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Browder spectra of upper triangular matrix linear relations

By YOSRA CHAMKHA (Sfax) and MAHER MNIF (Sfax)

Abstract. In this paper, we define a matrix linear relation and present some

properties of this one. When A ∈ BCR(H) and B ∈ BCR(K) are given, we denote by

MC the matrix linear relation acting on the infinite dimensional separable Hilbert space

H ⊕K, of the form MC =

(
A C

0 B

)
. It is shown that MC is Browder relation for some

operator C ∈ B(K,H) if and only if A is upper semi Fredholm relation with finite ascent,

B is lower semi Fredholm relation with finite descent and n(A) + n(B) = d(A) + d(B).

1. Introduction

LetH andK be two infinite dimensional normed spaces. A linear relation A :

H −→ K is a mapping from a subspaceD(A) ⊂ H called the domain of A, into the

collection of nonempty subsets of K such that A(αx1 + βx2) = αA(x1) + βA(x2)

for all nonzero α, β scalars and x1, x2 ∈ D(A). If A maps the points of its domain

to singletons, then A is said to be a single valued linear operator or simply an

operator. We denote the class of linear relation from H into K by LR(H,K) and

abbreviate LR(H,H) to LR(H). A ∈ LR(H,K) is uniquely determined by its

graph G(A), which is defined by :

G(A) = {(x, y) ∈ H ⊕K such that x ∈ D(A) and y ∈ Ax} .

Let A ∈ LR(H). The inverse of A is a linear relation A−1 given by :

G(A−1) = {(y, x) ∈ K ⊕H such that (x, y) ∈ G(A)} .
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For A and B ∈ LR(H), the notation A ⊂ B means that G(A) ⊂ G(B). The

linear relations A+B and AB are defined respectively by :

G(A+B) = {(x, y + z) ∈ H ⊕H such that (x, y) ∈ G(A) and (x, z) ∈ G(B)}

and

G(AB) = {(x, y) ∈ H ⊕H : ∃z ∈ H such that (x, z) ∈ G(B) and (z, y) ∈ G(A)} .

The subspace A−1(0) is denoted by N(A) and A is called injective if N(A) = {0},
that is, if A−1 is a single valued linear operator. The range of A is the subspace

R(A) := A(D(A)) and A is called surjective if R(A) = H. We write n(A) =

dimN(A), d(A) = dimH/R(A) and the index of A, ind(A) is defined by ind(A) =

n(A) − d(A) provided n(A) and d(A) are not both infinite. The ascent, asc(A)

and the descent, des(A) of A are given respectively by asc(A)= inf{n≥ 0 such

that N(An) = N(An+1)} and des(A)= inf{n≥ 0 such that R(An) = R(An+1)}.
The singular chain manifold noted Rc(A) is defined by Rc(A) = R0(A) ∩

R∞(A), where R0(A) =
⋃∞

i=1 N(Ai) and R∞(A) =
⋃∞

i=1 A
i(0). The linear space

Rc(A) is non trivial if and only if there exists a number s ∈ N and elements

xi ∈ H, 1 ≤ i ≤ s, not all equal to zero, such that

(0, x1), (x1, x2), . . . (xs−1, xs), (xs, 0) ∈ G(A).

Let QA denote the quotient map from H onto H/A(0). Clearly QAA is a single

valued operator and the norm of A is defined by ‖A‖ := ‖QAA‖. We say that A

is closed if its graph is a closed subspace, continuous if for each neighbourhood

V in R(A), A−1(V ) is a neighbourhood in D(A) (equivalently ‖A‖ < ∞), open if

its inverse is continuous. The resolvent set of a linear relation A is the set given

by :

ρ(A) = {λ ∈ C such that λ−A is injective, open and has dense range}.

We denote the set of all closed linear relations onH by CR(H). Continuous defined

everywhere linear relation on H are referred to as bounded linear relation. The

class of such relation is denoted by BR(H).

Let A ∈ CR(H). We say that A is upper semi Fredholm linear relation if it

has finite dimensional null space and closed range, A is lower semi Fredholm linear

relation if its range is closed and has a finite codimensional and A is Fredholm

linear relation if it is both upper and lower semi Fredholm linear relation. The

set of upper and lower semi Fredholm linear relations is denoted respectively by :

φ+(H) = {A ∈ CR(H) such that R(A) is closed and n(A) is finite},
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φ−(H) = {A ∈ CR(H) such that R(A) is closed and d(A) is finite}.

A closed linear relation A ∈ CR(H) is called Weyl if it is Fredholm of index

zero and is called Browder if it is Fredholm of index zero and has finite ascent

and descent [1]. Let φ−
+(H) be the class of all A ∈ φ+(H) with ind(A) ≤ 0.

If A ∈ CR(H), then the Browder spectrum σb(A) and the Browder essential

approximate point spectrum σab(A) of A are defined respectively by:

σb(A) = {λ ∈ C such that A− λI is not Browder}
and

σab(A) = {λ ∈ C such that A− λI 6∈ φ−
+(H) or asc(A− λI) = ∞}.

It is well known that λ 6∈ σab(A) if and only if A− λI is upper semi-Fredholm of

finite ascent. The set of all bounded and closed linear relations on H is denoted

by BCR(H).

Recently, many authors have paid much attention to 2× 2 upper triangular ope-

rators matrices [4], [9], [19]. For A ∈ B(H), B ∈ B(K) and C ∈ B(K,H), let MC

denote the upper triangular operator matrix

MC =

(
A 0

0 B

)
.

A study of the spectrum, the Browder and Weyl spectra and the Browder and

Weyl’s theorems for the operators MC , and the related diagonal M0 = A ⊕ B,

has been carried by a number of authors in the recent past (see [2], [5], [13], [19]).

This motivated us to consider the linear relations instead of operators and extend

some of the extant results.

The purpose of the present paper is to extend some results given by X. Cao

[2] in the context of linear relations. For a given pair (A,B) of operators, X.

Cao gives necessary and sufficient conditions for which MC is Browder for some

linear operator C. Throughout this note, we will extend this result for entries

linear relations. For this we must first define the notion of matrix relation, and

review the basic rules of the product of matrix linear relations that we need to

know to define the adjoint and the index matrices. In order to give a similar

characterization of X. Cao, we need an analogue of the results of Taylor [18]

and Kaashoek [11], [12] given for linear operators, in the case of linear relations.

