On Cartan torsion of Finsler metrics

By AKBAR TAYEBI (Qom) and HASSAN SADEGHI (Qom)

Abstract

In this paper, we find a relation between the norm of Cartan and mean Cartan torsions of Finsler metrics defined by a Riemannian metric and a 1-form on a manifold. Then, we find a subclass of these metrics which have bounded Cartan torsion. It turns out that every C-reducible Finsler metric has bounded Cartan torsion.

1. Introduction

In Finsler geometry, there are several important non-Riemannian quantities. Let (M, F) be a Finsler manifold. The second and third order derivatives of $\frac{1}{2} F_{x}^{2}$ at $y \in T_{x} M_{0}$ are inner products \mathbf{g}_{y} and symmetric trilinear forms \mathbf{C}_{y} on $T_{x} M$, respectively. We call \mathbf{g}_{y} and \mathbf{C}_{y} the fundamental form and the Cartan torsion, respectively. The Cartan torsion is one of the most important non-Riemannian quantity in Finsler geometry and it was first introduced by Finsler [4] and emphased by Cartan [2]. A Finsler metric reduces to a Riemannian metric if and only if it has vanishing Cartan torsion. Taking a trace of Cartan torsion yields the mean Cartan torsion \mathbf{I}_{y}. In [3], Deicke proves that a positive definite Finsler metric F is Riemannian if and only if the mean Cartan torsion vanishes.

One of the fundamental problems in Finsler geometry is whether or not every Finsler manifold can be isometrically immersed into a Minkowski space, which is a finite-dimensional Banach space. The answer is affirmative for Riemannian manifolds. In [10], J. Nash proved that any n-dimensional Riemannian manifold can be isometrically imbedded into a higher dimensional Euclidean space. However

Mathematics Subject Classification: 53B40, 53C60.
Key words and phrases: Cartan torsion, Kropina metric, Randers metric.
for general Finsler manifolds, the problem becomes very difficult. In [5], IngarDEN proves that every n-dimensional Finsler manifold can be locally isometrically imbedded into a $2 n$-dimensional "Weak" Minkowski space, i.e., a space whose indicatrix is not necessarily strongly convex. Then Burago-Ivanov show that any compact C^{r} manifold $(r \geq 3)$ with a C^{2} Finsler metric admits a C^{r} imbedding into a finite-dimensional Banach spaces [1]. Recently, SHEN proved that a Finsler manifold with unbounded Cartan torsion can not be isometrically imbedded into any Minkowski space [14]. Thus the norm of Cartan torsion plays an important role for studying of immersion theory in Finsler geometry.

In this paper, we consider the class of (α, β)-metrics and find the form of Cartan torsion of these metrics. We show that there exists a relation between the norm of Cartan and mean Cartan torsions of an (α, β)-metric. More precisely, we prove the following.

Theorem 1.1. Let $F=\alpha \phi(s)$ be a non-Riemannian (α, β)-metric on a manifold M of dimension $n \geq 3$. Then the norm of Cartan and mean Cartan torsion of F satisfy in following relation

$$
\begin{equation*}
\|\mathbf{C}\|=\sqrt{\frac{3 p^{2}+6 p q+(n+1) q^{2}}{n+1}}\|\mathbf{I}\| \tag{1}
\end{equation*}
$$

where $p=p(x, y)$ and $q=q(x, y)$ are scalar function on $T M$ satisfying $p+q=1$ and given by following

$$
\begin{align*}
p & =\frac{n+1}{a A}\left[s\left(\phi \phi^{\prime \prime}+\phi^{\prime} \phi^{\prime}\right)-\phi \phi^{\prime}\right] \tag{2}\\
a & :=\phi\left\{\phi-s \phi^{\prime}\right\} \tag{3}\\
A & =(n-2) \frac{s \phi^{\prime \prime}}{\phi-s \phi^{\prime}}-(n+1) \frac{\phi^{\prime}}{\phi}-\frac{-3 s \phi^{\prime \prime}+\left(b^{2}-s^{2}\right) \phi^{\prime \prime \prime}}{\phi-s \phi^{\prime}+\left(b^{2}-s^{2}\right) \phi^{\prime \prime}} . \tag{4}
\end{align*}
$$

In [13], Shen proved that the Cartan torsion of Randers metrics $F=\alpha+\beta$ is uniformly bounded by $3 / \sqrt{2}$. Then Mo extend his result to a more general Finsler metrics, namely, $F=\frac{(\alpha+\beta)^{m}}{\alpha^{m-1}}(m \in[1,2])$ [9].

