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Integral type operators between logarithmic Bloch-type space
and F (p, q, s) space on the unit ball

By LI ZHANG (Tianjin) and ZE HUA ZHOU (Tianjin)

Abstract. Let H(BN ) be the space of all holomorphic functions on the unit ball

BN in CN , and S(BN ) the collection of all holomorphic self-maps of BN . Let ϕ ∈ S(BN )

and g ∈ H(BN ), the generalized composition operator is defined by

Cg
ϕ(f)(z) =

∫ 1

0

<f(ϕ(tz))g(tz)dt
t
,

and the product of composition and integral operators is defined by

P g
ϕ(f)(z) =

∫ 1

0

f(ϕ(tz))g(tz)
dt

t
.

In this paper, we characterize the boundedness and compactness of these two integral

operators, acting from the logarithmic Bloch-type space to F (p, q, s) space on the unit

ball BN .

1. Introduction

Let BN be the unit ball in the N -dimensional complex space CN , H(BN )

the space of all holomorphic functions on BN , and S(BN ) the collection of all
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holomorphic self-maps of BN . For f ∈ H(BN ), let

<f(z) = 〈∇f(z), z〉 =
N∑

j=1

zj
∂f

∂zj
(z)

be the radial derivative of f , where ∇f =
(

∂f
∂z1

, . . . , ∂f
∂zN

)
.

For α > 0, β ≥ 0, the logarithmic weighted-type space Hα
logβ is the space of

all f ∈ H(BN ) such that

‖f‖Hα

logβ
= sup

z∈BN
|f(z)|(1− |z|2)α

(
log

e

1− |z|2
)β

< ∞. (1)

The logarithmic Bloch-type space Bα
logβ , which was introduced in [14] and [15],

consists of all f ∈ H(BN ) such that

bα,β(f) = sup
z∈BN

|<f(z)|(1− |z|2)α
(
log

e

1− |z|2
)β

< ∞.

The norm on the logarithmic Bloch-type space is defined as

‖f‖Bα

logβ
= |f(0)|+ sup

z∈BN
|<f(z)|(1− |z|2)α

(
log

e

1− |z|2
)β

. (2)

For a ∈ BN , let h(z, a) = log |ϕa(z)|−1 be the Green’s function on BN with

logarithmic singularity at a, where ϕa is the Möbius transformation of BN with

ϕa(0) = a, ϕa(a) = 0 and ϕa = ϕ−1
a .

Let 0 < p, s < ∞,−n − 1 < q < ∞ and q + s > −1. We say that f is a

function in F (p, q, s) if f ∈ H(BN ) and

‖f‖pF (p,q,s) = |f(0)|p + sup
a∈BN

∫

BN
|<f(z)|p(1− |z|2)qhs(z, a)dυ(z) < ∞. (3)

It is known that if q + s ≤ −1, then F (p, q, s) is the space of constant

functions.

Every ϕ ∈ S(BN ) induces a composition operator Cϕ defined by Cϕf =

f ◦ ϕ for f ∈ H(BN ), z ∈ BN . It is of interest to provide function-theoretic

characterizations for when ϕ induces a bounded or compact composition operator

on various spaces. For some results on composition operators, see, e.g. [1] and

the references therein.
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Let g ∈ H(D) and ϕ ∈ S(D), where D is the unit disk of C. The generalized

composition operator is defined by

(Cg
ϕf)(z) =

∫ z

0

f ′(ϕ(ξ))g(ξ)dξ

for z ∈ D and f ∈ H(D). When g = ϕ′, we see that this operator is essenti-

ally composition operator, since the following difference Cg
ϕ − Cϕ is a constant.

Therefore, Cg
ϕ is a generalization of the composition operator Cϕ. The generali-

zed composition operator was introduced in [2] and [7]. For related results and

operators, see, e.g., [3], [4], [5] and the references therein.

Let ϕ ∈ S(BN ) and g ∈ H(BN ) with g(0) = 0. The following operator, so

called, generalized composition operator on the unit ball

(Cg
ϕf)(z) =

∫ 1

0

<f(ϕ(tz))g(tz)dt
t
, f ∈ H(BN ), z ∈ BN .

was recently introduced by S. Stević and X. Zhu and studied in [6], [8], [9],

[10], [17], [18], [20], [23], [25], [26], [28].

Let g ∈ H(D) and ϕ ∈ S(D). The product of integral and composition

operators on H(D), was introduced and studied by S. Li and S. Stević in [3]

and [4]. The operator is defined as follows:

JgCϕf(z) =

∫ z

0

f(ϕ(ξ))g(ξ)dξ. (4)

In [11], S. Stević has extended the operator in (4) to the unit ball setting as

follows: let ϕ ∈ S(BN ), g ∈ H(BN ) and g(0) = 0, the product of composition and

integral operators in the unit ball BN is defined in this way:

P g
ϕ(f)(z) =

∫ 1

0

f(ϕ(tz))g(tz)
dt

t
(5)

for f ∈ H(BN ), z ∈ BN .