Our paper is organized as follows: Section 2 contains technical results needed

in the proof of Theorem 22 and Theorem 24. In section 3, we give a definition
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of matrix linear relation, then we collect some useful calculus formulas that often

appear next. The second part of this section deals with triangular matrix linear

relation. When A and B are two linear relations, we introduce the matrix linear

relation MC where C is a linear operator and we investigate some properties con-

cerning index, singular chain manifold and adjoint of MC . In section 4, we provide

the main results. We recall that for A and B two linear operators, MC is Browder

for some linear operator C if and only if A is upper semi Fredholm with finite as-

cent, B is lower semi Fredholm with finite descent and n(A)+n(B) = d(A)+d(B).

We will show that this result, given by [2], can be extended to bounded and closed

linear relations which have a trivial singular chain manifold, see for instance The-

orem 27. This theorem will be used next to obtain a characterization of Browder

spectrum of a matrix MC according to the Browder essential approximate point

spectrum of A and B∗, where B∗ is the adjoint of B.

2. Auxiliary results

The goal of this section is to establish some results which we use in the

next section. We begin by giving some auxiliary results from the theory of linear

relations in Banach space.

Lemma 1. Let H be a Banach space, A ∈ LR(H) and B ∈ LR(H).

If A ∈ φ(H) and B ∈ φ(H), then AB ∈ φ(H).

Proof. From [6], we know that if A ∈ φ+(H) and B ∈ φ+(H), then AB ∈
φ+(H). On the other hand, from [17, Lemma 5.1], we have d(AB) ≤ d(A) +

d(B) < ∞. Thus, AB ∈ φ(H). ¤

For n ∈ N∗ the identity An∗ = A∗n, has already been proved in the densely

defined operators case (see [14, Theorem 4.2]), where the statement made sense.

Next we will extend this result to the multivalued case. This suggest the following

definitions.

Definition 2. Let H be a Banach space and A ∈ LR(H). The adjoint of the

linear relation A, noted A∗ is defined by its graph given by :

G(A∗) = G(−A−1)⊥,

that is, (y′, x′) ∈ G(A∗) if and only if, for all (x, y) ∈ G(A), y′y − x′x = 0.



Browder spectra of upper triangular matrix linear relations 573

Definition 3. Let H be a Banach space, M a subspace of H and A ∈ LR(H).

We say that M is a core of A if G(A) ⊂ G(A|M ), where G(A|M ) = {(x, y) ∈
G(A) such that x ∈ M}.

Definition 4. Let X, Y be two Banach spaces, T and S ∈ LR(X,Y ). Then,

T is said to be S-co-continuous if there exist constants α, β > 0 such that

TBX ⊂ αSBX + βBY + T (0),

where BX , and BY designate respectively the closed unit ball in X and Y.

Remark 5. If T is a continuous linear relation, we note that there is a β > 0

with

TBX ⊂ βBY + T (0).

(see for instance [4]). From this we can prove that : if T ∈ LR(X,Y ) is continuous,

then T is S-co-continuous for all S ∈ LR(X,Y ).

Definition 6. Let X, Y be two Banach spaces, T and S ∈ LR(X,Y ). Then,

T is said to be S-bounded if D(S) ⊂ D(T ) and there exist constants α, β > 0

such that for all x ∈ D(S) we have

‖Tx‖ ≤ α‖Sx‖+ β‖x‖

where ‖Tx‖ = d(Tx, T (0)) = d(Tx, 0) (see [4, Proposition II.1.4]).

Lemma 7 ([10, Theorem 2.10]). Let X, Y be two Banach spaces, T and

S ∈ LR(X,Y ).

(i) If T is S-co-continuous, then there are α, β > 0 with

‖y′T‖ ≤ α‖y′S‖+ β‖y′‖ for all y′ ∈ D(S∗).

(ii) If furthermore T (0) ⊂ S(0), then T ∗ is S∗-bounded.

Lemma 8 ([10, Theorem 3.1]). Let X, Y be two Banach spaces, T and

S ∈ LR(X,Y ). Suppose that D(TS) is a core of S. Then, (TS)∗ = S∗T ∗ if and

only if T ∗ is (TS)∗-bounded.

We are now ready to state our result.

Lemma 9. Let H be a Banach space and A ∈ LR(H).

If A is bounded then, for all n ∈ N∗, An∗ = A∗n.
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Proof. Let A be a bounded linear relation. Since A is continuous, then

A is A2-co-continuous. Furthermore A(0) ⊂ A2(0), then using Lemma 7, A∗ is

A2∗-bounded. On the other hand, since D(A) = H, then by [15, Corollary 3.6],

we have D(A2) = H. Then, G(A) ⊆ G(A|D(A2)). This implies that D(A2) is a

core of A. From Lemma 8, we have A2∗ = A∗2. By induction we get the result for

all n ∈ N∗. ¤

Proposition 10. Let H be a Banach space and A ∈ BCR(H).

(i) If A ∈ φ+(H), then asc(A) = des(A∗) and des(A) = asc(A∗).

(ii) If A ∈ φ−(H) and ρ(A) 6= ∅, then asc(A) = des(A∗) and des(A) = asc(A∗).

Proof. (i) Suppose that A ∈ φ+(H). In [7], we have shown that if A ∈
φ+(H), then for all n ∈ N, An ∈ φ+(H). Using this result, we get that An and

R(An) are closed and n(An) < ∞. Let asc(A) = p. Then N(Ap) = N(Ap+1).

Suppose that p < ∞. Since A ∈ φ+(H), then Ap ∈ φ+(H). This implies that

Ap and R(Ap) are closed. We get R(A∗p)⊥ = N(Ap) = N(Ap+1) = R(A∗p+1)⊥.
This induces that R(A∗p) = R(A∗p+1). Thus, des(A∗) ≤ asc(A). If des(A∗) =

q < p. Then, N(Aq) ( N(Ap). Since p > q, then R(A∗q) = R(A∗p). It follows

that R(A∗q)⊥ = R(A∗p)⊥. And so, N(Aq) = N(Ap), which is absurd. Hence,

des(A∗) = p. Suppose that p = ∞. Then for all n ∈ N, N(An) ( N(An+1). If

des(A∗) = q < ∞. Then R(A∗q) = R(A∗q+1). Thus, R(A∗q)⊥ = R(A∗q+1)⊥. It
follows that N(Aq) = N(Aq+1). This is in contradiction with the fact that p = ∞.

