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On Cartan torsion of Finsler metrics

By AKBAR TAYEBI (Qom) and HASSAN SADEGHI (Qom)

Abstract. In this paper, we find a relation between the norm of Cartan and mean

Cartan torsions of Finsler metrics defined by a Riemannian metric and a 1-form on a

manifold. Then, we find a subclass of these metrics which have bounded Cartan torsion.

It turns out that every C-reducible Finsler metric has bounded Cartan torsion.

1. Introduction

In Finsler geometry, there are several important non-Riemannian quantities.

Let (M,F ) be a Finsler manifold. The second and third order derivatives of 1
2F

2
x

at y ∈ TxM0 are inner products gy and symmetric trilinear forms Cy on TxM ,

respectively. We call gy and Cy the fundamental form and the Cartan torsion,

respectively. The Cartan torsion is one of the most important non-Riemannian

quantity in Finsler geometry and it was first introduced by Finsler [4] and

emphased by Cartan [2]. A Finsler metric reduces to a Riemannian metric if

and only if it has vanishing Cartan torsion. Taking a trace of Cartan torsion

yields the mean Cartan torsion Iy. In [3], Deicke proves that a positive definite

Finsler metric F is Riemannian if and only if the mean Cartan torsion vanishes.

One of the fundamental problems in Finsler geometry is whether or not every

Finsler manifold can be isometrically immersed into a Minkowski space, which is

a finite-dimensional Banach space. The answer is affirmative for Riemannian ma-

nifolds. In [10], J. Nash proved that any n-dimensional Riemannian manifold can

be isometrically imbedded into a higher dimensional Euclidean space. However

Mathematics Subject Classification: 53B40, 53C60.
Key words and phrases: Cartan torsion, Kropina metric, Randers metric.



462 Akbar Tayebi and Hassan Sadeghi

for general Finsler manifolds, the problem becomes very difficult. In [5], Ingar-

den proves that every n-dimensional Finsler manifold can be locally isometrically

imbedded into a 2n-dimensional “Weak” Minkowski space, i.e., a space whose in-

dicatrix is not necessarily strongly convex. Then Burago–Ivanov show that any

compact Cr manifold (r ≥ 3) with a C2 Finsler metric admits a Cr imbedding

into a finite-dimensional Banach spaces [1]. Recently, Shen proved that a Finsler

manifold with unbounded Cartan torsion can not be isometrically imbedded into

any Minkowski space [14]. Thus the norm of Cartan torsion plays an important

role for studying of immersion theory in Finsler geometry.

In this paper, we consider the class of (α, β)-metrics and find the form of

Cartan torsion of these metrics. We show that there exists a relation between the

norm of Cartan and mean Cartan torsions of an (α, β)-metric. More precisely, we

prove the following.

Theorem 1.1. Let F = αφ(s) be a non-Riemannian (α, β)-metric on a

manifold M of dimension n ≥ 3. Then the norm of Cartan and mean Cartan

torsion of F satisfy in following relation

‖C‖ =

√
3p2 + 6p q + (n+ 1)q2

n+ 1
‖I‖, (1)

where p = p(x, y) and q = q(x, y) are scalar function on TM satisfying p+ q = 1

and given by following

p =
n+ 1

aA

[
s(φφ′′ + φ′φ′)− φφ′] (2)

a := φ{φ− sφ′} (3)

A = (n− 2)
sφ′′

φ− sφ′ − (n+ 1)
φ′

φ
− −3sφ′′ + (b2 − s2)φ′′′

φ− sφ′ + (b2 − s2)φ′′ . (4)

In [13], Shen proved that the Cartan torsion of Randers metrics F = α+ β

is uniformly bounded by 3/
√
2. Then Mo extend his result to a more general

Finsler metrics, namely, F = (α+β)m

αm−1 (m ∈ [1, 2]) [9].

All of above metrics are special Finsler metrics so- called (α, β)-metrics. Let

us narrate a brief history of (α, β)-metrics. This marchen originated in 1941 by

a physicist G. Randers, who was first introduced the notion of Randers met-

rics to consider the unified field theory [11]. A Randers metric F = α + β on

a manifold M is just a Riemannian metric α =
√
aijyiyj perturbated by a one

form β = bi(x)y
i on M such that ‖β‖α < 1 [15]. In the same time, another
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event was happened by a geometrician L. Berwald in connection with a two-

dimensional Finsler space with rectilinear extremal and was investigated by V.

K. Kropina [6]. Consequently, other match of Randers metric called Kropina

metric F = α2/β was born. Furthermore, by considering Kropina and Randers

metrics, Matsumoto introduced the notion of (α, β)-metrics [6]. An (α, β)-metric

is a Finsler metric on M defined by F := αφ(s), where s = β/α, φ = φ(s) is a

C∞ function on the (−b0, b0) with certain regularity, α is a Riemannian metric

and β is a 1-form on M . Therefore, a natural question arises:

Is there any class of Finsler metrics which has bounded Cartan torsion?

