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On Cartan torsion of Finsler metrics

By AKBAR TAYEBI (Qom) and HASSAN SADEGHI (Qom)

Abstract. In this paper, we find a relation between the norm of Cartan and mean
Cartan torsions of Finsler metrics defined by a Riemannian metric and a 1-form on a
manifold. Then, we find a subclass of these metrics which have bounded Cartan torsion.
It turns out that every C-reducible Finsler metric has bounded Cartan torsion.

1. Introduction

In Finsler geometry, there are several important non-Riemannian quantities.
Let (M, F) be a Finsler manifold. The second and third order derivatives of £ F2
at y € T, My are inner products g, and symmetric trilinear forms C, on 7, M,
respectively. We call g, and C, the fundamental form and the Cartan torsion,
respectively. The Cartan torsion is one of the most important non-Riemannian
quantity in Finsler geometry and it was first introduced by FINSLER [4] and
emphased by CARTAN [2]. A Finsler metric reduces to a Riemannian metric if
and only if it has vanishing Cartan torsion. Taking a trace of Cartan torsion
yields the mean Cartan torsion I,. In [3], DEICKE proves that a positive definite
Finsler metric F' is Riemannian if and only if the mean Cartan torsion vanishes.

One of the fundamental problems in Finsler geometry is whether or not every
Finsler manifold can be isometrically immersed into a Minkowski space, which is
a finite-dimensional Banach space. The answer is affirmative for Riemannian ma-
nifolds. In [10], J. NASH proved that any n-dimensional Riemannian manifold can
be isometrically imbedded into a higher dimensional Euclidean space. However
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for general Finsler manifolds, the problem becomes very difficult. In [5], INGAR-
DEN proves that every n-dimensional Finsler manifold can be locally isometrically
imbedded into a 2n-dimensional “Weak” Minkowski space, i.e., a space whose in-
dicatrix is not necessarily strongly convex. Then Burago-Ivanov show that any
compact C" manifold (r > 3) with a C? Finsler metric admits a C” imbedding
into a finite-dimensional Banach spaces [1]. Recently, SHEN proved that a Finsler
manifold with unbounded Cartan torsion can not be isometrically imbedded into
any Minkowski space [14]. Thus the norm of Cartan torsion plays an important
role for studying of immersion theory in Finsler geometry.

In this paper, we consider the class of (o, 8)-metrics and find the form of
Cartan torsion of these metrics. We show that there exists a relation between the
norm of Cartan and mean Cartan torsions of an («, §)-metric. More precisely, we
prove the following.

Theorem 1.1. Let F = «a¢(s) be a non-Riemannian (a, §)-metric on a
manifold M of dimension n > 3. Then the norm of Cartan and mean Cartan
torsion of F' satisfy in following relation

3p2 +6p g+ (n+1)¢?
o=/ D

I 1
o I, (1)

where p = p(z,y) and q¢ = q(x,y) are scalar function on TM satisfying p+ q =1
and given by following

n+1

p=—[s(6" + &'¢) — 60 (2)

a:=¢{p— s¢'} (3)
B S(b” ¢/ —3S¢/I + (b2 _ 82)(;5”/

A== ) T ) @

n [13], SHEN proved that the Cartan torsion of Randers metrics F = a +
is uniformly bounded by 3/v/2. Then Mo extend his result to a more general
Finsler metrics, namely, F' = % (m € [1,2]) [9].

All of above metrics are special Finsler metrics so- called (a, 8)-metrics. Let
us narrate a brief history of («, 8)-metrics. This marchen originated in 1941 by
a physicist G. RANDERS, who was first introduced the notion of Randers met-
rics to consider the unified field theory [11]. A Randers metric F = a + 8 on
a manifold M is just a Riemannian metric o = \/a;;y'y’ perturbated by a one

form 8 = b;(x)y® on M such that [|8]lo < 1 [15]. In the same time, another
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event was happened by a geometrician .. BERWALD in connection with a two-
dimensional Finsler space with rectilinear extremal and was investigated by V.
K. KrOPINA [6]. Consequently, other match of Randers metric called Kropina
metric ' = a2/ was born. Furthermore, by considering Kropina and Randers
metrics, Matsumoto introduced the notion of («, )-metrics [6]. An (o, §)-metric
is a Finsler metric on M defined by F := a¢(s), where s = 5/a, ¢ = ¢(s) is a
C* function on the (—bg,by) with certain regularity, « is a Riemannian metric
and [ is a 1-form on M. Therefore, a natural question arises:

Is there any class of Finsler metrics which has bounded Cartan torsion?