Thus, des(A∗) = ∞. The remaining statements can be proved similarly.

(ii) Suppose that A ∈ φ−(H) and ρ(A) 6= ∅. From [6, Proposition 3.1], we

know that for all n ∈ N, An ∈ φ−(H). Thus, from the definition, An and R(An)

are closed and d(An) < ∞. Using the same technique in (i), we get the result. ¤

Proposition 11. Let H be a Banach space and A ∈ BCR(H) with Rc(A) =

{0}.
If A is a Weyl linear relation, such that asc(A) < ∞ or des(A) < ∞, then A

is Browder and asc(A) = des(A).

Proof. Using the definition of Weyl linear relation, we know that A ∈ φ(H)

and ind(A) = 0. Suppose that asc(A) < ∞. We need only to prove that des(A) <

∞. Let asc(A) = p. Then n(Ap) = n(Ap+1). Since A is Weyl, then from [1, Propo-

sition 8], for all n ∈ N, An is Weyl. Hence ind(Ap) = ind(Ap+1) = 0. This implies

that n(Ap) = d(Ap) and n(Ap+1) = d(Ap+1). Hence d(Ap) = d(Ap+1), which

means that dim R(Ap)⊥ = dim R(Ap+1)⊥. Therefore, R(Ap)⊥ = R(Ap+1)⊥.
Moving to the orthogonal, we get that R(Ap) = R(Ap+1). So, des(A) ≤ p. Thus,

A is Browder and from [15, Theorem 6.11], we conclude that asc(A) = des(A).
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For the case des(A) < ∞, by Proposition 10, we have asc(A∗) < ∞. The same

proof gives the result. ¤

Lemma 12 ([15, Lemma 5.5]). Let H be a Banach space, A ∈ LR(H) and

m ∈ N∗.

1- If Rc(A) = {0} and asc(A) ≤ m, then for all n ∈ N N(An) ∩R(Am) = {0}.
2- If N(A) ∩R(Am) = {0}, then Rc(A) = {0} and asc(A) ≤ m.

3. Properties of matrix linear relations

For H and K two Banach spaces, consider A ∈ LR(H), B ∈ LR(K), C ∈
LR(K,H) and D ∈ LR(H,K). We define the matrix linear relation acting on

H ⊕K of the form

(
A C

D B

)
by :

G

((
A C

D B

))
=

{((
x1

x2

)
,

(
y1
y2

))
∈ (H ⊕K)2such that x1 ∈ D(A) ∩D(D),

x2 ∈ D(C) ∩D(B), y1 ∈ Ax1 + Cx2and y2 ∈ Dx1 +Bx2

}
.

3.1. Matrix Product. In this subsection, we investigate some properties of the

product of matrix linear relations.

We begin by the simple case, the product of diagonal matrix linear relations.

Lemma 13. Let H and K be two Banach spaces, A,A′ ∈ LR(H) and

B,B′ ∈ LR(K). Then
(
A 0

0 B

)(
A′ 0

0 B′

)
=

(
AA′ 0

0 BB′

)
.

Proof. Let
((

x1

x2

)
,

(
y1
y2

))
∈ G

((
A 0

0 B

)(
A′ 0

0 B′

))
.

This means that there exists

(
z1
z2

)
∈ H ⊕K, such that

((
x1

x2

)
,

(
z1
z2

))
∈ G

((
A′ 0

0 B′

))
and

((
z1
z2

)
,

(
y1
y2

))
∈ G

((
A 0

0 B

))
.
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We get z1 ∈ A′x1, z2 ∈ B′x2, y1 ∈ Az1 and y2 ∈ Bz2. Thus, y1 ∈ AA′x1 and

y2 ∈ BB′x2. This is equivalent to :

((
x1

x2

)
,

(
y1
y2

))
∈ G

((
AA′ 0

0 BB′

))
.

For the converse inclusion, we use the same technique and we get the result. ¤

Proposition 14. Let H and K be two Banach spaces, A,A′ ∈ LR(H),

B,B′ ∈ LR(K), C, C ′ ∈ LR(K,H) and D,D′ ∈ LR(H,K). Then

(i) (
A C

D B

)(
A′ C ′

D′ B′

)
⊆

(
AA′ + CD′ AC ′ + CB′

DA′ +BD′ DC ′ +BB′

)
.

(ii) Moreover, if A′, B′, C ′ and D′ are single valued or D = D′ = 0 and B′ is
single valued, then we have the equality.

Proof. (i) Let

((
x1

x2

)
,

(
y1
y2

))
∈ G

((
A C

D B

)(
A′ C ′

D′ B′

))
.

Then there exists

(
z1
z2

)
∈ H ⊕K, such that

((
x1

x2

)
,

(
z1
z2

))
∈ G

((
A′ C ′

D′ B′

))
and

((
z1
z2

)
,

(
y1
y2

))
∈ G

((
A C

D B

))
.

This implies that z1 ∈ A′x1 + C ′x2, z2 ∈ D′x1 + B′x2, y1 ∈ Az1 + Cz2 and

y2 ∈ Dz1+Bz2. Thus, y1 ∈ A(A′x1+C ′x2)+C(D′x1+B′x2) = (AA′+CD′)x1+

(AC ′ +CB′)x2 and y2 ∈ D(A′x1 +C ′x2) +B(D′x1 +B′x2) = (DA′ +BD′)x1 +

(DC ′ +BB′)x2. It follows that

((
x1

x2

)
,

(
y1
y2

))
∈ G

((
AA′ + CD′ AC ′ + CB′

DA′ +BD′ DC ′ +BB′

))
.

(ii) Suppose that A′, B′, C ′ and D′ are single valued. Let

((
x1

x2

)
,

(
y1
y2

))
∈ G

((
AA′ + CD′ AC ′ + CB′

DA′ +BD′ DC ′ +BB′

))
.
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Then y1 ∈ (AA′ +CD′)x1 +(AC ′ +CB′)x2 = A(A′x1 +C ′x2)+C(D′x1 +B′x2)

and y2 ∈ (DA′ +BD′)x1 +(DC ′ +BB′)x2 = D(A′x1 +C ′x2)+B(D′x1 +B′x2).