If N = 1, then g ∈ H(D) and g(0) = 0, so that g(z) = zg0(z), for some

g0 ∈ H(D). By the change of variable ξ = tz, it follows that

P g
ϕ(f)(z) =

∫ 1

0

f(ϕ(tz))tzg0(tz)
dt

t
=

∫ z

0

f(ϕ(ξ))g0(ξ)dξ.

Thus operator (5) is a natural extension of the operator JgCϕ in (4). For some

recent results on this operator, see, e.g. [11], [12], [13], [16], [19], [21] and so on.
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Most of these papers are devoted to the discussions of the operators Cg
ϕ and

P g
ϕ, whose the image spaces are Bloch-type or weighted-type spaces, but there

are few results if the element of the image space is given by an integral condition,

such as Hardy space, Bergman space, Dirichlet space and so on. More recently, S.

Stević [7], [13] characterized the equivalent conditions about the boundedness

and compactness of Cg
ϕ and P g

ϕ acting from logarithmic Bloch-type space to the

mixed-norm space in the unit ball, respectively.

The present paper continues this and the line of research in [17], and charac-

terizes the boundedness and compactness of Cg
ϕ and P g

ϕ acting from logarithmic

Bloch-type space to F (p, q, s) space. The paper is organized as follows: Some

necessary lemmas will be presented in Section 2. Sections 3 and 4 are devoted

to characterizing the conditions about the boundedness and compactness of the

operators Cg
ϕ and P g

ϕ acting from logarithmic Bloch-type space to F (p, q, s) space

in the unit ball respectively.

Throughout the remainder of this paper, C will denote a positive constant,

the exact value of which will vary from one appearance to the next. The notation

a ¹ b means that there is a positive constant C such that a ≤ Cb. We say a ³ b,

if both a ¹ b and b ¹ a hold.

2. Auxiliary results

In this section we present several auxiliary results which will be used in the

proofs of some results in the next sections.

Lemma 2.1 (Lemma 4, [16]). Let f ∈ Bα
logβ . Then

|f(z)| ≤C





‖f‖Bα

logβ
α∈ (0, 1) or α=1, β > 1

|f(0)|+ bα,β(f)max

{
1, log log

eα/β

1− |z|
}

α = β = 1

|f(0)|+ bα,β(f)

(
log

eα/β

1− |z|
)1−β

α = 1, β ∈ (0, 1)

|f(0)|+ bα,β(f)

(1− |z|)α−1
(
log eα/β

1−|z|
)β α > 1, β ≥ 0

for some C > 0 independent of f .



Integral type operators between logarithmic Bloch-type space and. . . 411

Lemma 2.2 (Lemma 6, [13]). Assume α > 1 and β ≥ 0. Then there exist

n = n(N) ∈ N and functions f1, f2, . . . , fn ∈ Bα
logβ such that

|f1(z)|+ |f2(z)|+ · · ·+ |fn(z)| ≥ C

(1− |z|2)α−1
(
log e

1−|z|2
)β , z ∈ BN ,

where C is a positive constant.

Lemma 2.3. Assume α > 1 and β ≥ 0. Let fm, m ∈ {1, 2, . . . , n} be the

functions satisfying the conditions in Lemma 2.2. Then the function sequence

{F {m,l}
k }∞k=0 such that F

{m,l}
k (z) = zkl fm(z) is a bounded sequence in the space

Bα
logβ , and it converges to 0 uniformly on compact subsets of BN as k → ∞. Here

zl is l-th component of z ∈ BN .

Proof. We have

‖F {m,l}
k ‖Bα

logβ
= sup

z∈BN
(1− |z|2)α

(
log

e

1− |z|2
)β

|<(zkl fm(z))|

≤ sup
z∈BN

(1− |z|2)α
(
log

e

1− |z|2
)β

(|<fm(z)|+ |kzkl fm(z)|)

≤ bα,β(fm) + C2 sup
z∈BN

(1− |z|2)α( log e
1−|z|2

)β
bα,β(fm)

(1− |z|)α−1
(
log eα/β

1−|z|
)β · |kzkl |

≤ ‖fm‖Bα

logβ
+ C3 sup

zl∈D
k(1− |zl|)|zl|k‖fm‖Bα

logβ
.

Let h(x) = k(1− x)xk, x ∈ (0, 1), k ≥ 1. Then h′(x) = kxk−1[k − (k + 1)x], it is

easy to show that h(x) ≤ h( k
k+1 ) = ( k

k+1 )
k+1, so there is a positive constant M ,

such that ‖F {m,l}
k ‖Bα

logβ
≤ M .