In this paper, we consider a subclass of (α, β)-metrics which have the follo-

wing form

F =
αm+1

βm
, (m 6= 0)

and called by generalized Kropina metric [6]. Then we prove the following.

Theorem 1.2. Suppose that F = αm+1

βm be a generalized Kropina metric on

a manifold M . Then the Cartan torsion of F is bounded. More precisely, the

following holds

‖C‖ =
(2m+ 1)√
m(m+ 1)

.

2. Proof of Theorem 1.1

In this section, we are going to prove the Theorem 1.1. Thus, we must

compute the Cartan torsion of an (α, β)-metric. Let F = αφ(s), s = β
α . It is easy

to see that the following relations hold

ρ′ = αρ1, −sρ′ = α2ρ2, −sρ′0 = αρ′1, −sρ′1 = αρ′2. (5)

A direct computation shows that the Cartan curvature of F is given by the follo-

wing

2Cijk := ρ1[aijbk + ajkbi + akibj ] + ρ2[aijyk + ajkyi + akiyj ]

+
ρ′0
α
bibjbk − ρ′2

α2
s yiyjyk +

ρ′1
α
[bibjyk + bjbkyi + bkbiyj ]

+
ρ′2
α
[biyjyk + bjykyi + bkyiyj ]. (6)
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By (5) and (6), we have

2Cijk = [ρ1 − ρ2αε][aijbk + ajkbi + akibj ] + ρ2α[aijYk + ajkYi + akiYj ]

+
ρ′0
α
bibjbk − ρ′2s

α2
yiyjyk +

ρ′1
α
[bibjyk + bjbkyi + bkbiyj ]

+
ρ′2
α
[biyjyk + bjykyi + bkyiyj ]. (7)

We can express the angular metric hij := gij − FyiFyj in the following form

hij = a aij + b bibj + c [biαj + bjαi] + d αiαj , (8)

where
a := φ[φ− sφ′]

b := φφ′′

c := −sφφ′′

d := −φ
[
(φ− sφ′)− s2φ′′].

On the other hand, the mean Cartan torsion is given by

Ii =
s

2α
AYi, (9)

where

A = (n− 2)
sφ′′

φ− sφ′ − (n+ 1)
φ′

φ
− −3sφ′′ + (b2 − s2)φ′′′

φ− sφ′ + (b2 − s2)φ′′ .

Solving (8) for aij , plugging the result and (9) into (7) and considering dimM ≥ 3,

implies that the Cartan tensor of an (α, β)-metric is given by following

Cijk =
p

1 + n
{hijIk + hjkIi + hkiIj}+ q

‖I‖2 IiIjIk. (10)

where p = p(x, y) and q = q(x, y) are scalar function on TM satisfying p+ q = 1

and given by following

p =
n+ 1

aA

[
s(φφ′′ + φ′φ′)− φφ′]. (11)

It is remakable that, a Finsler metric is called semi-C-reducible if its Cartan

tensor is given by the equation (10). It is proved that every non-Riemannian

(α, β)-metric on a manifold M of dimension n ≥ 3 is semi-C-reducible [6]. By

(10) we have

Cijk =
p

1 + n
{hijIk + hjkIi + hkiIj}+ q

‖I‖2 I
iIjIk. (12)

Then

CijkC
ijk =

[
3p(p+ 2q)

n+ 1
+ q2

]
ImIm. (13)

This completes the proof. ¤
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3. Proof of Theorem 1.2

In this section, we are going to prove the Theorem 1.2. Let F = αφ(s) be

an (α, β)-metric on a manifold M of dimension n, where s = β
α , α =

√
aijyiyj is

a Riemannian metric and β = bi(x)y
i is a 1-form on M . Then the fundamental

tensor of F is given by

gij = ρaij + ρ0bibj + ρ1(biαj + bjαi) + ρ2αiαj ,

where

ρ := φ(φ− sφ′), ρ0 := φφ′′ + φ′φ′

ρ1 := −[
s(φφ′′ + φ′φ′)− φφ′], ρ2 := s

[
s(φφ′′ + φ′φ′)− φφ′]

αi :=
aijy

j

α
.

Put

Aij := aij + δbibj , δ :=
ρ0 − ε2ρ2

ρ
, ε :=

ρ1
ρ2

.

Then

Aij := (Aij)
−1 = aij − τbibj , τ :=

δ

1 + δb2
.

By a simple calculation, we get

gij = ρ−1[aij − τbibj − ηY iY j ],

det(gij) = φn+1(φ− sφ′)n−2
[
(φ− sφ′) + (b2 − s2)φ′′]det(aij),

where

η =
µ

1 + Y 2µ
, µ :=

ρ2
ρ
, Y :=

√
AijY iY j ,

Yi = αi + εbi, Y i := AijYj =
yi

α
+ λbi, λ :=

ε− δs

1 + δb2
.