Let z1 = A′x1 + C ′x2 and z2 = D′x1 + B′x2. We get y1 ∈ Az1 + Cz2 and

y2 ∈ Dz1 +Bz2. Thus,

((
x1

x2

)
,

(
y1
y2

))
∈ G

((
A C

D B

)(
A′ C ′

D′ B′

))
.

Now, suppose that D = D′ = 0 and B′ is single valued. Let

((
x1

x2

)
,

(
y1
y2

))
∈ G

((
AA′ AC ′ + CB′

0 BB′

))
.

Then y1 ∈ AA′x1 + (AC ′ +CB′)x2 = A(A′x1 +C ′x2) +CB′x2 and y2 ∈ BB′x2.

It follows that there exists z1 ∈ A′x1 + C ′x2, such that y1 ∈ Az1 + CB′x2. Let

z2 = B′x2, then

((
x1

x2

)
,

(
y1
y2

))
∈ G

((
A C

0 B

)(
A′ C ′

0 B′

))
.

This completes the proof. ¤

3.2. Some properties of triangular linear relations. Let H and K be two

Banach spaces. When A ∈ LR(H), B ∈ LR(K) and C ∈ LR(K,H) are given,

we denote by MC the matrix linear relation acting on H ⊕K of the form :

MC =

(
A C

0 B

)
.

Further, as an application of Proposition 14, we have :

1- For all p ∈ N∗,

Mp
C ⊆

(
Ap

∑p−1
k=0 A

p−1−kCBk

0 Bp

)
.

2- The matrix linear relation MC , admits the following decomposition :

MC =

(
A C

0 B

)
=

(
I 0

0 B

)(
I C

0 I

)(
A 0

0 I

)
. (3.1)

3- Using the decomposition of MC and Lemma 1, we can prove that : if A ∈
φ(H) and B ∈ φ(K), then for all C ∈ B(K,H), MC ∈ φ(H ⊕K).
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Index of MC . It is well known that if A, B and C are linear operators with finite

indices, we have ind(MC) = ind(A) + ind(B). We will show that this property

remains valid in the case of linear relations. For this, we recall the index theorem

for the product of linear relation needed below.

Lemma 15 ([3, Corollary 3.2]). Let X, Y, Z be three vector spaces, T ∈
LR(X,Y ), S ∈ LR(Y, Z), D(S) = Y and suppose that T and S have finite

indices. Then, ST has a finite index and :

ind(ST ) = ind(S) + ind(T )− dim(T (0) ∩ S−1(0)).

Theorem 16. LetH andK be two Banach spaces, A ∈ φ(H) and B ∈ φ(K).

Then, for all C ∈ B(K,H), ind(MC) = ind(A) + ind(B).

Proof. Since A ∈ φ(H) and B ∈ φ(K), then

(
I 0

0 B

)
∈ φ(H ⊕ K) and

(
A 0

0 I

)
∈ φ(H ⊕K). The use of Lemma 15 leads to :

ind(MC) = ind

((
I 0

0 B

))
+ ind

((
I C

0 I

)(
A 0

0 I

))

− dim



(
I C

0 I

)(
A 0

0 I

)(
0

0

)
∩
(
I 0

0 B

)−1 (
0

0

)
 .

We claim that

(
I 0

0 B

)−1

=

(
I 0

0 B−1

)
. Let

((
x

y

)
,

(
z

t

))
∈ G



(
I 0

0 B

)−1

 .

This is equivalent to

((
z

t

)
,

(
x

y

))
∈ G

((
I 0

0 B

))
.

This means that x = z and y ∈ Bt. It follows that x = z and t ∈ B−1y. Thus,

((
x

y

)
,

(
z

t

))
∈ G

((
I 0

0 B−1

))
.
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We note that

dim

((
I C

0 I

)(
A 0

0 I

)(
0

0

)
∩
(
I 0

0 B−1

)(
0

0

))

= dim

((
A(0)

0

)
∩
(

0

B−1(0)

))
= 0.

It follows that

ind(MC) = ind

((
I 0

0 B

))
+ ind

((
I C

0 I

)(
A 0

0 I

))
.

Applying Lemma 15 again, we get :

ind(MC) = ind(B) + ind

((
I C

0 I

))
+ ind

((
A 0

0 I

))

− dim



(
A 0

0 I

)(
0

0

)
∩
(
I C

0 I

)−1 (
0

0

)


= ind(B) + ind(A)− dim

((
A(0)

0

)
∩
(
−C(0)

0

))
= ind(B) + ind(A).

This achieves the proof. ¤

Singular chain manifold of MC . Let C be a bounded linear operator. In the

following theorem, we give some sufficient conditions on the relations A and B to

have Rc(MC) = {0}.
Theorem 17. Let H and K be two Banach spaces, A ∈ LR(H) and B ∈

LR(K).

If Rc(A) = {0} and Rc(B) = {0}, then for all C ∈ B(K,H), Rc(MC) = {0}.
Proof. Let C ∈ B(K,H). Suppose that Rc(MC) 6= {0}. Then, there exists

a chain

(
xi

yi

)
6=

(
0

0

)
∈ H ⊕K, 1 ≤ i ≤ n, such that :

((
0

0

)
,

(
x1

y1

))
,

((
x1

y1

)
,

(
x2

y2

))
, . . . ,

((
xn

yn

)
,

(
0

0

))
∈ G(MC).
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Let x0 = y0 = xn+1 = yn+1 = 0. Then for all 1 ≤ i ≤ n,

((
xi

yi

)
,

(
xi+1

yi+1

))
∈

G(MC). Thus, xi+1 ∈ Axi+Cyi and (yi, yi+1) ∈ G(B). We have construct a chain

yi, 1 ≤ i ≤ n, such that (0, y1), (y1, y2), ..., (yn, 0) ∈ G(B). Since Rc(B) = {0},
then, for all 1 ≤ i ≤ n, yi = 0. On the other hand, C is an operator. It

follows that (0, x1), (x1, x2), ..., (xn, 0) ∈ G(A). Since Rc(A) = {0}, then for all

1 ≤ i ≤ n, xi = 0, which is absurd. Consequently Rc(MC) = {0}. ¤

Proposition 18. Let H, K be two Banach spaces, A ∈ LR(H) and B ∈
LR(K), with Rc(A) = {0} and Rc(B) = {0}.

If asc(MC) < ∞ for some C ∈ B(K,H), then asc(A) < ∞.