Since for a compact subset K of BN , there is a positive constant r, such that

|z| < r < 1 when z ∈ K. By Lemma 2.1 and Lemma 2.2, it follows that

|F {m,l}
k (z)| ≤ |zkl fm(z)|

≤ M
bα,β(f)

(1− |z|)α−1
(
log eα/β

1−|z|
)β |zkl | ≤ M

rk

inf0≤t≤r(1− t)α−1
(
log eα/β

1−t

)β ,

from which it is obvious that the sequence {F {m,l}
k }∞k=0 converges to 0 uniformly

on compact subsets of BN as k → ∞. This ends the proof of this lemma. ¤

The following lemma was obtained by Stevo Stević in [14].
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Lemma 2.4 (Lemma 7, [14]). Assume α > 0 and β ≥ 0. Then there exist

n = n(N) ∈ N and functions f1, f2, . . . , fn ∈ Hα
logβ such that

|f1(z)|+ · · ·+ |fn(z)| ≥ C

(1− |z|2)α( log e
1−|z|2

)β , z ∈ BN ,

where C is a positive constant.

By the above lemma and Lemma 10 in [17], we have the following result.

Corollary 2.1. Assume α > 0, β ≥ 0 and r ∈ (0, 1). Then there exist

n = n(N) ∈ N and functions F1, F2, . . . , Fn ∈ Bα
logβ such that

|<F1(z)|+ · · ·+ |<Fn(z)| ≥ C

(1− |z|2)α( log e
1−|z|2

)β ,

for |z| > r, where C is a positive constant depending only on r.

According to the lemmas in [8], [10], [12], we have the following lemma.

Lemma 2.5. Assume that ϕ ∈ S(BN ), and g ∈ H(BN ) with g(0) = 0. Then

for every f ∈ H(BN ) it holds

<Cg
ϕ(f)(z) = <f(ϕ(z))g(z)

and

<P g
ϕ(f)(z) = f(ϕ(z))g(z).

Lemma 2.6. Assume α > 0, β ≥ 0. Let {fm}nm=1 be the functions in Lem-

ma 2.4. Then there is a bounded sequence {Fk}∞k=1 in Bα
logβ such that <Fk(z) =

zkl fm(z), zl is l-th component of z ∈ BN , and it converges to 0 uniformly on

compact subsets of BN as k → ∞.

Proof. For fixed m and l, let F
{m,l}
k (z) =

∫ 1

0
zk
l t

kfm(tz)
t dt (k = 1, 2, . . . ). It

is easy to see that F
{m,l}
k (0) = 0 and that by Lemma 2.5, <F {m,l}

k (z) = zkl fm(z).

Therefore,

‖F {m,l}
k (z)‖Bα

logβ
= sup

z∈BN
(1− |z|2)α

(
log

e

1− |z|2
)β

|zkl fm(z)| ≤ ‖fm‖Hα

logβ
< ∞.

For a compact subsetK of BN , there is a positive constant r, such that |z| < r < 1

when z ∈ K. By Lemma 2.1 and Lemma 2.4, it follows that

|F {m}
k,l (z)| ≤ rk

∫ 1

0

tk|fm(tz)|
t

dt ≤ Mrk‖fm‖Hα

logβ

for z ∈ K. From which we can easily get that F
{m,l}
k converges to 0 on compacts

subset of BN as k → ∞. ¤
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Lemma 2.7 (Lemma 2.1, [24]). For 0 < p, s < ∞, −p − 1 < q < ∞,

q + s > −1, if f ∈ F (p, q, s), then f ∈ B n+1+q
p and

‖f‖
B

n+1+q
p

< C‖f‖F (p,q,s).

The next lemma is well-known.

Lemma 2.8. For 0 < p < ∞, there is a positive constant Cp depending on p

and n, such that (
∑n

i=1 xi)
p ≤ Cp(

∑n
i=1 x

p
i ), when xi ∈ (0,∞), i ∈ {1, 2, . . . , n}.

The following lemma can be proved in a standard way (see, for example,

Proposition 3.11 in [1]), we omit its proof.

Lemma 2.9. Suppose that ϕ ∈ S(BN ) and g ∈ H(BN ), g(0) = 0. Then

the operator Cg
ϕ : Bα

logβ → F (p, q, s) is compact if and only if for any bounded

sequence {fk}k∈N in Bα
logβ which converges to zero uniformly on compact subsets

of BN , we have ‖Cg
ϕfk‖pF (p,q,s) → 0 as k → ∞.

Lemma 2.9 also holds if operator Cg
ϕ is replace by P g

ϕ.

3. Boundedness and compactness of Cg
ϕ : Bα

logβ → F (p, q, s)

In this section we study the boundedness and compactness of the operator

Cg
ϕ : Bα

logβ → F (p, q, s).