In this paper, we consider a subclass of (o, 8)-metrics which have the follo-

wing form
1
a™t

F:Wv (m #0)

and called by generalized Kropina metric [6]. Then we prove the following.

Theorem 1.2. Suppose that F' = “g:l be a generalized Kropina metric on

a manifold M. Then the Cartan torsion of F is bounded. More precisely, the

following holds
2m+1)

ICIl = -
m(m + 1)

2. Proof of Theorem 1.1

In this section, we are going to prove the Theorem 1.1. Thus, we must
compute the Cartan torsion of an («, 8)-metric. Let F = a¢(s), s = g It is easy
to see that the following relations hold

pl=ap, —sp'=a’py, —spy=ap|, —sp|=ap (5)

A direct computation shows that the Cartan curvature of F' is given by the follo-

wing

2C5k = p1laijby + ajibi + akibj] + p2laijyr + axyi + ariy;]
J2t Pt P!
+ Eobibjbk - 0722 S YilYiYk + El[bibjyk + bibry; + bibiy;]
/
P2

+Emwm+%ww+MMw- (6)
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By (5) and (6), we have
2Cijk = [p1 — p2ae][aijby + ajibi + aribj] + pacfai;Yi + ajnYi + arY;)

Po s Pi
+ 7 bibsbe = iy + 7 [bibjyk + bibryi + bibiy]

@
+ %[bvzyjyk + bjyryi + bryiy;]. (7)
We can express the angular metric h;; := g;; — F;i )5 in the following form
hij = a a;; +b bbj + ¢ [bjo; + bjoy] + d s, (8)
where
a:= ¢lp — s¢']
b:= ¢g”
c:= —s¢¢”

d:=—¢[(¢ — s¢') — s°¢"].
On the other hand, the mean Cartan torsion is given by
s

I = %Ayi (9)
where ¢// d)/ 3 ¢//+ (b2 2)(;5///
S —o8 — S
A== 5 -+ )y - =

Solving (8) for a;;, plugging the result and (9) into (7) and considering dim M > 3,
implies that the Cartan tensor of an («a, §)-metric is given by following

q

where p = p(z,y) and ¢ = ¢(z,y) are scalar function on T'M satisfying p+ ¢ =1
and given by following

p
Cigr = 17— n n{hijlk + byl + hig L} +

n+]‘ /! /! /
p= " [s(00” + 96 — 0], ()

It is remakable that, a Finsler metric is called semi-C-reducible if its Cartan

tensor is given by the equation (10). It is proved that every non-Riemannian
(v, B)-metric on a manifold M of dimension n > 3 is semi-C-reducible [6]. By
(10) we have

ciik — P qpiipk o pikpioyopkipiy o 9 pipipk, 12
e e -
Then 3p( 29)
3 +2g
CypCik = | 2P T 2D 2 13
Jk [ n—+1 ta ( )

This completes the proof. (|
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3. Proof of Theorem 1.2

In this section, we are going to prove the Theorem 1.2. Let F' = a¢(s) be
an («, B)-metric on a manifold M of dimension n, where s = g, a = \/a;;ytyl is
a Riemannian metric and 8 = b;(x)y* is a 1-form on M. Then the fundamental
tensor of F' is given by

9ij = paij + pobibj + p1(bicj + bjov) + paciayy,

where
pi=¢(p—s¢'), po = ¢¢" +¢'¢'
p1i=—[s(¢d" + ¢'¢) — ¢, p2:=s[s(¢pd" + ¢'¢') — ']
ad
o4 = L”y .
o
Put )
Po —E"P2 P1
A i=a;; +0bb;, 6:=—-"7=, g:=—.
J Qij j P 0
Then 5
GG (AL id o pipi __ 0
AV = (Ayj) a’ — 7o', T T o