All of above metrics are special Finsler metrics so- called (α, β)-metrics. Let us narrate a brief history of (α, β)-metrics. This marchen originated in 1941 by a physicist G. Randers, who was first introduced the notion of Randers metrics to consider the unified field theory [11]. A Randers metric $F=\alpha+\beta$ on a manifold M is just a Riemannian metric $\alpha=\sqrt{a_{i j} y^{i} y^{j}}$ perturbated by a one form $\beta=b_{i}(x) y^{i}$ on M such that $\|\beta\|_{\alpha}<1$ [15]. In the same time, another
event was happened by a geometrician L. Berwald in connection with a twodimensional Finsler space with rectilinear extremal and was investigated by V. K. Kropina [6]. Consequently, other match of Randers metric called Kropina metric $F=\alpha^{2} / \beta$ was born. Furthermore, by considering Kropina and Randers metrics, Matsumoto introduced the notion of (α, β)-metrics [6]. An (α, β)-metric is a Finsler metric on M defined by $F:=\alpha \phi(s)$, where $s=\beta / \alpha, \phi=\phi(s)$ is a C^{∞} function on the $\left(-b_{0}, b_{0}\right)$ with certain regularity, α is a Riemannian metric and β is a 1 -form on M. Therefore, a natural question arises:

Is there any class of Finsler metrics which has bounded Cartan torsion?
In this paper, we consider a subclass of (α, β)-metrics which have the following form

$$
F=\frac{\alpha^{m+1}}{\beta^{m}}, \quad(m \neq 0)
$$

and called by generalized Kropina metric [6]. Then we prove the following.
Theorem 1.2. Suppose that $F=\frac{\alpha^{m+1}}{\beta^{m}}$ be a generalized Kropina metric on a manifold M. Then the Cartan torsion of F is bounded. More precisely, the following holds

$$
\|\mathbf{C}\|=\frac{(2 m+1)}{\sqrt{m(m+1)}}
$$

2. Proof of Theorem 1.1

In this section, we are going to prove the Theorem 1.1. Thus, we must compute the Cartan torsion of an (α, β)-metric. Let $F=\alpha \phi(s), s=\frac{\beta}{\alpha}$. It is easy to see that the following relations hold

$$
\begin{equation*}
\rho^{\prime}=\alpha \rho_{1}, \quad-s \rho^{\prime}=\alpha^{2} \rho_{2}, \quad-s \rho_{0}^{\prime}=\alpha \rho_{1}^{\prime}, \quad-s \rho_{1}^{\prime}=\alpha \rho_{2}^{\prime} \tag{5}
\end{equation*}
$$

A direct computation shows that the Cartan curvature of F is given by the following

$$
\begin{align*}
2 C_{i j k}: & =\rho_{1}\left[a_{i j} b_{k}+a_{j k} b_{i}+a_{k i} b_{j}\right]+\rho_{2}\left[a_{i j} y_{k}+a_{j k} y_{i}+a_{k i} y_{j}\right] \\
& +\frac{\rho_{0}^{\prime}}{\alpha} b_{i} b_{j} b_{k}-\frac{\rho_{2}^{\prime}}{\alpha^{2}} s y_{i} y_{j} y_{k}+\frac{\rho_{1}^{\prime}}{\alpha}\left[b_{i} b_{j} y_{k}+b_{j} b_{k} y_{i}+b_{k} b_{i} y_{j}\right] \\
& +\frac{\rho_{2}^{\prime}}{\alpha}\left[b_{i} y_{j} y_{k}+b_{j} y_{k} y_{i}+b_{k} y_{i} y_{j}\right] . \tag{6}
\end{align*}
$$