Theorem 3.1. Suppose that α > 0, β ≥ 0, ϕ ∈ S(BN ) and g ∈ H(BN ),

g(0) = 0. Then Cg
ϕ is bounded from Bα

logβ to F (p, q, s) if and only if

sup
a∈BN

∫

BN

(1− |z|2)q|ϕ(z)g(z)|phs(z, a)

[(1− |ϕ(z)|2)α(log e
1−|ϕ(z)|2 )

β ]p
dυ(z) < ∞. (6)

Proof. Suppose that (6) holds, we prove Cg
ϕ is bounded. By Lemma 2.5

and the equivalence of norm on Bα
logβ , it follows that there is a constant M such

that

‖Cg
ϕf‖pF (p,q,s) = sup

a∈BN

∫

BN
(1− |z|2)q|<f(ϕ(z))g(z)|phs(z, a)dυ(z)

≤ sup
a∈BN

∫

BN

(1− |z|2)q|ϕ(z)g(z)|phs(z, a)

[(1− |ϕ(z)|2)α(log e
1−|ϕ(z)|2 )

β ]p

·
∣∣∣∣∣(1− |ϕ(z)|2)α

(
log

e

1− |ϕ(z)|2
)β

∇f(ϕ(z))

∣∣∣∣∣

p

dυ(z)



414 Li Zhang and Ze Hua Zhou

≤ C sup
a∈BN

∫

BN

(1− |z|2)q|ϕ(z)g(z)|phs(z, a)

[(1− |ϕ(z)|2)α(log e
1−|ϕ(z)|2 )

β ]p
dυ(z) · ‖f‖pBα

logβ
≤ M‖f‖pBα

logβ
.

So we have the boundedness of Cg
ϕ.

Conversely, we assume that there exists a positive constant M such that

‖Cg
ϕf‖F (p,q,s) ≤ M‖f‖Bα

logβ
for every f ∈ Bα

logβ . For some r0 ∈ (0, 1), by Corol-

lary 2.1, we can find f1, . . . , fn in Bα
logβ such that

n∑

k=1

|<fk(z)| ≥ C

(1− |z|2)α( log e
1−|z|2

)β , |z| > r0.

Then using Lemma 2.8, there are two constants Cp and C such that

∞ >

n∑

k=1

‖Cg
ϕfk‖pF (p,q,s)=

n∑

k=1

sup
a∈BN

∫

BN
(1− |z|2)q|g(z)|phs(z, a)|<fk(ϕ(z))|pdυ(z)

≥
n∑

k=1

sup
a∈BN

∫

|ϕ(z)|>r0

(1− |z|2)q|g(z)|phs(z, a)|<fk(ϕ(z))|pdυ(z)

≥ 1

Cp
sup
a∈BN

∫

|ϕ(z)|>r0

(1− |z|2)q|g(z)|phs(z, a)

(
n∑

k=1

|<fk(ϕ(z))|
)p

dυ(z)

≥ C sup
a∈BN

∫

|ϕ(z)|>r0

(1− |z|2)q|g(z)|phs(z, a)

[(1− |ϕ(z)|2)α(log e
1−|ϕ(z)|2 )

β ]p
dυ(z)

≥ C sup
a∈BN

∫

|ϕ(z)|>r0

(1− |z|2)q|ϕ(z)g(z)|phs(z, a)

[(1− |ϕ(z)|2)α(log e
1−|ϕ(z)|2 )

β ]p
dυ(z).

When |ϕ(z)| ≤ r0, put Gj(z) = zj for j = 1, 2, . . . , N , it is obvious that

Gj(z) ∈ Bα
logβ . Since |ϕ(z)|2 = |ϕ1(z)|2+· · ·+|ϕN (z)|2 ≤ (|ϕ1(z)|+· · ·+|ϕN (z)|)2

and by Lemma 2.8, we have

sup
a∈BN

∫

|ϕ(z)|≤r0

(1− |z|2)q|ϕ(z)g(z)|phs(z, a)

[(1− |ϕ(z)|2)α(log e
1−|ϕ(z)|2 )

β ]p
dυ(z)

≤ sup
a∈BN

sup
0≤r≤r0

[
(1− r2)α

(
log

e

1− r2

)β
]−p

·
∫

|ϕ(z)|≤r0

(1− |z|2)q|ϕ(z)g(z)|phs(z, a)dυ(z)

≤ C sup
a∈BN

∫

|ϕ(z)|≤r0

(1− |z|2)q
∣∣∣∣∣∣

N∑

j=1

ϕj(z)

∣∣∣∣∣∣

p

|g(z)|phs(z, a)dυ(z)
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≤ C

N∑

j=1

sup
a∈BN

∫

|ϕ(z)|≤r0

(1− |z|2)q|ϕj(z)g(z)|phs(z, a)dυ(z)

≤ C

N∑

j=1

‖Cg
ϕGj‖pF (p,q,s) < ∞.

Thus we get (6). ¤

Now we characterize the compactness of the operator.