Proof. Since Rc(A) = {0} and Rc(B) = {0}, then by Theorem 17,

Rc(MC) = {0}. Let asc(MC) = p. Then, N(MC) ∩R(Mp
C) = {0}. Using Lemma

12, we need only to prove that N(A) ∩ R(Ap) = {0}. Let x ∈ N(A) ∩ R(Ap).

Then, 0 ∈ Ax and there exists y ∈ H, such that x ∈ Apy. It is easy to see that(
x

0

)
∈ N(MC). Since x ∈ Apy, then

(
x

0

)
∈
(
Ap 0

0 I

)(
y

0

)
=

(
A 0

0 I

)p (
y

0

)
⊆ Mp

C

(
y

0

)
.

It follows that

(
x

0

)
∈ R(Mp

C). Thus,

(
x

0

)
∈ N(MC) ∩ R(Mp

C) = {0}. Hence,
x = 0. Consequently asc(A) < ∞. ¤

Adjoint of MC . In general, the product of adjoint linear relations is not the

adjoint of the product. Cross [4, Theorem III.1.6] and Jaftha [10, Theorem

3.1] have shown that under some conditions, we can get the above equality. In

this note, we will use these characterizations to study the adjoint of triangular

matrix linear relation.

Theorem 19. Let H, K be two Banach spaces, A ∈ BCR(H), B ∈ BCR(K)

and C ∈ B(K,H). Then, the adjoint of MC is :

M∗
C =

(
A∗ 0

C∗ B∗

)
.



Browder spectra of upper triangular matrix linear relations 581

Proof. Using equation (3.1) and moving to the adjoint, we get :

M∗
C =

((
I 0

0 B

)(
I C

0 I

)(
A 0

0 I

))∗

.

Since

(
I C

0 B

)
is bounded, then it is continuous. Using Remark 5, we get

(
I C

0 B

)
is

(
I C

0 B

)(
A 0

0 I

)
-co-continuous. However, from [16] we know that:

(
I C

0 B

)(
0

0

)
⊆

(
I C

0 B

)(
A 0

0 I

)(
0

0

)
. So by Lemma 7 we have

(
I C

0 B

)∗

is

((
I C

0 B

)(
A 0

0 I

))∗

-bounded. On the other hand, it is easy to see that

D

((
I C

0 B

)(
A 0

0 I

))
is a core of

(
A 0

0 I

)
. Indeed, Proposition 3.1 (iii) le-

ads to D

((
I C

0 B

)(
A 0

0 I

))
=D

((
A C

0 B

))
=H ×K since A, B and C are

bounded. Further, D

((
A 0

0 I

))
= H ×K since A is bounded. So using Defini-

tion 3 of the core, we get the result.

We obtain that the conditions of Lemma 8 are satisfied, then

M∗
C =

(
A 0

0 I

)∗ (
I C

0 B

)∗

. Using the same technique to

(
I C

0 B

)∗

, it follows

that

M∗
C =

(
A 0

0 I

)∗ (
I C

0 I

)∗ (
I 0

0 B

)∗

=

(
A 0

0 I

)∗ (
I 0

C∗ I

)(
I 0

0 B

)∗

.

We need only to prove that

(
I 0

0 B

)∗

=

(
I 0

0 B∗

)
and by analogy on

(
A 0

0 I

)∗

we get the result. Let

((
y′1
y′2

)
,

(
x′
1

x′
2

))
∈ G

((
I 0

0 B

)∗)
. So, for all

((
x1

x2

)
,

(
y1
y2

))
∈ G

((
I 0

0 B

))
, we have y′1y1 = x′

1x1 and y′2y2 = x′
2x2. Since

y1 = x1 and y2 ∈ Bx2, then y′1 = x′
1 and for all (x2, y2) ∈ G(B), y′2y2 = x′

2x2.
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This is equivalent to

((
y′1
y′2

)
,

(
x′
1

x′
2

))
∈ G

((
I 0

0 B∗

))
. Thus,

(
I 0

0 B

)∗

=

(
I 0

0 B∗

)
. This achieves the proof. ¤

4. Main results

In this sectionH andK are two infinite dimensional separable Hilbert spaces.

Let A ∈ BCR(H) and B ∈ BCR(K) with Rc(A) = {0} and Rc(B) = {0}. We

recall that for C ∈ B(K,H), we denote by MC the matrix linear relation :

MC =

(
A C

0 B

)
.

The aim of this section is to give some necessary and sufficient conditions on A

and B for which there exists an operator C such that MC is a Browder matrix

linear relation.

Lemma 20. Let H and K be two infinite dimensional separable Hilbert

spaces, A ∈ LR(H) and B ∈ LR(K). Suppose A ∈ φ+(H), B ∈ φ−(K) and

d(A) = n(B) = ∞. Then for all p ∈ N, there exists an isometry :

T : (R(B∗) +N(B∗p))⊥ −→ (R(A) +N(Ap))⊥.

Proof. Let p ∈ N. We claim that dim(R(A) + N(Ap))⊥ = ∞. Since A ∈
φ+(H), then Ap ∈ φ+(H). And so, n(Ap) < ∞. We also have R(A) is closed,

which implies that (R(A) +N(Ap)) is closed. Then

H = (R(A) +N(Ap))⊕ (R(A) +N(Ap))⊥.

Suppose that dim(R(A) + N(Ap))⊥ < ∞. Then codim(R(A)) = d(A) < ∞,

which is a contradiction. Hence, dim(R(A) + N(Ap))⊥ = ∞. Using the same

proof, we can show that dim(R(B∗) +N(B∗p))⊥ = ∞. (R(B∗) +N(B∗p))⊥ and

(R(A) + N(Ap))⊥ are two closed subspaces acting on H and K respectively. It

follows that (R(B∗)+N(B∗p))⊥ and (R(A)+N(Ap))⊥ are two infinite dimensional

separable Hilbert spaces. So, there exists an isometry :

T : (R(B∗) +N(B∗p))⊥ −→ (R(A) +N(Ap))⊥. ¤
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Proposition 21. Let H and K be two infinite dimensional separable Hilbert

spaces, p ∈ N, A ∈ LR(H) and B ∈ BR(K) with Rc(A) = {0} and Rc(B) = {0}.
Suppose A ∈ φ+(H) with asc(A) < p, B ∈ φ−(K) and d(A) = n(B) = ∞. Then,

there exists C ∈ B(K,H) such that asc(MC) ≤ p.