By (5) and (6), we have

$$
\begin{align*}
2 C_{i j k}= & {\left[\rho_{1}-\rho_{2} \alpha \epsilon\right]\left[a_{i j} b_{k}+a_{j k} b_{i}+a_{k i} b_{j}\right]+\rho_{2} \alpha\left[a_{i j} Y_{k}+a_{j k} Y_{i}+a_{k i} Y_{j}\right] } \\
& +\frac{\rho_{0}^{\prime}}{\alpha} b_{i} b_{j} b_{k}-\frac{\rho_{2}^{\prime} s}{\alpha^{2}} y_{i} y_{j} y_{k}+\frac{\rho_{1}^{\prime}}{\alpha}\left[b_{i} b_{j} y_{k}+b_{j} b_{k} y_{i}+b_{k} b_{i} y_{j}\right] \\
& +\frac{\rho_{2}^{\prime}}{\alpha}\left[b_{i} y_{j} y_{k}+b_{j} y_{k} y_{i}+b_{k} y_{i} y_{j}\right] . \tag{7}
\end{align*}
$$

We can express the angular metric $h_{i j}:=g_{i j}-F_{y^{i}} F_{y^{j}}$ in the following form

$$
\begin{equation*}
h_{i j}=a a_{i j}+b b_{i} b_{j}+c\left[b_{i} \alpha_{j}+b_{j} \alpha_{i}\right]+d \alpha_{i} \alpha_{j}, \tag{8}
\end{equation*}
$$

where

$$
\begin{aligned}
a & :=\phi\left[\phi-s \phi^{\prime}\right] \\
b & :=\phi \phi^{\prime \prime} \\
c & :=-s \phi \phi^{\prime \prime} \\
d & :=-\phi\left[\left(\phi-s \phi^{\prime}\right)-s^{2} \phi^{\prime \prime}\right] .
\end{aligned}
$$

On the other hand, the mean Cartan torsion is given by

$$
\begin{equation*}
I_{i}=\frac{s}{2 \alpha} A Y_{i} \tag{9}
\end{equation*}
$$

where

$$
A=(n-2) \frac{s \phi^{\prime \prime}}{\phi-s \phi^{\prime}}-(n+1) \frac{\phi^{\prime}}{\phi}-\frac{-3 s \phi^{\prime \prime}+\left(b^{2}-s^{2}\right) \phi^{\prime \prime \prime}}{\phi-s \phi^{\prime}+\left(b^{2}-s^{2}\right) \phi^{\prime \prime}}
$$

Solving (8) for $a_{i j}$, plugging the result and (9) into (7) and considering $\operatorname{dim} M \geq 3$, implies that the Cartan tensor of an (α, β)-metric is given by following

$$
\begin{equation*}
C_{i j k}=\frac{p}{1+n}\left\{h_{i j} I_{k}+h_{j k} I_{i}+h_{k i} I_{j}\right\}+\frac{q}{\|\mathbf{I}\|^{2}} I_{i} I_{j} I_{k} \tag{10}
\end{equation*}
$$

where $p=p(x, y)$ and $q=q(x, y)$ are scalar function on $T M$ satisfying $p+q=1$ and given by following

$$
\begin{equation*}
p=\frac{n+1}{a A}\left[s\left(\phi \phi^{\prime \prime}+\phi^{\prime} \phi^{\prime}\right)-\phi \phi^{\prime}\right] . \tag{11}
\end{equation*}
$$

It is remakable that, a Finsler metric is called semi-C-reducible if its Cartan tensor is given by the equation (10). It is proved that every non-Riemannian (α, β)-metric on a manifold M of dimension $n \geq 3$ is semi-C-reducible [6]. By (10) we have

$$
\begin{equation*}
C^{i j k}=\frac{p}{1+n}\left\{h^{i j} I^{k}+h^{j k} I^{i}+h^{k i} I^{j}\right\}+\frac{q}{\|\mathbf{I}\|^{2}} I^{i} I^{j} I^{k} \tag{12}
\end{equation*}
$$

Then

$$
\begin{equation*}
C_{i j k} C^{i j k}=\left[\frac{3 p(p+2 q)}{n+1}+q^{2}\right] I_{m} I^{m} \tag{13}
\end{equation*}
$$

This completes the proof.