By a simple calculation, we get
g7 = p~ a7 — b — nYYY),
det(gij) = 0" (9 — 5¢")" 2 [(& — 59") + (b — 57)¢"] det(aiy),

where
K P2 / -
= — 5, =, Y = Ai'Y’LY"7
n 1+Y2,U M p J
i ij Yy i £—9ds
}/i:ai+€bi, Y :AJY]:E—FA67 )\:m
By putting ¢ := %, we compute the above relations for the Kropina metric as
follows
2 3 —4 4 -1
p_?a pOZSj7 P1 8737 p2:72a 62?7 /J’:2
-1 22 1 2
=g A=, YP= o 7= =45 -2,
252 b2 — 52 b2 — 242 b2 — 242 b2
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which implies that

9ij = 5 l: ij 5 82] - ;(biOZj + bjOZi) + a2]:| s (14)
g 2 [ bY 28 S 2(b%—287)
T = N A
2n—1b2
det(gi;) = Wdet(aij)a (16)
0 i b

=21 =(n+1) | L2 1

= ot detla) = 0+ 1) [ % - % ")

For a Finsler metric F', one can defines the norm of the mean Cartan torsion I
and the Cartan torsion C as follows

I,(v C,(v,v,v
= sp O e Gl g

Fly)=Lo70 [y (v,0)]2 Fy)=1,00 [gy(v,v)]?
Lemma 3.1. Let (M, F) be an n-dimensional Finsler manifold. Suppose
that F' = O‘T; be the Kropina metric. Then the norm of mean Cartan tensor of F
is given by following

(n+1)
I|| = . 19
1T 7 (19)
PROOF. Let FF' = %, 5= g, |s| < 1. Then by (17) we have
. (n+1)2s [[28% —b2a?\ B 1Ty by
G — j_ il |41 _ 2
975 2 b2at y b2a2b a? B
 (n+1)%2 (0 — 5?)
B 20202
Thus
. 1 b2 — 52
sup |Iy(v)| _ = /IZIZ' — (n+ )5 ( s ) _ (TL+1) (b2 *82)
v#£0 [gy(v,v)}i V2bo V2 bF
which yields
I
||I|| _ sup ‘Iy(v)| - = sup [Sup | y(/U)| 1:|
F(y)=1,040 [8y(v,v)]2  F(y=1 Lv#0 [gy(v,v)]2
(n+1) (n+1)
= sup b —s2)= —. 20)
o Va =" (

Thus the mean Cartan torsion of Kropina metric is bounded. ([l



On Cartan torsion of Finsler metrics 467

Now, we are going to find the norm of Cartan torsion. First, we consider the
case of dim M = 2. Let us remark the Lemma 1.2.2 of [12].

Lemma 3.2 ([12]). Let (V,F') be a Minkowski plane and Vy := V — {0}.
For a vector y € V with L(y) # 0, there is a vector y* € V; such that

g, (v, yt) =0, gy(yt,yh) =eL(y),

where € = ind(L) denotes the index of L.

Lemma 3.3. Let (V,F) be an n-dimensional Minkowski space. Suppose
that F = %2 be the Kropina metric. Then the norm of Cartan torsion of F is
bounded as follows

3v2
5

ICl < —— (21)

PROOF. First, let us consider the case that dim(M) = 2. Take an oriented
basis {e1,e2} for V which determines a global coordinate system (u,v) in V. Let
L(u,v) := L(uey + veg). Then for a vector y = ue; + ves € Vj, define the vector

y+ €V as follows
n —L,e1 + Lyes

- \/Luuva - Lu’uLuv .

Y

Thus we have

LvLuu - LuLuv = [Luuva - LuvLuv}rU
Luva - LvLuv = [Luuva - LuvLuv}ua

which yield

L?)Luu - 2LuLvLuv + LQQLL'U'U = (ULu + ULU)[Luuva - LuvLuv]
= 2L[Luuva - LuvLuv]-
Then we get

L2Lyy — 2Ly Ly Ly + L2 Ly,
2|LuuL'uv - Lu'uLuvl

9y(y,y") =0, g,(yt,y") = =eL(y).