Proof. Using Lemma 20, we define the single valued linear operator C by :

C =

(
T 0

0 0

)
:

(
(R(B∗) +N(B∗p))⊥

R(B∗) +N(B∗p)

)
−→

(
(R(A) +N(Ap))⊥

R(A) +N(Ap)

)
. (4.1)

From Lemma 12, it suffices to show that N(MC) ∩R(Mp
C) = {0}.

Let

(
x

y

)
∈ N(MC) ∩ R(Mp

C). Then,

(
0

0

)
∈ MC

(
x

y

)
and there exists

(
z

t

)
∈

H ⊕K such that :

(
x

y

)
∈ Mp

C

(
z

t

)
⊆

(
Ap

∑p−1
k=0 A

p−1−kCBk

0 Bp

)(
z

t

)
.

This induces that 0 ∈ Ax+ Cy, 0 ∈ By, x ∈ Apz + Ap−1Ct+ . . .+ CBp−1t and

y ∈ Bpt. Thus, y ∈ N(B) ∩ R(Bp) ⊆ (R(B∗) + N(B∗p))⊥ and −Cy ∈ Ax ⊆
R(A) ∩ (R(A) + N(Ap))⊥ ⊆ R(A) + R(A)⊥ = {0}. Since Cy = Ty = 0, then

y = 0 and x ∈ N(A). We know that x ∈ Apz + Ap−1Ct + . . . + CBp−1t, then

there exists z1 ∈ Apz +Ap−1Ct+ . . .+ACBp−2t ⊆ R(A) such that :

x− z1 ∈ CBp−1t ⊆ (N(A) +R(A)) ∩ (N(Ap) +R(A))⊥.

∈ (N(Ap) +R(A)) ∩ (N(Ap) +R(A))⊥ = {0}.

Thus,

x = z1 ∈ Apz +Ap−1Ct+ . . .+ACBp−2t.

∈ A(Ap−1z +Ap−2Ct+ . . .+ACBp−3t+ CBp−2t).

It follows that there exists z2 ∈ Ap−1z + Ap−2Ct + . . . + ACBp−3t + CBp−2t,

such that x ∈ Az2. Since 0 ∈ Ax ⊆ A2z2, then z2 ∈ N(A2). Let z3 ∈ Ap−1z +

Ap−2Ct+ . . .+ACBp−3t, such that z2 − z3 ∈ CBp−2t. Then

z2 − z3 ∈ CBp−2t ⊆ (N(A2) +R(A)) ∩ (N(Ap) +R(A))⊥.

∈ (N(Ap) +R(A)) ∩ (N(Ap) +R(A))⊥ = {0}.
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Thus, z2 = z3 ∈ R(A). From the fact that x ∈ Az2, we have x ∈ R(A2). Continue

this process, we get that z2p−2 ∈ A2z + ACt + CBt, with x ∈ Ap−1z2p−2. Since

0 ∈ Ax ⊆ A2z2 ⊆ A3z4 ⊆ . . . ⊆ Apz2p−2, then z2p−2 ∈ N(Ap). Let z2p−1 ∈
A2z +ACt, such that z2p−2 − z2p−1 ∈ CBt. Then

z2p−2 − z2p−1 ∈ CBt ⊆ (N(Ap) +R(A)) ∩ (N(Ap) +R(A))⊥ = {0}.

Thus, z2p−2 = z2p−1 ∈ R(A). Since x ∈ Ap−1z2p−1, then x ∈ R(Ap). However,

Rc(A) = {0} and asc(A) ≤ p, then x ∈ N(A) ∩R(Ap) = {0}. And so, x = y = 0.

This induces that N(MC) ∩R(Mp
C) = {0}. Consequently asc(MC) ≤ p. ¤

Theorem 22. Let H and K be two infinite dimensional separable Hilbert

spaces, A ∈ BR(H) and B ∈ BR(K) with Rc(A) = {0} and Rc(B) = {0}.
Suppose A ∈ φ+(H) with asc(A) < ∞ and B ∈ φ−(K) with des(B) < ∞. If

d(A) = n(B) = ∞, then there exists C ∈ B(K,H) such that MC is Browder and

asc(MC) = des(MC).

Proof. Let p = max(asc(A), des(B)). Using Lemma 20, we define C by

(4.1) :C =

(
T 0

0 0

)
:

(
(R(B∗) +N(B∗p))⊥

R(B∗) +N(B∗p)

)
−→

(
(R(A) +N(Ap))⊥

R(A) +N(Ap)

)
Then,

we claim that MC is Browder. We divide the proof into five steps.

Step 1 : n(MC) < ∞.

Let

(
x0

y0

)
∈ N(MC), then 0 ∈ Ax0 + Cy0 and 0 ∈ By0. Thus,

−Cy0 ∈ Ax0 ∈ R(A) ∩ (R(A) +N(Ap))⊥ ∈ R(A) ∩R(A)⊥ ∩N(Ap)⊥

∈ R(A) ∩R(A)⊥ = {0}.

Hence, 0 ∈ Ax0 and Cy0 = 0. Let y0 = y1 + y2, where y1 ∈ (R(B∗) +
N(B∗p))⊥ and y2 ∈ (R(B∗) +N(B∗p)). Then, Cy0 = Ty1 = 0. This implies that

y1 = 0, which means that y0 ∈ (R(B∗)+N(B∗p)). Thus, y0 ∈ (R(B∗)+N(B∗p))∩
N(B). We get that N(MC) ⊆ N(A)⊕ (R(B∗) +N(B∗p))∩N(B). We claim that

dim(R(B∗) +N(B∗p)) ∩N(B) < ∞.

To the contrary, we assume that (R(B∗)+N(B∗p))∩N(B) is infinite dimensional.

Let (un)
∞
n=1 be the orthonormal sequence in (R(B∗)+N(B∗p))∩N(B) and write

un = wn + vn, where wn ∈ R(B∗) and vn ∈ N(B∗p). Then, (vn)∞n=1 is linear

independent. In fact, for any n ∈ N, if a1v1 + a2v2 + ... + anvn = 0, then

a1(u1−w1)+a2(u2−w2)+· · ·+an(un−wn) = 0. Hence, a1u1+a2u2+...+anun =

a1w1 + a2w2 + · · · + anwn ∈ N(B) ∩ R(B∗). Since R(B∗) = N(B)⊥, it follows
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that R(B∗)∩N(B) = N(B)⊥∩N(B) = {0}. Then, a1u1+a2u2+ · · ·+anun = 0.