Theorem 3.2. Suppose that α > 0, β ≥ 0, ϕ ∈ S(BN ) and g ∈ H(BN ),

g(0) = 0. Then Cg
ϕ is compact from Bα

logβ to F (p, q, s) if and only if (6) holds

and

lim
r→1

sup
a∈BN

∫

|ϕ(z)|>r

(1− |z|2)q|g(z)|phs(z, a)

[(1− |ϕ(z)|2)α(log e
1−|ϕ(z)|2 )

β ]p
dυ(z) = 0. (7)

Proof. First, assume that Cg
ϕ is compact, then it is bounded, and (6) follows

by Theorem 3.1.

Now we prove (7). Consider the test functions F
{m,l}
k in Lemma 2.6.

Write ϕ = (ϕ1, . . . , ϕN ), since Cg
ϕ is compact, by Lemma 2.9, it follows that

as k → ∞,

‖Cg
ϕF

{m,l}
k ‖pF (p,q,s)

= sup
a∈BN

∫

BN
|ϕl(z)|kp|fm(ϕ(z))|p|g(z)|p(1− |z|2)qhs(z, a)dυ(z) → 0. (8)

Note that |ϕ(z)| ≤ |ϕ1(z)|+ · · ·+ |ϕN (z)|, by the relation (8) and Lemma 2.8, we

have

sup
a∈BN

∫

BN
|ϕ(z)|kp|fm(ϕ(z))g(z)|p(1− |z|2)qhs(z, a)dυ(z)

≤ sup
a∈BN

∫

BN

(
n∑

l=1

|ϕl(z)|
)kp

|fm(ϕ(z))g(z)|p(1− |z|2)qhs(z, a)dυ(z)

≤ C sup
a∈BN

∫

BN

(
n∑

l=1

|ϕl(z)|kp
)
|fm(ϕ(z))g(z)|p(1−|z|2)qhs(z, a)dυ(z)→ 0, k→∞

for m ∈ {1, 2, . . . , n}.
Since (1−|z|2)α( log e

1−|z|2
)β → 0 as |z| → 1, this means that for every ε > 0,

there is a k0 ∈ N such that for every r ∈ (0, 1),

rk0p sup
a∈BN

∫

|ϕ(z)|>r

|g(z)|p(1− |z|2)qhs(z, a)

[(1− |ϕ(z)|2)α(log e
1−|ϕ(z)|2 )

β ]p
dυ(z)
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≤ sup
a∈BN

∫

|ϕ(z)|>r

rk0p|g(z)|p(1− |z|2)qhs(z, a)

[(1− |ϕ(z)|2)α(log e
1−|ϕ(z)|2 )

β ]p
dυ(z)

≤ C sup
a∈BN

∫

|ϕ(z)|>r

|ϕ(z)|k0p

(
n∑

m=1

|fm(ϕ(z))|
)p

|g(z)|p(1− |z|2)qhs(z, a)dυ(z)

≤ Cp sup
a∈BN

∫

|ϕ(z)|>r

|ϕ(z)|k0p

(
n∑

m=1

|fm(ϕ(z))|p
)
|g(z)|p(1− |z|2)qhs(z, a)dυ(z)

≤ Cp

n∑
m=1

sup
a∈BN

∫

BN
|ϕ(z)|k0p|fm(ϕ(z))|p|g(z)|p(1− |z|2)qhs(z, a)dυ(z) < ε.

Thus when r > 2−
1

k0p , by the above inequality we obtain

sup
a∈BN

∫

|ϕ(z)|>r

(1− |z|2)q|g(z)|phs(z, a)

[(1− |ϕ(z)|2)α(log e
1−|ϕ(z)|2 )

β ]p
dυ(z) < 2ε.

From which (7) follows.

Conversely, suppose that (7) holds, then for ε > 0, we can find a constant

r0 ∈ (0, 1) such that

sup
a∈BN

∫

|ϕ(z)|>r0

(1− |z|2)q|g(z)|phs(z, a)

[(1− |ϕ(z)|2)α(log e
1−|ϕ(z)|2 )

β ]p
dυ(z) < ε. (9)

Let {fk}k∈N be a bounded sequence in Bα
logβ with

‖fk‖Bα

logβ
≤ M, k ∈ N,

and fk → 0 uniformly on any compact subset of BN as k → ∞. Then

‖Cg
ϕfk‖pF (p,q,s) = sup

a∈BN

∫

BN
(1− |z|2)qhs(z, a)|<fk(ϕ(z))g(z)|pdυ(z)

≤ sup
a∈BN

∫

|ϕ(z)|≤r0

(1− |z|2)q|g(z)|phs(z, a)|<fk(ϕ(z))|pdυ(z)

+ sup
a∈BN

∫

|ϕ(z)|>r0

(1− |z|2)q|g(z)|phs(z, a)|<fk(ϕ(z))|pdυ(z)

≤ Mp
k (r0) sup

a∈BN

∫

|ϕ(z)|≤r0

(1− |z|2)q|ϕ(z)g(z)|phs(z, a)