The basis {y,y*} is called the Berwald frame at y. Define

C,(yt,yt,yh)

I(y) :== L(y)
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It is remarkable that I is 0-homogeneous function and called by the main scalar
of L. Let L is positive definite on V. For y = ue; + vea, we have

212L
I(y) — VUV 5.
(2LLyy — LyLy) 3

We can express L as L = [uqﬁ(%)]Q, where ¢ = ¢(s) is a positive C* function
with ¢.c(e) > 0. Then for y = e1 + ceq, we get

— 3¢E¢686 + ¢¢€EE .
203 ¢2.

Now, we take an orthonormal basis {ey, ea} for (V, a) such that S(ue; +vez) = bu,

I(y)

where b = [|B|a 1= sup,(y)=1 B(y). For the Kropina metric, we have

F:F: bu

If ¢p(e) = 1'282, then
ber= o (O

By a simple calculation, we get

2e 2
e = T ee = 7 cee = 0.
b= be=3, 0
Thus the main scalar of Kropina metric in the point y = e; 4 €eq is given by
3P Pece + PPeee 3e

2012 V2 +e)
which implies that
max |[| = —.
1] 7
Note that in the dimension two, ||C|| = max |I| and then ||C|| = %

Now, let dim(M) > 2. Base on the definition of norm of Cartan torsion, there
exist the vectors yo and vp such that ||C|| = C,, (vo, vo, vo). Put V := span{yo, vo}
and F := Fy. Let C denote the Cartan tensor of F' on V. Then
1 83F2(y0 + S’U()) —

1 95 = Culvo,vo,v0)-
If we put 3 := 3|y and & ::704‘7, Ehen [Ed = sup@(y)zlp(y) < |IB|l- Let I :=1I|y
denotes the main scalar of F' on V. Since ||C|| = max|I| < %, then

_ _ 3\/§
||CH = Cyo(vo’voﬂfo) < ||C|| < 5

Cyo (vo,vo,v0) =

This completes the proof. (|
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It is remarkable that, regarding the Cartan tensors of the Randers metric
F = a+ § and the Kropina metric F' = %2, Matsumoto introduced the notion of
C-reducibility and proved that any Randers and Kropina metrics are C-reducible
[7]. In [8], Matsumoto—Hojo proved that the converse is true. A Finsler metric F
is called C-reducible if its Cartan tensor is given by

1
Cijx = m{hijlk + hjedi + by}, (22)

where h;; := F'Fi,; is the angular metric. On the other hand, Shen proved that
the Cartan torsion of a Randers metric is bounded [12]. Thus by Lemma 3.3, we
conclude the following.

Corollary 3.1. Every C-reducible Finsler metric on a manifold M od di-
mension n > 3 has bounded Cartan torsion.

Now, let F' be a C-reducible Finsler metric. Then we have
CF = — IRYTF ¢ BRI 4 pM I 23

where h = g9 — F~2y'yJ. By (22) and (23), we have
3

CIFCL i = ——TI'I,.
Jk n—+1

Thus we conclude the following.

Corollary 3.2. Let (M, F) be a n-dimensional C-reducible Finsler manifold.

Then

3
Cll=+/—— T 24
ICH =/ 5= It (24)

In the case n = 2, we obtain ||C|| = ||IJ|, which proved in the previous
Lemmas 3.1 and 3.3.
Now, we are going to prove the Theorem 1.2.

Ol7n+1

PrROOF OF THEOREM 1.2. For the generalized Kropina metric F' = S

on
a 2-dimensional plane V', put

m+1

[L+e]=

o) =

For L = F2 = [u¢(2)], we get

u

(m+1)e[l + 2"z
Ge = pm )
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(m+1)(1 +me?)[1 + %5
¢65 = pm ,
é :(m+4xm_1x&+m§ku+gﬂ%*

bm

In the point (1,¢), we have

me[(2m + 1)e? + 3

]
) = i D) A men)t
which implies that
IC|l = max|I| = (2m7+1)
m(m+ 1)
The proof for the higher dimensions, is the same of 2-dimensional case and we
omit it. ([
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