fact that

xp − 1 has no multiple factors mod q when gcd(q, p) = 1.

If q = p, then p2 | Φp(a). In particular ãp ≡ 1 mod p. Fermat’s Little

Theorem yields that there is a λ ∈ Z such that a = 1 + λp. So

Φp(a) =

p−1∑

i=0

ai =

p−1∑

i=0

(1 + λp)i ≡ p+ λp

p−1∑

i=0

i ≡ p mod p2,

which contradicts that p2 | Φp(a). We conclude that d | 2.
Now we assume p ≡ ±1 mod 8. Assume on the contrary that 2 - d. This

implies that both Ap(a) and Bp(a) are odd as 4 | A2
p(a)− (−1)(p−1)/2pB2

p(a). A

direct calculation shows that if Ap(a), Bp(a) are both odd, then

4Φp(a) = A2
p(a)− (−1)(p−1)/2pB2

p(a) ≡ 1− (−1)(p−1)/2p ≡ 0 mod 8,

which contradicts (i). ¤
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Corollary 4.2. Let p, c be distinct odd primes. Let l ≥ 2 be an integer.

Assume that (a, b) is an integer solution to the Diophantine equation cyl = Φp(x).

Then there exists an integer solution (x, y, z), where gcd(x, z) = 1 and y is odd,

to a Diophantine equation of the form

α2cyl = x2 − (−1)(p−1)/2pz2, α ∈ {1, 2}.

In the case p ≡ ±1 mod 8, one has α = 1.

Proof. One has 4c bl = 4Φp(a) = Ap(a)
2 − (−1)(p−1)/2pBp(a)

2, where

Ap(x), Bp(x) ∈ Z[x] and d = gcd(Ap(a), Bp(a)) | 2, Lemma 4.1. If d = 1, then

(Ap(a), b, Bp(a)) is a proper solution to 4cyl = x2 − (−1)(p−1)/2z2. If d = 2, then

(Ap(a)/2, b, Bp(a)/2) is a proper solution to cyl = x2 − (−1)(p−1)/2z2. Observe

that if p ≡ ±1 mod 8, then d = 2, Lemma 4.1 (ii). ¤

Now we state our main result which says that there is an infinite number of

triples (c, p, l) such that cyl = Φp(x) has no integer solution.

Theorem 4.3. Let p, c be distinct odd primes, and l ≥ 2 an integer. Set

δ = (−1)(p−1)/2. If the triple (p, c, l) satisfies one of the following conditions:

i)
(
δp
c

)
= −1;

ii)
(
c
p

)
= −1, and l is even;

iii) There exist no ideals I, J whose ideal classes are l-th powers in the class

group of Q(
√
δp) and satisfy (α2c) = IJ , where

α ∈
{
{1} if p ≡ ±1 mod 8

{1, 2} if p ≡ ±3 mod 8

then the Diophantine equation

cyl = Φp(x) =
xp − 1

x− 1
= xp−1 + xp−2 + · · ·+ x+ 1

has no integer solutions.

Proof. Assume on the contrary that there exists a proper integer solution

to cyl = Φp(x). This implies the existence of a proper integer solution to α2cyl =

x2 − δpz2, see Corollary 4.2. Hence we have a contradiction in (i) and (ii), see

Proposition 3.1. Furthermore one has a contradiction in case (iii) obtained using

Proposition 3.2. ¤
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Parts (i) and (ii) of the above theorem provide an infinite family of Diophan-

tine equations with no integer solutions. For example

13y2l = Φ137(x) = x136 + · · ·+ x+ 1

has no integer solutions because
(

13
137

)
= −1.

In the following example we show that (iii) of Theorem 4.3 can be used to

find explicit triples (c, l, p) such that the Diophantine equation cyl = Φp(x) has

no integer solutions.

Example 4.4. The Diophantine equation

3y5k = Φ47(x) = x46 + x45 + · · ·+ x+ 1, k ≥ 1,

has no integer solutions. We have 47 ≡ −1 mod 8 and (3) = pp′ in the ring of

integers of Q(
√−47 ). The class number of Q(

√−47 ) is 5. The ideal class [p]

of p can not be a fifth power inside the ideal class group of Q(
√−47 ) because [p]

generates the ideal class group.
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