By putting φ := 1
s , we compute the above relations for the Kropina metric as

follows

ρ =
2

s2
, ρ0 =

3

s4
, ρ1 =

−4

s3
, ρ2 =

4

s2
, ε =

−1

s
, µ = 2

δ =
−1

2s2
, λ =

s

b2 − s2
, Y 2 =

s2 − b2

b2 − 2s2
, τ =

1

b2 − 2s2
, η = 4

s2

b2
− 2,
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which implies that

gij =
2

s2

[
aij +

3

2

bibj
s2

− 2

s
(biαj + bjαi) +

2yiyj
α2

]
, (14)

gij =
s2

2

[
aij − bibj

b2
+

2s

αb2
(biyj + bjyi) +

2(b2 − 2s2)

b2α2
yiyj

]
, (15)

det(gij) =
2n−1b2

s2n+2
det(aij), (16)

Ii =
∂

∂yi
ln
√
det(gij) = (n+ 1)

[
yi
α2

− bi
β

]
. (17)

For a Finsler metric F , one can defines the norm of the mean Cartan torsion I

and the Cartan torsion C as follows

‖I‖ = sup
F (y)=1,v 6=0

|Iy(v)|
[gy(v, v)]

1
2

, ‖C‖ = sup
F (y)=1,v 6=0

|Cy(v, v, v)|
[gy(v, v)]

3
2

. (18)

Lemma 3.1. Let (M,F ) be an n-dimensional Finsler manifold. Suppose

that F = α2

β be the Kropina metric. Then the norm of mean Cartan tensor of F

is given by following

‖I‖ =
(n+ 1)√

2
. (19)

Proof. Let F = α
s , s =

β
α , |s| < 1. Then by (17) we have

gijIiIj =
(n+ 1)2s2

2

[(
2β2 − b2α2

b2α4

)
yj − β

b2α2
bj
] [

yj
α2

− bj
β

]

=
(n+ 1)2s2(b2 − s2)

2b2α2
.

Thus

sup
v 6=0

|Iy(v)|
[gy(v, v)]

1
2

=
√
IiIi =

(n+ 1)s
√
(b2 − s2)√

2bα
=

(n+ 1)√
2 bF

√
(b2 − s2)

which yields

‖I‖ = sup
F (y)=1,v 6=0

|Iy(v)|
[gy(v, v)]

1
2

= sup
F (y)=1

[
sup
v 6=0

|Iy(v)|
[gy(v, v)]

1
2

]

= sup
|s|<b

(n+ 1)√
2 b

√
(b2 − s2) =

(n+ 1)√
2

. (20)

Thus the mean Cartan torsion of Kropina metric is bounded. ¤
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Now, we are going to find the norm of Cartan torsion. First, we consider the

case of dimM = 2. Let us remark the Lemma 1.2.2 of [12].

Lemma 3.2 ([12]). Let (V, F ) be a Minkowski plane and V0 := V − {0}.
For a vector y ∈ V with L(y) 6= 0, there is a vector y⊥ ∈ V0 such that

gy(y, y
⊥) = 0, gy(y

⊥, y⊥) = εL(y),

where ε = ind(L) denotes the index of L.

Lemma 3.3. Let (V, F ) be an n-dimensional Minkowski space. Suppose

that F = α2

β be the Kropina metric. Then the norm of Cartan torsion of F is

bounded as follows

‖C‖ ≤ 3
√
2

2
. (21)

Proof. First, let us consider the case that dim(M) = 2. Take an oriented

basis {e1, e2} for V which determines a global coordinate system (u, v) in V . Let

L(u, v) := L(ue1 + ve2). Then for a vector y = ue1 + ve2 ∈ V0, define the vector

y⊥ ∈ V as follows

y⊥ =
−Lve1 + Lue2√
LuuLvv − LuvLuv

.

Thus we have

LvLuu − LuLuv = [LuuLvv − LuvLuv]v

LuLvv − LvLuv = [LuuLvv − LuvLuv]u,

which yield

L2
vLuu − 2LuLvLuv + L2

uLvv = (uLu + vLv)[LuuLvv − LuvLuv]

= 2L[LuuLvv − LuvLuv].

Then we get

gy(y, y
⊥) = 0, gy(y

⊥, y⊥) =
L2
vLuu − 2LuLvLuv + L2

uLvv

2|LuuLvv − LuvLuv| = εL(y).