3. Proof of Theorem 1.2

In this section, we are going to prove the Theorem 1.2. Let $F=\alpha \phi(s)$ be an (α, β)-metric on a manifold M of dimension n , where $s=\frac{\beta}{\alpha}, \alpha=\sqrt{a_{i j} y^{i} y^{j}}$ is a Riemannian metric and $\beta=b_{i}(x) y^{i}$ is a 1 -form on M. Then the fundamental tensor of F is given by

$$
g_{i j}=\rho a_{i j}+\rho_{0} b_{i} b_{j}+\rho_{1}\left(b_{i} \alpha_{j}+b_{j} \alpha_{i}\right)+\rho_{2} \alpha_{i} \alpha_{j}
$$

where

$$
\begin{aligned}
\rho & :=\phi\left(\phi-s \phi^{\prime}\right), \quad \rho_{0}:=\phi \phi^{\prime \prime}+\phi^{\prime} \phi^{\prime} \\
\rho_{1} & :=-\left[s\left(\phi \phi^{\prime \prime}+\phi^{\prime} \phi^{\prime}\right)-\phi \phi^{\prime}\right], \quad \rho_{2}:=s\left[s\left(\phi \phi^{\prime \prime}+\phi^{\prime} \phi^{\prime}\right)-\phi \phi^{\prime}\right] \\
\alpha_{i} & :=\frac{a_{i j} y^{j}}{\alpha}
\end{aligned}
$$

Put

$$
A_{i j}:=a_{i j}+\delta b_{i} b_{j}, \quad \delta:=\frac{\rho_{0}-\varepsilon^{2} \rho_{2}}{\rho}, \quad \varepsilon:=\frac{\rho_{1}}{\rho_{2}} .
$$

Then

$$
A^{i j}:=\left(A_{i j}\right)^{-1}=a^{i j}-\tau b^{i} b^{j}, \quad \tau:=\frac{\delta}{1+\delta b^{2}}
$$

By a simple calculation, we get

$$
\begin{gathered}
g^{i j}=\rho^{-1}\left[a^{i j}-\tau b^{i} b^{j}-\eta Y^{i} Y^{j}\right] \\
\operatorname{det}\left(g_{i j}\right)=\phi^{n+1}\left(\phi-s \phi^{\prime}\right)^{n-2}\left[\left(\phi-s \phi^{\prime}\right)+\left(b^{2}-s^{2}\right) \phi^{\prime \prime}\right] \operatorname{det}\left(a_{i j}\right),
\end{gathered}
$$

where

$$
\begin{gathered}
\eta=\frac{\mu}{1+Y^{2} \mu}, \quad \mu:=\frac{\rho_{2}}{\rho}, \quad Y:=\sqrt{A_{i j} Y^{i} Y^{j}} \\
Y_{i}=\alpha_{i}+\varepsilon b_{i}, \quad Y^{i}:=A^{i j} Y_{j}=\frac{y^{i}}{\alpha}+\lambda b^{i}, \quad \lambda:=\frac{\varepsilon-\delta s}{1+\delta b^{2}} .
\end{gathered}
$$

By putting $\phi:=\frac{1}{s}$, we compute the above relations for the Kropina metric as follows

$$
\begin{gathered}
\rho=\frac{2}{s^{2}}, \quad \rho_{0}=\frac{3}{s^{4}}, \quad \rho_{1}=\frac{-4}{s^{3}}, \quad \rho_{2}=\frac{4}{s^{2}}, \quad \varepsilon=\frac{-1}{s}, \quad \mu=2 \\
\delta=\frac{-1}{2 s^{2}}, \quad \lambda=\frac{s}{b^{2}-s^{2}}, \quad Y^{2}=\frac{s^{2}-b^{2}}{b^{2}-2 s^{2}}, \quad \tau=\frac{1}{b^{2}-2 s^{2}}, \quad \eta=4 \frac{s^{2}}{b^{2}}-2,
\end{gathered}
$$

which implies that

$$
\begin{gather*}
g_{i j}=\frac{2}{s^{2}}\left[a_{i j}+\frac{3}{2} \frac{b_{i} b_{j}}{s^{2}}-\frac{2}{s}\left(b_{i} \alpha_{j}+b_{j} \alpha_{i}\right)+\frac{2 y_{i} y_{j}}{\alpha^{2}}\right] \tag{14}\\
g^{i j}=\frac{s^{2}}{2}\left[a^{i j}-\frac{b^{i} b^{j}}{b^{2}}+\frac{2 s}{\alpha b^{2}}\left(b^{i} y^{j}+b^{j} y^{i}\right)+\frac{2\left(b^{2}-2 s^{2}\right)}{b^{2} \alpha^{2}} y^{i} y^{j}\right] \tag{15}\\
\operatorname{det}\left(g_{i j}\right)=\frac{2^{n-1} b^{2}}{s^{2 n+2}} \operatorname{det}\left(a_{i j}\right) \tag{16}\\
I_{i}=\frac{\partial}{\partial y^{i}} \ln \sqrt{\operatorname{det}\left(g_{i j}\right)}=(n+1)\left[\frac{y_{i}}{\alpha^{2}}-\frac{b_{i}}{\beta}\right] \tag{17}
\end{gather*}
$$