[(1− |ϕ(z)|2)α( log e
1−|ϕ(z)|2

)β
]p
dυ(z)

+ sup
a∈BN

∫

|ϕ(z)|>r0

(1− |z|2)q|g(z)|phs(z, a)

[(1− |ϕ(z)|2)α( log e
1−|ϕ(z)|2

)β
]p
dυ(z) · ‖fk‖pBα

logβ

= I1(k) + I2(k)
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here Mk(r0) = supz∈r0BN
{
(1− |z|2)α( log e

1−|z|2
)β∣∣<fk(z)

z

∣∣}.
Since fk → 0 as k → ∞, uniformly on compact subset of BN , Mk(r0) <(

log e
1−r0

)β
sup{|ϕ(z)|≤r0} |∇fk(ϕ(z))|, it follows from (6) and the Weierstrass the-

orem that I1(k) → 0 as k → ∞.

Since ‖fk‖Bα

logβ
≤ M , it follows from (9) that I2(k) < εMp. Then, when

k → ∞, ‖Cg
ϕfk‖pF (p,q,s) → 0, hence by Lemma 2.9, we get that Cg

ϕ is compact.

This completes the proof of this theorem. ¤

4. Boundedness and compactness of P g
ϕ : Bα

logβ → F (p, q, s)

In this section we characterize the boundedness and compactness of P g
ϕ ac-

cording to the four cases depending on the choice of the parameters of α and β.

4.1. Case α > 1.

Theorem 4.1. Suppose that α > 1, β ≥ 0, ϕ ∈ S(BN ) and g ∈ H(BN ),

g(0) = 0. Then P g
ϕ is bounded from Bα

logβ to F (p, q, s) if and only if

sup
a∈BN

∫

BN

(1− |z|2)q|g(z)|phs(z, a)

[(1− |ϕ(z)|2)α−1
(
log e

1−|ϕ(z)|2
)β
]p
dυ(z) < ∞. (10)

Proof. First, we assume that (10) holds. Then by Lemma 2.1 and Lem-

ma 2.5, we have

‖P g
ϕf‖pF (p,q,s) = sup

a∈BN

∫

BN
(1− |z|2)q|g(z)|phs(z, a)|f(ϕ(z))|pdυ(z)

≤ sup
a∈BN

∫

BN
(1− |z|2)q|g(z)|phs(z, a) ·

(
C‖f‖Bα

logβ

(1− |ϕ(z)|)α−1
(
log eα/β

1−|ϕ(z)|
)β

)p

dυ(z)

³ sup
a∈BN

∫

BN

(1− |z|2)q|g(z)|phs(z, a)

[(1− |ϕ(z)|2)α−1
(
log e

1−|ϕ(z)|2
)β
]p
dυ(z) · ‖f‖pBα

logβ
≤ C‖f‖pBα

logβ
.

From which the boundedness of P g
ϕ follows.

For the converse direction, we suppose that P g
ϕ is bounded. By Lemma 2.2,

we can find f1, f2, . . . , fn such that

n∑

i=1

‖P g
ϕfi‖pF (p,q,s) < ∞
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and
n∑

i=1

|fi(z)| ≥ C

(1− |z|2)α−1
(
log e

1−|z|2
)β .

By some elementary inequalities and Lemma 2.8, we obtain

∞ >

n∑

i=1

‖P g
ϕfi‖pF (p,q,s)

= sup
a∈BN

∫

BN
(1− |z|2)q|g(z)|phs(z, a)

(
n∑

i=1

|fi(ϕ(z))|p
)
dυ(z)

≥ 1

Cp
sup
a∈BN

∫

BN
(1− |z|2)q|g(z)|phs(z, a)

(
n∑

i=1

|fi(ϕ(z))|
)p

dυ(z)

≥ 1

Cp
sup
a∈BN

∫

BN

(1− |z|2)q|g(z)|phs(z, a)

[(1− |ϕ(z)|2)α−1(log e
1−|ϕ(z)|2 )

β ]p
dυ(z).

The proof of this theorem is completed. ¤

Theorem 4.2. Let α > 1, β ≥ 0. Suppose that ϕ ∈ S(BN ) and g ∈ H(BN ),

g(0) = 0. Then P g
ϕ is compact from Bα

logβ to F (p, q, s) if and only if (10) holds

and

lim
r→1

sup
a∈BN

∫

|ϕ(z)|>r

(1− |z|2)q|g(z)|phs(z, a)

[(1− |ϕ(z)|2)α−1
(
log e

1−|ϕ(z)|2
)β
]p
dυ(z) = 0. (11)

Proof. First, assume that P g
ϕ is compact, then it is obviously bounded, and

the condition in (10) follows by Theorem 4.1.

Next we prove (11). Setting the test functions F
{m,l}
k in Lemma 2.3.