Thus, a1 = a2 = · · · = an = 0, therefore (vn)
n
i=1 ⊆ N(B∗p) is linear independent

for any n ∈ N. This induces that dimN(B∗p) = ∞. It is in contradiction with

the fact that B ∈ φ−(K). From the preceding proof, we get that n(MC) ≤
n(A) + dim(R(B∗) +N(B∗p)) ∩N(B) < ∞.

Step 2 : R(MC) is closed.

Since MC ∈ BCR(H⊕K), then by [8], M∗
C is a closed linear operator. Using

the closed range theorem, we need only to prove that R(M∗
C) is closed. Suppose

that M∗
C

(
xn

yn

)
−→

(
u0

v0

)
Then, A∗xn −→ u0 and C∗xn + B∗yn −→ v0. Thus,

(A∗xn)
∞
n=1, (C

∗xn)
∞
n=1 and (B∗yn)∞n=1 are Cauchy sequences. Write xn = un+vn,

where un ∈ (R(A) + N(Ap))⊥ and vn ∈ (R(A) + N(Ap)). Then, C∗xn = T ∗un,

and so (un)
∞
n=1 is a Cauchy sequence. Also (A∗vn)∞n=1 is a Cauchy sequence

since A∗xn = A∗vn. Using the fact that R(A) is closed and dimN(Ap) < ∞,

we know that R(A) + N(Ap) is closed. There is an orthogonal decomposition

(R(A) + N(Ap)) = N(A∗)⊥ ⊕ M and M ⊆ N(A∗). Let vn = wn + zn where

wn ∈ N(A∗)⊥ and zn ∈ M ⊆ N(A∗). Then, A∗vn = A∗wn and therefore,

(A∗wn)
∞
n=1 is a Cauchy sequence. We claim that wn is a Cauchy sequence. Indeed,

since A∗vn = A∗wn −→ u0 and R(A∗) is closed, it follows that there exists

z0 ∈ N(A∗)⊥ such that A∗wn −→ A∗z0 = u0. So, A
∗(wn − z0) −→ 0. Since

A∗
|N(A∗)⊥ is invertible, we get that wn−z0 −→ 0. Then, wn is a Cauchy sequence.

Let x′
n = un + wn. Then, (x

′
n)

∞
n=1 is a Cauchy sequence. Suppose x′

n −→ x0.

Then, C∗xn = T ∗un = C∗x′
n −→ C∗x0 and A∗xn = A∗x′

n −→ A∗x0. Suppose

B∗yn −→ B∗y0. We get M∗
C

(
x0

y0

)
−→

(
u0

v0

)
. This proves that R(M∗

C) is closed.

And so, R(MC) is closed.

Step 3 : MC has finite ascent and finite descent.

From the construction of C, we have by Proposition 21 that asc(MC) ≤ p. On

the other hand, since MC ∈ φ+(H ⊕ K), then using Proposition 10, we get

des(MC) = asc(M∗
C). However, the entries A∗, B∗ and C∗ of M∗

C are operators,

so the same technique adopting in the proof of [2, Theorem 2.1], shows that

des(MC) ≤ p.

Step 4 : d(MC) < ∞.

We haveD(MC) = H⊕K and des(MC) ≤ p. This implies, from [15, Theorem 6.7],

that d(MC) ≤ n(MC). Further MC ∈ φ+(H ⊕K), then d(MC) < ∞.

Step 5 : ind(MC) = 0.

We have d(MC) ≤ n(MC), which means that ind(MC) ≥ 0.
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Since Rc(A) = {0} and Rc(B) = {0}, then by Theorem 17, Rc(MC) = {0}. Howe-
ver, since asc(MC) ≤ p then from [15, Theorem 6.5], it follows that ind(MC) ≤ 0.

This proves that ind(MC) = 0. Consequently MC is Browder. Moreover MC is

Browder, and Rc(MC) = {0}, then using [15, Theorem 6.11], we get asc(MC) =

des(MC). ¤

Theorem 23. Let H and K be two infinite dimensional separable Hilbert

spaces, A ∈ BR(H) and B ∈ BR(K) with Rc(A) = {0} and Rc(B) = {0}.
Suppose A ∈ φ(H) with asc(A) < ∞ and B ∈ φ(K) with des(B) < ∞. If

n(A) + n(B) = d(A) + d(B), then there exists C ∈ B(K,H) such that MC is

Browder.

Proof. From the hypothesis, we know that MC is Weyl for every C ∈
B(K,H). From Proposition 11, we need only to prove that there exists C ∈
B(K,H) such that asc(MC) or des(MC) is finite. Let p = max(asc(A), des(B)).

There are two cases to consider:

Case 1 : Suppose that dim(R(B∗) +N(B∗p))⊥ ≤ dim(R(A) +N(Ap))⊥.
Let M be a closed subspace such that M ⊆ (R(A) + N(Ap))⊥ and dimM =

dim(R(B∗) + N(B∗p))⊥. Then, there exists a linear operator T with domain

(R(B∗) + N(B∗p))⊥ and range M such that ‖Ty‖ = ‖y‖ for every y ∈ N(B) ∩
R(Bp). Define an operator C : K −→ H by :

C =

(
T 0

0 0

)
:

(
(R(B∗) +N(B∗p))⊥

R(B∗) +N(B∗p

)
−→

(
M

M⊥

)

Adopting the technique of the proof of Proposition 21, we get thatMC is Browder.

Case 2 : Suppose that dim(R(B∗) +N(B∗p))⊥ ≥ dim(R(A) +N(Ap))⊥.
Let M be a closed subspace such that M ⊆ (R(B∗) + N(B∗p))⊥ and dimM =

dim(R(A)+N(Ap))⊥. Then, there exists a linear operator T with domain (R(A)+

N(Ap))⊥ and range M such that ‖Ty‖ = ‖y‖ for every y ∈ (R(A) + N(Ap))⊥.
Define an operator C1 : K −→ H by :

C1 =

(
T 0

0 0

)
:

(
(R(A) +N(Ap))⊥

(R(A) +N(Ap))

)
−→

(
M

M⊥

)
.