For a Finsler metric F, one can defines the norm of the mean Cartan torsion I and the Cartan torsion \mathbf{C} as follows

$$
\begin{equation*}
\|\mathbf{I}\|=\sup _{F(y)=1, v \neq 0} \frac{\left|\mathbf{I}_{y}(v)\right|}{\left[\mathbf{g}_{y}(v, v)\right]^{\frac{1}{2}}}, \quad\|\mathbf{C}\|=\sup _{F(y)=1, v \neq 0} \frac{\left|\mathbf{C}_{y}(v, v, v)\right|}{\left[\mathbf{g}_{y}(v, v)\right]^{\frac{3}{2}}} . \tag{18}
\end{equation*}
$$

Lemma 3.1. Let (M, F) be an n-dimensional Finsler manifold. Suppose that $F=\frac{\alpha^{2}}{\beta}$ be the Kropina metric. Then the norm of mean Cartan tensor of F is given by following

$$
\begin{equation*}
\|\mathbf{I}\|=\frac{(n+1)}{\sqrt{2}} \tag{19}
\end{equation*}
$$

Proof. Let $F=\frac{\alpha}{s}, s=\frac{\beta}{\alpha},|s|<1$. Then by (17) we have

$$
\begin{aligned}
g^{i j} I_{i} I_{j} & =\frac{(n+1)^{2} s^{2}}{2}\left[\left(\frac{2 \beta^{2}-b^{2} \alpha^{2}}{b^{2} \alpha^{4}}\right) y^{j}-\frac{\beta}{b^{2} \alpha^{2}} b^{j}\right]\left[\frac{y_{j}}{\alpha^{2}}-\frac{b_{j}}{\beta}\right] \\
& =\frac{(n+1)^{2} s^{2}\left(b^{2}-s^{2}\right)}{2 b^{2} \alpha^{2}}
\end{aligned}
$$

Thus

$$
\sup _{v \neq 0} \frac{\left|\mathbf{I}_{y}(v)\right|}{\left[\mathbf{g}_{y}(v, v)\right]^{\frac{1}{2}}}=\sqrt{I^{i} I_{i}}=\frac{(n+1) s \sqrt{\left(b^{2}-s^{2}\right)}}{\sqrt{2} b \alpha}=\frac{(n+1)}{\sqrt{2} b F} \sqrt{\left(b^{2}-s^{2}\right)}
$$

which yields

$$
\begin{align*}
\|\mathbf{I}\| & =\sup _{F(y)=1, v \neq 0} \frac{\left|\mathbf{I}_{y}(v)\right|}{\left[\mathbf{g}_{y}(v, v)\right]^{\frac{1}{2}}}=\sup _{F(y)=1}\left[\sup _{v \neq 0} \frac{\left|\mathbf{I}_{y}(v)\right|}{\left[\mathbf{g}_{y}(v, v)\right]^{\frac{1}{2}}}\right] \\
& =\sup _{|s|<b} \frac{(n+1)}{\sqrt{2} b} \sqrt{\left(b^{2}-s^{2}\right)}=\frac{(n+1)}{\sqrt{2}} . \tag{20}
\end{align*}
$$

Thus the mean Cartan torsion of Kropina metric is bounded.

Now, we are going to find the norm of Cartan torsion. First, we consider the case of $\operatorname{dim} M=2$. Let us remark the Lemma 1.2.2 of [12].

Lemma 3.2 ([12]). Let (V, F) be a Minkowski plane and $V_{0}:=V-\{0\}$. For a vector $y \in V$ with $L(y) \neq 0$, there is a vector $y^{\perp} \in V_{0}$ such that

$$
\mathbf{g}_{y}\left(y, y^{\perp}\right)=0, \quad \mathbf{g}_{y}\left(y^{\perp}, y^{\perp}\right)=\epsilon L(y)
$$

where $\epsilon=\operatorname{ind}(L)$ denotes the index of L.
Lemma 3.3. Let (V, F) be an n-dimensional Minkowski space. Suppose that $F=\frac{\alpha^{2}}{\beta}$ be the Kropina metric. Then the norm of Cartan torsion of F is bounded as follows

$$
\begin{equation*}
\|\mathbf{C}\| \leq \frac{3 \sqrt{2}}{2} \tag{21}
\end{equation*}
$$