‖P g
ϕF

{m,l}
k ‖pF (p,q,s)

= sup
a∈BN

∫

BN
|ϕl(z)|kp|fm(ϕ(z))|p|g(z)|p(1− |z|2)qhs(z, a)dυ(z) → 0

when k → ∞, here ϕ = (ϕ1, . . . , ϕN ).

From which and by Lemma 2.8, we have

sup
a∈BN

∫

BN
|ϕ(z)|kp|fm(ϕ(z))g(z)|p(1− |z|2)qhs(z, a)dυ(z)

≤ C sup
a∈BN

∫

BN

(
n∑

l=1

|ϕl(z)|kp
)
|fm(ϕ(z))g(z)|p(1− |z|2)qhs(z, a)dυ(z) → 0,
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as k → ∞ for m ∈ {1, 2, . . . , n}.
For every ε > 0, there is a k0 ∈ N such that for every r ∈ (0, 1),

rk0p sup
a∈BN

∫

|ϕ(z)|>r

|g(z)|p(1− |z|2)qhs(z, a)

[(1− |ϕ(z)|2)α−1
(
log e

1−|ϕ(z)|2
)β
]p
dυ(z)

≤ Cp

n∑
m=1

sup
a∈BN

∫

BN
|ϕ(z)|k0p|fm(ϕ(z))|p|g(z)|p(1− |z|2)qhs(z, a)dυ(z) < ε.

Thus when r > 2−
1

k0p , by the above inequality we obtain (11).

Conversely, suppose that (11) holds. Then for every ε > 0, we can find an

r0 ∈ (0, 1) such that

sup
a∈BN

∫

|ϕ(z)|>r0

(1− |z|2)q|g(z)|phs(z, a)[
(1− |ϕ(z)|2)α−1

(
log e

1−|ϕ(z)|2
)β]p dυ(z) < ε. (12)

Let {fk}k∈N be a bounded sequence in Bα
logβ with

‖fk‖Bα

logβ
≤ M, k ∈ N,

and fk → 0 uniformly on any compact subset of BN as k → ∞. Then by

Lemma 2.1,

‖P g
ϕfk‖pF (p,q,s) = sup

a∈BN

∫

BN
(1− |z|2)q|g(z)|phs(z, a)|fk(ϕ(z))|pdυ(z)

≤ sup
a∈BN

∫

|ϕ(z)|≤r0

(1− |z|2)q|g(z)|phs(z, a)|fk(ϕ(z))|pdυ(z)

+ sup
a∈BN

∫

|ϕ(z)|>r0

(1− |z|2)q|g(z)|phs(z, a)|fk(ϕ(z))|pdυ(z)

≤ Mp
k (r0) sup

a∈BN

∫

|ϕ(z)|≤r0

(1− |z|2)q|g(z)|phs(z, a)

[(1− |ϕ(z)|2)α−1(log e
1−|ϕ(z)|2 )

β ]p
dυ(z)

+ C sup
a∈BN

∫

|ϕ(z)|>r0

(1− |z|2)q|g(z)|phs(z, a)

[(1− |ϕ(z)|2)α−1(log e
1−|ϕ(z)|2 )

β ]p
dυ(z) · ‖fk‖pBα

logβ

= I1(k) + I2(k),

here Mk(r0) = supz∈r0BN {(1− |z|2)α−1
(
log e

1−|z|2
)β

|fk(z)|}.
Since fk → 0 as k → ∞, uniformly on compact subset of BN , so Mk(r0) <(

log e
1−r0

)β
sup{|ϕ(z)|≤r0} |fk(ϕ(z))|, by (10), we get I1(k) → 0 as k → ∞.

Note that ‖fk‖Bα

logβ
≤ M and by (12), we obtain I2(k) < CMpε. Thus,

‖P g
ϕfk‖pF (p,q,s) → 0 as k → ∞, and from Lemma 2.9 the compactness of P g

ϕ

follows. So the proof of this theorem is complete. ¤
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4.2. Case α ∈ (0, 1), or α = 1 and β > 1. Because when α ∈ (0, 1), or α = 1

and β > 1, the condition (6) in [17] holds, the results can be consulted in [17].

4.3. Case α = 1 and β ∈ (0, 1).

Theorem 4.3. Assume α = 1 and β ∈ (0, 1), ϕ ∈ S(BN ) and g ∈ H(BN ),

g(0) = 0. Then

(i) P g
ϕ is bounded from Bα

logβ to F (p, q, s) if

sup
a∈BN

∫

BN

(1− |z|2)q|g(z)|phs(z, a)

(log e
1−|ϕ(z)|2 )

p(1−β)
dυ(z) < ∞. (13)

(ii) P g
ϕ is compact from Bα

logβ to F (p, q, s) if (13) holds and

lim
r→1

sup
a∈BN

∫

|ϕ(z)|>r

(1− |z|2)q|g(z)|phs(z, a)

(log e
1−|ϕ(z)|2 )

p(1−β)
dυ(z) = 0.