Let MC1
∗ =

(
A C1

∗

0 B

)
. Then, the same technique used in the proof of [2,

Theorem 2.1], shows that MC1
∗ has finite descent. ¤
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Theorem 24. Let H and K be two infinite dimensional separable Hilbert

spaces, A ∈ BCR(H) and B ∈ BCR(K) with ρ(B) 6= ∅, Rc(A) = {0} and

Rc(B) = {0}. If MC is Browder for some C ∈ B(K,H), then

(i) A ∈ φ+(H) with asc(A) < ∞ and B ∈ φ−(K) with des(B) < ∞.

(ii) d(A) < ∞ if and only if n(B) < ∞.

Proof. Let C ∈ B(K,H) such that MC is Browder.

(i) We claim that A ∈ φ+(H) and asc(A) < ∞. Since N(A)⊕{0} ⊆ N(MC),

then n(A) ≤ n(MC) < ∞. From the decomposition of M∗
C , it follows that

R(M∗
C) ⊆ R

((
A∗ 0

0 I

))
. Then, d(M∗

C) ≥ d

((
A∗ 0

0 I

))
= d(A∗). Thus R(A)

is closed and therefore A ∈ φ+(H). Using Proposition 18, we get asc(A) < ∞.

We claim that B ∈ φ−(K) and des(B) < ∞. It follows from the decomposition

of MC , that R(MC) ⊆ R

((
I 0

0 B

))
. Thus, d(MC) ≥ d

((
I 0

0 B

))
= d(B).

Since MC is Browder, then d(B) < ∞. And so, B ∈ φ−(K). Since ρ(B) 6= ∅, then
by Proposition 10, we have des(B) = asc(B∗). Thus, to show that des(B) < ∞,

we need only to prove that asc(B∗) < ∞. Since MC is Browder, then M∗
C is

also Browder. Then, there exists p ∈ N such that asc(M∗
C) = p. Suppose that

N(B∗p) ( N(B∗p+1). This implies that there exists y ∈ N(B∗p+1) such that

B∗py 6= 0. However, for all x ∈ H we have :

M∗p+1
C

(
x

y

)
=

(
A∗p+1x

C∗A∗p+1x+B∗C∗A∗px+ ...+B∗p+1y

)
.

For x = 0, we get M∗p+1
C

(
0

y

)
=

(
0

0

)
. Thus,

(
0

y

)
∈ N(M∗p+1

C ) = N(M∗p
C ). It

follows that M∗p
C

(
0

y

)
=

(
0

B∗py

)
=

(
0

0

)
. Then, B∗py = 0, which is absurd.

Hence, N(B∗p) = N(B∗p+1). And so, des(B) = asc(B∗) < ∞.

(ii) We claim that d(A) < ∞ if and only if n(B) < ∞. We need only to prove

the first implication, and by analogy we get the converse. If n(B) = ∞, then we

must have that d(A) = ∞. To the contrary, we suppose that d(A) < ∞. There

are two cases to consider.

Case 1 : Suppose that C(N(B)) is finite dimensional. Then, N(C) must con-

tain an orthonormal sequence yn ∈ N(B). Thus,

(
0

0

)
∈ MC

(
0

yn

)
for each
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n = 1, 2, . . . . This implies that N(MC) is infinite dimensional, which is a contra-

diction.

Case 2 : Suppose that C(N(B)) is infinite dimensional. Since A is Fredholm, we

know that R(A)⊥ is finite dimensional. Therefore, C(N(B)) ∩ R(A) is infinite

dimensional. Thus, we can find an orthonormal sequence yn ∈ N(B) for which

there exists a sequence xn ∈ H such that 0 ∈ Axn − Cyn for each n = 1, 2, . . . .

Then,

(
0

0

)
∈ MC

(
xn

−yn

)
for each n = 1, 2, . . . , which implies that N(MC) is

infinite dimensional. It is in contradiction again. Therefore, d(A) = ∞. ¤

Remark 25. Suppose MC is Browder for some C ∈ B(K,H), then

1- If d(A) = n(B) = ∞ , then n(A) + n(B) = d(A) + d(B).

2- If d(A) < ∞ , then A ∈ φ(H) and B ∈ φ(K). It follows from Theorem 16

that ind(MC) = ind(A) + ind(B), that is n(A) + n(B) = d(A) + d(B).

Now, as a corollary we get the following result.

Corollary 26. Let H and K be two infinite dimensional separable Hilbert

spaces, A ∈ BCR(H) and B ∈ BCR(K) with ρ(B) 6= ∅, Rc(A) = {0} and

Rc(B) = {0}. If MC is Browder for some C ∈ B(K,H), then A ∈ φ+(H) with

asc(A) < ∞, B ∈ φ−(K) with des(B) < ∞ and n(A) + n(B) = d(A) + d(B).

Basing on the preceding theorems, we can now state the main result which

gives necessary and sufficient conditions on the linear relations A and B such that

there exists C ∈ B(K,H) for which MC is Browder.

Theorem 27. Let H and K be two infinite dimensional separable Hilbert

spaces, A ∈ BCR(H) and B ∈ BCR(K) with ρ(B) 6= ∅, Rc(A) = {0} and

Rc(B) = {0}. The 2 × 2 matrix linear relation MC =

(
A C

0 B

)
is Browder for

some C ∈ B(K,H) if and only if A ∈ φ+(H) with asc(A) < ∞, B ∈ φ−(K) with

des(B) < ∞ and n(A) + n(B) = d(A) + d(B).

Proof. The first implication is given by Corollary 26. For the converse,

we have either d(A) = n(B) = ∞ or d(A) < ∞ and n(B) < ∞. In the first

case, the assertion is obvious from Theorem 22. For the second, we get that

A ∈ φ(H) and B ∈ φ(K). The result follows from Theorem 23. ¤

The following corollary is immediate from Theorem 27.

Corollary 28. Let H and K be two infinite dimensional separable Hilbert

spaces. For a given linear relation A ∈ BCR(H) and B ∈ BCR(K) such that
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ρ(B) 6= ∅, Rc(A) = {0} and Rc(B) = {0}, we have :

⋂

C∈B(K,H)

σb(MC) = σab(A) ∪ σab(B
∗) ∪ {λ ∈ C : n(A− λI) + n(B − λI)

6= d(A− λI) + d(B − λI)}.
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