Proof. First, let us consider the case that $\operatorname{dim}(M)=2$. Take an oriented basis $\left\{e_{1}, e_{2}\right\}$ for V which determines a global coordinate system (u, v) in V. Let $L(u, v):=L\left(u e_{1}+v e_{2}\right)$. Then for a vector $y=u e_{1}+v e_{2} \in V_{0}$, define the vector $y^{\perp} \in V$ as follows

$$
y^{\perp}=\frac{-L_{v} e_{1}+L_{u} e_{2}}{\sqrt{L_{u u} L_{v v}-L_{u v} L_{u v}}} .
$$

Thus we have

$$
\begin{aligned}
L_{v} L_{u u}-L_{u} L_{u v} & =\left[L_{u u} L_{v v}-L_{u v} L_{u v}\right] v \\
L_{u} L_{v v}-L_{v} L_{u v} & =\left[L_{u u} L_{v v}-L_{u v} L_{u v}\right] u
\end{aligned}
$$

which yield

$$
\begin{aligned}
L_{v}^{2} L_{u u}-2 L_{u} L_{v} L_{u v}+L_{u}^{2} L_{v v} & =\left(u L_{u}+v L_{v}\right)\left[L_{u u} L_{v v}-L_{u v} L_{u v}\right] \\
& =2 L\left[L_{u u} L_{v v}-L_{u v} L_{u v}\right]
\end{aligned}
$$

Then we get

$$
g_{y}\left(y, y^{\perp}\right)=0, \quad g_{y}\left(y^{\perp}, y^{\perp}\right)=\frac{L_{v}^{2} L_{u u}-2 L_{u} L_{v} L_{u v}+L_{u}^{2} L_{v v}}{2\left|L_{u u} L_{v v}-L_{u v} L_{u v}\right|}=\epsilon L(y)
$$

The basis $\left\{y, y^{\perp}\right\}$ is called the Berwald frame at y. Define

$$
I(y):=\frac{\mathbf{C}_{y}\left(y^{\perp}, y^{\perp}, y^{\perp}\right)}{L(y)}
$$

It is remarkable that I is 0 -homogeneous function and called by the main scalar of L. Let L is positive definite on V. For $y=u e_{1}+v e_{2}$, we have

$$
I(y)=\frac{2 L^{2} L_{v v v}}{\left(2 L L_{v v}-L_{v} L_{v}\right)^{\frac{3}{2}}} .
$$

We can express L as $L=\left[u \phi\left(\frac{v}{u}\right)\right]^{2}$, where $\phi=\phi(s)$ is a positive C^{∞} function with $\phi_{\varepsilon \varepsilon}(\varepsilon)>0$. Then for $y=e_{1}+\varepsilon e_{2}$, we get

$$
I(y)=\frac{3 \phi_{\varepsilon} \phi_{\varepsilon \varepsilon \varepsilon}+\phi \phi_{\varepsilon \varepsilon \varepsilon}}{2 \phi^{\frac{1}{2}} \phi_{\varepsilon \varepsilon}^{\frac{3}{2}}} .
$$

Now, we take an orthonormal basis $\left\{e_{1}, e_{2}\right\}$ for (V, α) such that $\beta\left(u e_{1}+v e_{2}\right)=b u$, where $b=\|\beta\|_{\alpha}:=\sup _{\alpha(y)=1} \beta(y)$. For the Kropina metric, we have

$$
F=\frac{\alpha^{2}}{\beta}=\frac{u^{2}+v^{2}}{b u}=u\left(\frac{1+\left(\frac{v}{u}\right)^{2}}{b}\right) .
$$

If $\phi(\varepsilon)=\frac{1+\varepsilon^{2}}{b}$, then

$$
L=F^{2}=\left[u \phi\left(\frac{v}{u}\right)\right]^{2}
$$

By a simple calculation, we get

$$
\phi_{\varepsilon}=\frac{2 \varepsilon}{b}, \quad \phi_{\varepsilon \varepsilon}=\frac{2}{b}, \quad \phi_{\varepsilon \varepsilon \varepsilon}=0
$$