Proof. Assume that (13) holds. If f ∈ Bα
logβ , then by Lemma 2.1 and

Lemma 2.5, we have

‖P g
ϕf‖pF (p,q,s) = sup

a∈BN

∫

BN
(1− |z|2)q|g(z)|phs(z, a)|f(ϕ(z))|pdυ(z)

≤ sup
a∈BN

∫

BN
(1− |z|2)q|g(z)|phs(z, a)


 C‖f‖Bα

logβ(
log eα/β

1−|ϕ(z)|
)1−β




p

dυ(z)

³ sup
a∈BN

∫

BN

(1− |z|2)q|g(z)|phs(z, a)
(
log e

1−|ϕ(z)|2
)p(1−β)

dυ(z) · ‖f‖pBα

logβ
.

Thus we get the boundedness. The proof of compactness is also similar to that

of Theorem 4.2, so it is omitted. ¤

4.4. Case α = β = 1. By using the same methods as in the proofs of the previous

theorems, we can prove the next theorem.

Theorem 4.4. Assume α = β = 1, ϕ ∈ S(BN ) and g ∈ H(BN ), g(0) = 0.

Then

(i) P g
ϕ is bounded from Bα

logβ to F (p, q, s) if

sup
a∈BN

∫

BN

(1− |z|2)q|g(z)|phs(z, a)(
max

{
1, log log e

1−|ϕ(z)|2
})p dυ(z) < ∞. (14)

(ii) P g
ϕ is compact from Bα

logβ to F (p, q, s) if (14) holds and

lim
r→1

sup
a∈BN

∫

|ϕ(z)|>r

(1− |z|2)q|g(z)|phs(z, a)

(max{1, log log e
1−|ϕ(z)|2 })p

dυ(z) = 0.
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5. Other two operators

If we use the radial derivative of some function k to instead of g in operators

P g
ϕ and Cg

ϕ, we can get the following two operators:

(Lk
ϕf)(z) =

∫ 1

0

<f(ϕ(tz))<k(tz)dt
t
, f ∈ H(BN ), z ∈ BN ,

and

(V k
ϕ f)(z) =

∫ 1

0

f(ϕ(tz))<k(tz)dt
t
, f ∈ H(BN ), z ∈ BN .

The operator V k
ϕ is called Volterra composition operator and studied in [22],

[25], [27], [29]. According the previous sections, we can obtain the results about

the operators at once, here we just list partial results.

Theorem 5.1. Suppose that α > 0, β ≥ 0, ϕ ∈ S(BN ) and k ∈ H(BN ).

Then Lk
ϕ is bounded from Bα

logβ to F (p, q, s) if and only if

sup
a∈BN

∫

BN

(1− |z|2)q|ϕ(z)<k(z)|phs(z, a)

[(1− |ϕ(z)|2)α( log e
1−|ϕ(z)|2

)β
]p
dυ(z) < ∞. (15)

Theorem 5.2. Suppose that α > 0, β ≥ 0, ϕ ∈ S(BN ) and k ∈ H(BN ).

Then Lk
ϕ is compact from Bα

logβ to F (p, q, s) if and only if (15) holds and

lim
r→1

sup
a∈BN

∫

|ϕ(z)|>r

(1− |z|2)q|<k(z)|phs(z, a)

[(1− |ϕ(z)|2)α( log e
1−|ϕ(z)|2

)β
]p
dυ(z) = 0. (16)

Theorem 5.3. Suppose that α > 1, β ≥ 0, ϕ ∈ S(BN ) and k ∈ H(BN ).

Then V k
ϕ is bounded from Bα

logβ to F (p, q, s) if and only if

sup
a∈BN

∫

BN

(1− |z|2)q|<k(z)|phs(z, a)

[(1− |ϕ(z)|2)α−1
(
log e

1−|ϕ(z)|2
)β
]p
dυ(z) < ∞. (17)

Theorem 5.4. Let α > 1, β ≥ 0. Suppose that ϕ ∈ S(BN ) and k ∈ H(BN ).

Then V k
ϕ is compact from Bα

logβ to F (p, q, s) if and only if (17) holds and

lim
r→1

sup
a∈BN

∫

|ϕ(z)|>r

(1− |z|2)q|<k(z)|phs(z, a)

[(1− |ϕ(z)|2)α−1
(
log e

1−|ϕ(z)|2
)β
]p
dυ(z) = 0. (18)

Theorem 5.5. Assume α ∈ (0, 1), or α = 1 and β > 1, ϕ ∈ S(BN ) and

k ∈ H(BN ). Then V k
ϕ is bounded from Bα

logβ to F (p, q, s) if and only if

sup
a∈BN

∫

BN
|<k(z)|p(1− |z|2)qhs(z, a)dυ(z) < ∞. (19)
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[10] S. Stević, On an integral operator between Bloch-type spaces on the unit ball, Bull. Sci.
Math. 134 (2010), 329–339.
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