The basis {y, y⊥} is called the Berwald frame at y. Define

I(y) :=
Cy(y

⊥, y⊥, y⊥)
L(y)

.
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It is remarkable that I is 0-homogeneous function and called by the main scalar

of L. Let L is positive definite on V . For y = ue1 + ve2, we have

I(y) =
2L2Lvvv

(2LLvv − LvLv)
3
2

.

We can express L as L = [uφ( vu )]
2
, where φ = φ(s) is a positive C∞ function

with φεε(ε) > 0. Then for y = e1 + εe2, we get

I(y) =
3φεφεεε + φφεεε

2φ
1
2φ

3
2
εε

.

Now, we take an orthonormal basis {e1, e2} for (V, α) such that β(ue1+ve2) = bu,

where b = ‖β‖α := supα(y)=1 β(y). For the Kropina metric, we have

F =
α2

β
=

u2 + v2

bu
= u

(
1 + ( vu )

2

b

)
.

If φ(ε) = 1+ε2

b , then

L = F 2 =
[
uφ

( v
u

)]2
.

By a simple calculation, we get

φε =
2ε

b
, φεε =

2

b
, φεεε = 0.

Thus the main scalar of Kropina metric in the point y = e1 + εe2 is given by

I(y) =
3φεφεεε + φφεεε

2φ
1
2φ

3
2
εε

=
3ε√

2(1 + ε2)
,

which implies that

max |I| = 3√
2
.

Note that in the dimension two, ‖C‖ = max |I| and then ‖C‖ = 3√
2
.

Now, let dim(M) > 2. Base on the definition of norm of Cartan torsion, there

exist the vectors y0 and v0 such that ‖C‖ = Cy0(v0, v0, v0). Put V̄ := span{y0, v0}
and F̄ := F|V̄ . Let C̄ denote the Cartan tensor of F̄ on V̄ . Then

Cy0(v0, v0, v0) =
1

4

∂3F 2(y0 + sv0)

∂s3
= C̄y0(v0, v0, v0).

If we put β̄ := β|V̄ and ᾱ := α|V̄ , then ‖β̄‖ := supᾱ(y)=1 β̄(y) ≤ ‖β‖. Let Ī := I|V̄
denotes the main scalar of F̄ on V̄ . Since ‖C̄‖ = max |Ī| ≤ 3√

2
, then

‖C‖ = C̄y0(v0, v0, v0) ≤ ‖C̄‖ ≤ 3
√
2

2
.

This completes the proof. ¤
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It is remarkable that, regarding the Cartan tensors of the Randers metric

F = α+ β and the Kropina metric F = α2

β , Matsumoto introduced the notion of

C-reducibility and proved that any Randers and Kropina metrics are C-reducible

[7]. In [8], Matsumoto–Hōjō proved that the converse is true. A Finsler metric F

is called C-reducible if its Cartan tensor is given by

Cijk =
1

1 + n

{
hijIk + hjkIi + hkiIj

}
, (22)

where hij := FFyiyj is the angular metric. On the other hand, Shen proved that

the Cartan torsion of a Randers metric is bounded [12]. Thus by Lemma 3.3, we

conclude the following.

Corollary 3.1. Every C-reducible Finsler metric on a manifold M od di-

mension n ≥ 3 has bounded Cartan torsion.

Now, let F be a C-reducible Finsler metric. Then we have

Cijk =
1

1 + n

{
hijIk + hjkIi + hkiIj

}
, (23)

where hij = gij − F−2yiyj . By (22) and (23), we have

CijkCijk =
3

n+ 1
IiIi.

Thus we conclude the following.

Corollary 3.2. Let (M,F ) be a n-dimensional C-reducible Finsler manifold.

Then

‖C‖ =

√
3

n+ 1
‖I‖. (24)

In the case n = 2, we obtain ‖C‖ = ‖I‖, which proved in the previous

Lemmas 3.1 and 3.3.

Now, we are going to prove the Theorem 1.2.

Proof of Theorem 1.2. For the generalized Kropina metric F = αm+1

βm on

a 2-dimensional plane V , put

φ(ε) =
[1 + ε2]

m+1
2

bm
.

For L = F 2 = [uφ( vu )]
2
, we get

φε =
(m+ 1)ε[1 + ε2]

m−1
2

bm
,
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φεε =
(m+ 1)(1 +mε2)[1 + ε2]

m−3
2

bm
,

φεεε =
(m+ 1)(m− 1)(3 +mε2)ε[1 + ε2]

m−5
2

bm
.

In the point (1, ε), we have

I(y) =
mε[(2m+ 1)ε2 + 3]

(m+ 1)
1
2 (1 +mε2)

3
2

,

which implies that

‖C‖ = max |I| = (2m+ 1)√
m(m+ 1)

.

The proof for the higher dimensions, is the same of 2-dimensional case and we

omit it. ¤
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[3] A. Deicke, Über die Finsler–Raume mit Ai = 0, Arch. Math. 4 (1953), 45–51.
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