Thus the main scalar of Kropina metric in the point $y=e_{1}+\varepsilon e_{2}$ is given by

$$
I(y)=\frac{3 \phi_{\varepsilon} \phi_{\varepsilon \varepsilon \varepsilon}+\phi \phi_{\varepsilon \varepsilon \varepsilon}}{2 \phi^{\frac{1}{2}} \phi_{\varepsilon \varepsilon}^{\frac{3}{2}}}=\frac{3 \varepsilon}{\sqrt{2\left(1+\varepsilon^{2}\right)}},
$$

which implies that

$$
\max |I|=\frac{3}{\sqrt{2}} .
$$

Note that in the dimension two, $\|\mathbf{C}\|=\max |I|$ and then $\|\mathbf{C}\|=\frac{3}{\sqrt{2}}$.
Now, let $\operatorname{dim}(M)>2$. Base on the definition of norm of Cartan torsion, there exist the vectors y_{0} and v_{0} such that $\|\mathbf{C}\|=\mathbf{C}_{y_{0}}\left(v_{0}, v_{0}, v_{0}\right)$. Put $\bar{V}:=\operatorname{span}\left\{y_{0}, v_{0}\right\}$ and $\bar{F}:=F_{\mid \bar{V}}$. Let $\overline{\mathbf{C}}$ denote the Cartan tensor of \bar{F} on \bar{V}. Then

$$
\mathbf{C}_{y_{0}}\left(v_{0}, v_{0}, v_{0}\right)=\frac{1}{4} \frac{\partial^{3} F^{2}\left(y_{0}+s v_{0}\right)}{\partial s^{3}}=\overline{\mathbf{C}}_{y_{0}}\left(v_{0}, v_{0}, v_{0}\right)
$$

If we put $\bar{\beta}:=\left.\beta\right|_{\bar{V}}$ and $\bar{\alpha}:=\left.\alpha\right|_{\bar{V}}$, then $\|\bar{\beta}\|:=\sup _{\bar{\alpha}(y)=1} \bar{\beta}(y) \leq\|\beta\|$. Let $\bar{I}:=\left.I\right|_{\bar{V}}$ denotes the main scalar of \bar{F} on \bar{V}. Since $\|\overline{\mathbf{C}}\|=\max |\bar{I}| \leq \frac{3}{\sqrt{2}}$, then

$$
\|\mathbf{C}\|=\overline{\mathbf{C}}_{y_{0}}\left(v_{0}, v_{0}, v_{0}\right) \leq\|\overline{\mathbf{C}}\| \leq \frac{3 \sqrt{2}}{2}
$$

This completes the proof.

It is remarkable that, regarding the Cartan tensors of the Randers metric $F=\alpha+\beta$ and the Kropina metric $F=\frac{\alpha^{2}}{\beta}$, Matsumoto introduced the notion of C-reducibility and proved that any Randers and Kropina metrics are C-reducible [7]. In [8], Matsumoto-Hōjō proved that the converse is true. A Finsler metric F is called C-reducible if its Cartan tensor is given by

$$
\begin{equation*}
C_{i j k}=\frac{1}{1+n}\left\{h_{i j} I_{k}+h_{j k} I_{i}+h_{k i} I_{j}\right\} \tag{22}
\end{equation*}
$$

where $h_{i j}:=F F_{y^{i} y^{j}}$ is the angular metric. On the other hand, Shen proved that the Cartan torsion of a Randers metric is bounded [12]. Thus by Lemma 3.3, we conclude the following.

Corollary 3.1. Every C-reducible Finsler metric on a manifold M od dimension $n \geq 3$ has bounded Cartan torsion.

Now, let F be a C-reducible Finsler metric. Then we have

$$
\begin{equation*}
C^{i j k}=\frac{1}{1+n}\left\{h^{i j} I^{k}+h^{j k} I^{i}+h^{k i} I^{j}\right\} \tag{23}
\end{equation*}
$$

where $h^{i j}=g^{i j}-F^{-2} y^{i} y^{j}$. By (22) and (23), we have

$$
C^{i j k} C_{i j k}=\frac{3}{n+1} I^{i} I_{i}
$$

Thus we conclude the following.
Corollary 3.2. Let (M, F) be a n-dimensional C-reducible Finsler manifold. Then

$$
\begin{equation*}
\|\mathbf{C}\|=\sqrt{\frac{3}{n+1}}\|\mathbf{I}\| \tag{24}
\end{equation*}
$$

In the case $n=2$, we obtain $\|\mathbf{C}\|=\|\mathbf{I}\|$, which proved in the previous Lemmas 3.1 and 3.3.

Now, we are going to prove the Theorem 1.2.
Proof of Theorem 1.2. For the generalized Kropina metric $F=\frac{\alpha^{m+1}}{\beta^{m}}$ on a 2-dimensional plane V, put

$$
\phi(\varepsilon)=\frac{\left[1+\varepsilon^{2}\right]^{\frac{m+1}{2}}}{b^{m}}
$$

For $L=F^{2}=\left[u \phi\left(\frac{v}{u}\right)\right]^{2}$, we get

$$
\phi_{\varepsilon}=\frac{(m+1) \varepsilon\left[1+\varepsilon^{2}\right]^{\frac{m-1}{2}}}{b^{m}}
$$

$$
\begin{aligned}
& \phi_{\varepsilon \varepsilon}=\frac{(m+1)\left(1+m \varepsilon^{2}\right)\left[1+\varepsilon^{2}\right]^{\frac{m-3}{2}}}{b^{m}} \\
& \phi_{\varepsilon \varepsilon \varepsilon}=\frac{(m+1)(m-1)\left(3+m \varepsilon^{2}\right) \varepsilon\left[1+\varepsilon^{2}\right]^{\frac{m-5}{2}}}{b^{m}}
\end{aligned}
$$

In the point $(1, \varepsilon)$, we have

$$
I(y)=\frac{m \varepsilon\left[(2 m+1) \varepsilon^{2}+3\right]}{(m+1)^{\frac{1}{2}}\left(1+m \varepsilon^{2}\right)^{\frac{3}{2}}}
$$

which implies that

$$
\|\mathbf{C}\|=\max |I|=\frac{(2 m+1)}{\sqrt{m(m+1)}}
$$

The proof for the higher dimensions, is the same of 2-dimensional case and we omit it.

References

[1] D. Burago and S. Ivanov, Isometric embedding of Finsler manifolds, Algebra Anal. 5 (1993), 179-192.
[2] E. Cartan, Les espaces de Finsler, Actualités 79, Paris, 1934.
[3] A. Deicke, Über die Finsler-Raume mit $A_{i}=0$, Arch. Math. 4 (1953), 45-51.
[4] P. Finsler, Über Kurven und Flächen in allgemeinen Räumen, Dissertation, Göttingen, 1918, Birkhauser Verlag, Basel, 1951.
[5] R. S. Ingarden, Über die Einbettung eines Finslerschen Raumes in einem Minkowskischen Raum, Bull. Acad. Pol. Sci., Cl. III 2 (1954), 305-308.
[6] M. Matsumoto, Theory of Finsler spaces with (α, β)-metric, Rep. Math. Phys. 31 (1992), 43-84.
[7] M. Matsumoto, On C-reducible Finsler spaces, Tensor, N. S. 24 (1972), 29-37.
[8] M. Matsumoto and S. Hōjō, A conclusive theorem for C-reducible Finsler spaces, Tensor. N.S. 32 (1978), 225-230.
[9] X. Mo and L. Zhou, A class of Finsler metrics with bounded Cartan torsion, Canad. Math. Bull. 53 (2010), 122-132.
[10] J. Nash, The imbedding problem for Riemannian manifolds, Ann. Math. 73 (1957), 20-37.
[11] G. Randers, On an asymmetric metric in the four-space of general relativity, Phys. Rev. 59 (1941), 195-199.
[12] Z. Shen, Differential Geometry of Spray and Finsler Spaces, Kluwer Academic Publishers, Dordrecht, 2001.
[13] Z. Shen, On R-quadratic Finsler spaces, Publ. Math. Debrecen 58 (2001), 263-274.
[14] Z. Shen, On Finsler geometry of submanifolds, Math. Annal. 311 (1998), 549-576.
[15] A. Tayebi and E. Peyghan, On Ricci tensors of Randers metrics, J. Geom. Phys. 60 (2010), 1665-1670.
A. TAYEBI

FACULTY OF SCIENCE
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF QOM
QOM
IRAN
E-mail: akbar.tayebi@gmail.com
H. SADEGHI

FACULTY OF SCIENCE
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF QOM
QOM
IRAN
E-mail: sadeghihassan64@gmail.com
(Received November 9, 2011; revised March, 5 2012)

